

PROSODIC, MORPHOLOGICAL AND LEXICAL FEATURE EXTRACTION

OF TURKISH BROADCAST NEWS DATA

İZEL D.REVİDİ

IŞIK UNIVERSITY

2014

PROSODIC, MORPHOLOGICAL AND LEXICAL FEATURE

EXTRACTION OF TURKISH BROADCAST NEWS DATA

İZEL D.REVİDİ

B.S., Electrical and Electronics Engineering, Işık University, 2012

Submitted to the Graduate School of Işık University

In partial fulfillment of the requirements for the degree of

Master of Science

In

Electronics Engineering

IŞIK UNIVERSITY

2014

ii

IŞIK UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

PROSODIC, MORPHOLOGICAL AND LEXICAL FEATURE EXTRACTION OF

TURKISH BROADCAST NEWS DATA

İZEL D.REVİDİ

APPROVED BY:

Assoc. Prof. Ümit Güz

Thesis Supervisor

Işık University ______________

Prof. Dr. Sabri Arık

Işık University ______________

Prof. Dr. Serdar Özoğuz

Istanbul Technical University ______________

APPROVAL DATE: 05.06.2014

APPEN

DIX B

ii

PROSODIC, MORPHOLOGICAL AND LEXICAL FEATURE EXTRACTION OF

TURKISH BROADCAST NEWS DATA

Abstract

Sentence segmentation from speech is part of a process that aims at enriching the

unstructured stream of words that are the output of standard speech recognizers. Its

role is to find the sentence units in this stream of words. Sentence segmentation is a

preliminary step toward speech understanding. Once the sentence boundaries are

detected, further syntactic and/or semantic analysis can be performed on these

sentences.

Usually, speech recognizer output lacks the textual cues to these entities (such as

headers, paragraphs, sentence punctuation, and capitalization). However, speech

provides extra non-lexical cues, related to features like pitch, energy, pause and word

durations as prosodic features; verb, noun or adjective as a morphological features

and also lexical features. These prosodic, morphological and lexical features are

provides a complementary information for segmentation of speech into sentences.

Our goal is examine feature the extraction and use of prosodic information which has

been done in previous works, in addition to lexical features and morphological for

spoken language processing of Turkish with open source tools.

iii

TÜRKÇE HABER VERİSİNDEN BÜRÜNSEL, BİÇİMSEL VE SÖZCÜKSEL

ÖZELLİKLERİN ÇIKARIMI

Özet

Cümle bölütlemesi otomatik konuşma tanıma sisteminden çıkan sözcüklerin içeriğini

zenginleştirmeyi hedefleyen sürecin bir parçasıdır. Cümle bölütlemesi, gelen kelime

akışının bütün bir cümle olarak tanımlanması görevini üstlenir ve konuşma

anlamının çıkarılması sürecinin bir önceki aşamasını oluşturur. Cümle sınırlarının

bulunması ile birlikte cümle üzerinde sözdizimi ve/veya anlamsal analiz

yapılabilmektedir.

Genellikle otomatik konuşma tanıma sisteminden alınan çıktılarda başlık, paragraf,

noktalama, büyük/küçük harf gibi bilgileri içeren metin işaretleri yer almamaktadır.

Ancak konuşma hali hazırda enerji, duraklama bilgisi, kelimenin geçiş süresi gibi

bürünsel özellikleri; kelimenin yüklem, isim veya sıfat olması gibi biçimsel

özellikleri ve sözcüksel özellikleri barındırmaktadır. Bu bürünsel, biçimsel ve

sözcüksel özellikler cümle bölütlemesinin yapılabilmesi için tamamlayıcı bir bilgi

sağlamaktadır.

Yapılan çalışmadaki amacımız daha önceki çalışmalarda yapılmış bürünsel

özelliklerin çıkarımı ve kullanımına ek olarak; biçimsel ve sözcüksel özellikler açık

kaynak kodlu araçlar ile Türkçe Konuşma Dili üzerinde çıkarımı ve kullanımıdır.

iv

Acknowledgments

There are many people who helped to make my years at the graduate school most

valuable. First, I thank my supervisor, Assoc. Prof. Ümit Güz and my co-supervisor,

Assoc. Prof. Hakan Gürkan. Having the opportunity to work with them in such

project was intellectually rewarding and fulfilling. My special thanks go to Research

Asst. Doğan Dalva whose friendship I deeply value.

Many thanks to members of Senkron Security who give me support for my education

while I was working at the same time. I also thank my beloved Alara Deşilton for her

endless support through this long journey.

The last words of thanks go to my family. I thank my parents, my mother Suzan

Revidi and my father İsak Revidi, for their patience and encouragement. Lastly I

thank all my friends for their moral support.

v

To my family

vi

Table of Contents

Abstract .. ii

Özet ... iii

Acknowledgements ... iv

Table of Contents .. vi

List of Tables .. viii

List of Figures .. x

List of Symbols .. xii

1.Introduction ... 1

2. Related Works .. 3

3. Automatic Speech Recognition .. 6

3.1 Definition ... 6

3.2 Introduction .. 6

3.3 ASR With Turkish Spoken Language .. 8

3.4 Start-Up .. 11

3.5 Modeling .. 11

3.6 Hidden Markov Toolkit ... 16

4. Prosodic Features ... 20

4.1 Definition ... 20

4.2 Features .. 20

4.3 Prosodic Feature Extraction ... 23

vii

5. Morphological Features ... 30

5.1 Definition ... 30

5.2 Morphological Processes ... 31

5.3 Combining Morphemes ... 32

5.4 Morphological Feature Extraction ... 33

6. Lexical Features ... 41

6.1 Definition ... 41

6.2 Modeling .. 41

6.3 N-gram Usage .. 42

7. Sentence Segmentation .. 44

7.1 Introduction .. 44

7.2 Approach .. 45

7.3 Software Usage(Icsiboost) ... 51

8. Experiments and Conclusion ... 58

8.1 Overview .. 58

8.2 Experiments ... 61

8.3 Conclusion ... 91

References .. 92

Appendix A .. 95

Appendix B .. 113

Appendix C .. 114

Curriculm Vitae ... 115

viii

List of Tables

Table 3.1 Turkish Alphabet ... 9

Table 3.2a Classification of Vowels .. 9

Table 3.2b Classifications of Consonants .. 9

Table 3.3 Turkish Alphabet Phonetic Symbol List ... 10

Table 4.1 Output of Feature Extraction and Feature Types Relationships 24

Table 4.2 ‘’word.textgrid’’ and ‘’phone.textgrid’’ praat format corresponding to figure 4.3 interval 25

Table 4.3 Wav Information List .. 26

Table 4.4 Usage of Praat ... 28

Table 4.5 Output of Praat .. 29

Table 5.1 Types of Combining Morphemes ... 33

Table 5.2 Tags ... 35

Table 5.3 Feasible Pairs .. 38

Table 5.4 Usage of TRmorph .. 40

Table 6.1 N-grams .. 42

Table 6.2a N-gram Example(Word) .. 43

Table 6.2b N-gram Example(Sentence) ... 43

Table 7.1 Sentence Boundary ... 44

Table 7.2 Adaboost Algorithm ... 50

Table 7.3 Labeled Features Table ... 51

Table 7.4 Data Sets and Content ... 52

Table 7.5 Names File .. 53

Table 7.6 Training Model and Errors... 53

Table 7.7 Results .. 54

Table 7.8 Decision Table ... 55

Table 8.1 Data Analysis (Types).. 58

Table 8.2 Data Analysis (Quantities) ... 59

ix

Table 8.3 Feature Sets, Contents and Quantities .. 59

Table 8.4 Table View of Experiment 1 (Speaker 1 with Lexical Features) .. 62

Table 8.5 Table View of Experiment 2 (Speaker 2 with Lexical Features) .. 64

Table 8.6 Table View of Experiment 3(All Speakers with Lexical Features) 66

Table 8.7 Table View of Experiment 4 (Speaker 1 with DUR+M1 Prosodic Feature Set) 68

Table 8.8 Table View of Experiment 5 (Speaker 2 with DUR+M1 Prosodic Feature set) 70

Table 8.9 Table View of Experiment 6 (All Speakers with DUR+M1 Prosodic Feature Set) 72

Table 8.10 Table View of Experiment 7 (Speaker 1 with DUR+F0 Prosodic Feature Set) 74

Table 8.11 Table View of Experiment 8 (Speaker 2 with DUR+F0 Prosodic Feature Set). 76

Table 8.12 Table View of Experiment 9 (All Speakers with DUR+F0 Prosodic Feature Set) 78

Table 8.13 Table View of Experiment 10 (Speaker 1 with M1 Prosodic Feature Set) 80

Table 8.14 Table View of Experiment 11(Speaker 2 with M1 Prosodic Feature Set) 82

Table 8.15 Table View of Experiment 12(All Speakers with M1 Prosodic Feature Set) 84

Table 8.16 Table View of Experiment 13(Speaker 1 with Morphological Feature Set) 86

Table 8.17 Table View of Experiment 14(Speaker 2 with Morphological Feature Set) 88

Table 8.18 Table View of Experiment 15 (All Speakers with Morphological Feature Set) 90

x

List of Figures

Figure 3.1 Two Side Communication ... 7

Figure 3.2 Speech Processing (Human) .. 7

Figure 3.3 Speech Processing (Machine) .. 8

Figure 3.4 Block Diagram of ASR System ... 11

Figure 3.5 Left to Right HMM for Word Recognition ... 12

Figure 3.6 Flow Diagram of HTK Process ... 17

Figure 3.7 Flow Diagram of Training Process .. 19

Figure 4.1 Sentence Boundaries ... 21

Figure 4.2 Extractions of F0 Features ... 22

Figure 4.3 All steps of Prosodic Feature Extraction ... 23

Figure 4.4 Audio Waveform Corresponding to Phone and Word Alignments. 24

Figure 4.5 Praat Prosodic Feature Extraction Toolbox Flow Diagram............................... 27

Figure 5.1 Agglutimative Type of Language Example... 30

Figure 5.2 Structure of the Morphological Feature Extraction Tool. 34

Figure 5.3 Limiting dictionary set .. 36

Figure 5.4 Finite State Recognizer Approach ... 37

Figure 5.5 Finite State Recognizer Approach Example .. 38

Figure 5.6 Two-Level Morphology Architecture for Turkish Spoken Language............... 39

Figure 7.1 Classifications .. 45

Figure 7.2 Data Sets .. 47

Figure 7.3 Self-Trained Model.. 48

Figure 7.4 Baseline Model .. 48

Figure 8.1 Graphical View of Experiment 1 (Speaker 1 with Lexical Feature Set). 61

Figure 8.2 Graphical View of Experiment 2 (Speaker 2 with Lexical Feature Set). 63

Figure 8.3 Graphical View of Experiment 3 (All Speakers with Lexical Feature Set) 65

Figure 8.4 Graphical View of Experiment 4 (Speaker 1 with DUR+M1 Prosodic Feature Set) 67

Figure 8.5 Graphical View of Experiment 5 (Speaker 2 with DUR+M1 Prosodic Feature Set) 69

xi

Figure 8.6 Graphical View of Experiment 6 (All Speakers with DUR+M1 Prosodic Feature Set) 71

Figure 8.7 Graphical View of Experiment 7 (Speaker 1 with DUR+F0 Prosodic Feature Set) 73

Figure 8.8 Graphical View of Experiment 8 (Speaker 2 with DUR+F0 Prosodic Feature Set) 75

Figure 8.9 Graphical View of Experiment 9 (All Speakers with DUR+F0 Prosodic Feature Set) 77

Figure 8.10 Graphical View of Experiment 10 (Speaker 1 with M1 Prosodic Feature Set) 79

Figure 8.11 Graphical View of Experiment 11 (Speaker 2 with M1 Prosodic Feature Set) 81

Figure 8.12 Graphical View of Experiment 12 (All Speakers with M1 Prosodic Feature Set) 83

Figure 8.13 Graphical View of Experiment 13 (Speaker 1 with Morphological Feature Set) 85

Figure 8.14 Graphical View of Experiment 14 (Speaker 2 with Morphological Feature Set) 87

Figure 8.15 Graphical View of Experiment 15 (All Speakers with Morphological Feature Set) 89

xii

List of Symbols

ASR

DSP

WAV

AIFF

Automatic Speech Recognizer

Digital Signal Processing

Waveform Audio File Format

Audio Interchange File Format

HMM Hidden Markov Model

HTK Hidden Markov Model Toolkit

IPA International Phonetic Alphabet

ARPA

LM

LTM

Advanced Research Project Agency

Language Model

Lognormal Tied Mixture Model

MFCC

FST

SFST

Mel Frequency Cepstral Coefficients

Finite State Transducer

Stuttgart Finite State Transducer

VOA

Voice of America

STM Segment Time Marks

1

Chapter 1

Introduction

Speech, writing and sign are the only three main acts to communicate humans

between them. And speech is the easy way for the communication in case two people

speak with same language. By the development of technology new communication

types are occurred such as e-mail, video calls etc.

First communication start in 3500 BC with the paintings on the walls of the caves

and it continued to develop rapidly until the internet-WWW is born in 1994.

Invention of phonautograph which is the earliest known device for recording and

printing waveform of the sounds in to a paper, could be accepted the first step of

speech processing. This device invented by Edouard-Leon Scott de Martinville in

1857. Today speech signals could represent with an electrical signal by using sources

such as a microphone. These signals could be processed in any basic computer or

electronic device. Also these signals could reconstruct and transmit easily with

digital signal processing (DSP) methods.

In this work we concentrate on Turkish Spoken Language and convert ASR system’s

output which system is used for convert speech signal to a simple text file with

recognized words, into a meaningful data. It is must for the human and machine

communication. A data without sentence boundary labels doesn’t make sense for the

human. Using by prosodic, morphological and lexical features; we aimed to label

sentence boundaries automatically. Sentence segmentation is need for such as topic

segmentation, topic summarization, parsing, machine translation, information

extraction, online subtitling and question answering applications.

The goal of the sentence segmentation is made a decision for the each word, is it a

sentence boundary or not, with an acceptable error. Prosodic features include timing

2

and pitch patterns; morphological features include what and how information

encoded in to a word; and lexical features include order information of the words. All

these information is used for giving decision correctly.

Thesis starts with the information about related works which is done previous works.

In Chapter 3, definition of ASR, modified ASR into Turkish Spoken Language,

Modeling (Hidden Markov Model, Word Model, Acoustic Model and Language

Model) and usage of HTK Toolkit has introduced. In Chapter 4, definition of

Prosodic Feature, types of Prosodic Feature, how to extract Prosodic Features and

usage of Praat Toolkit has introduced. In Chapter 5, definition of Morphological

Features, morphological process, how to extract Morphological Features and usage

of TRmorph Toolkit hast introduced. In Chapter 6, definition of Lexical Features,

modeling and usage of N-gram models has introduced. In Chapter 7, introduction to

sentence segmentation problem, approaches, usage of Icsiboost has introduced. And

lastly Chapter 8 includes overview of experiments, experiments and conclusion has

introduced.

3

Chapter 2

Related Works

ASR systems are very trend topics; there are lot of researches and publications

with several ways on this subject. Although ASR systems work for conversion of

speech in to a text file, in our work we focused on Sentence Segmentation which

tries to conversion of a text file into meaningful state, topic from a lot of subject

which related with ASR system. Again Sentence Segmentation problem is solved

with several ways for several different situations. Different languages, different

feature sets and different learning algorithms separate all these researches in their

self. Thus we can group these researches into type of language, type of features,

feature extraction methods and type of machine learning algorithms.

Sentence boundary detection (and similarly adding punctuation mark) in speech

has been studied in an attempt to enrich speech recognition output [1, 2, 3, 4] and

in the previous approaches for this task, different classifiers have been evaluated

(e.g. hidden Markov model (HMM), maximum entropy), utilizing both textual-

prosodic information [5]. In example, different approaches such as HMM,

maximum entropy and conditional random fields are applied in same research for

both conversational telephone speech and broadcast news speech [4]. In ‘’The

ICSI+ multi-lingual sentence segmentation system" reasearch is based on

Mandarin and English Spoken Language (Multi-Language System) but also there

is applications for the other different languages such as Czech, Chineese etc.

In past, feature extraction systems have depended mostly on lexical information

for segmentation (Kubala et al., 1998; Allan et al.1998; Hearst, 1997; Kozima,

1993; Yamron et al., 1998; among others) [1]. In “Prosody-based automatic

segmentation of speech into sentences and topics” research against to past

4

automatic information extraction systems lexical and prosodic features are used

together based on English Spoken Language. Sentence segmentation decision is

given using decision tree and Hidden Markov Modeling techniques where

prosodic cues with word-based approaches are combined. Performance is

evaluated on two speeches which are broadcast news and switchboard, result of

this it is shown that prosodic model is performed better than the other word-based

statistical language models for both two speeches.

Differently in “Automatic Speech Recognition System for Turkish Spoken

Language” [9] research only Prosodic Features are used for deteceting sentence

boundaries in Turkish broadcast news data. HTK tool is used for application of

ASR and feature extaction is done with Praat Toolbox [10]. This research shows

that related to tool’s feature outputs; when F0 features, duration features and

energy features are used together, system performs the maximum performance.

Again in differently, adaboost algorithm[12] is applied for improve the scores

and to get a strong learning algorithm.

In related works as we see mostly lexical and prosodic features are used and

researches are mostly based on English Spoken Language. But against to others

in ‘’A Freely Available Morphological Analyzer for Turkish” [7] and "A

statistical information extraction system for Turkish," [8] researches

morphological features are used to detect sentence boundaries and both

researches are based on Turkish Spoken Language however in English Spoken

Language there is very small number of possible word forms with a given word if

it is compared with Turkish Spoken Language. To conclude it is seen that

because of Turkish is a agglutinative type of language, the construction of a

language model for Turkish Spoken Language can’t be directly adapted from

English Spoken Language. At the other side Çağrı Çöltekin’s tool against to

Kemal Oflazer’s tool created before, is the first freely available two-level

morphological analyzer for Turkish Spoken Language.

5

Above all of these in our work we try to combine all these different approaches

together. As a solution to sentence segmentation problem which is detected to

sentence boundaries; prosodic, morphological and lexical features are used

together. All features are extracted with mathematically modeled language

models by helping related tools. For reach the highest scores and to get a strong

learning algorithm, boosting method is used. Lastly our system is based on

Turkish Spoken Language and also we try to use open source and easy to

modified for all languages tools.

6

Chapter 3

Automatic Speech Recognition

3.1 Definition

Automatic Speech Recognition (ASR) can be defined as conversion of spoken word

in to a text file in basically. This system that allows, machine is identified words

which comes out from the speaker in to a source device (microphone etc.) and

transform it to a digital text file. Thus provides communication between human and

machine and the most important benefit is cost reduction. In present day’s

technology, machines take place of the human and it obliges machine-human

relationship. ASR system requires limited time period of speaker training after that

system is captured words from a large vocabulary with high accuracy. ASR system

researches has drove for more than 50 years, the goal of ASR is, recognizing doing

with hundred percent accuracy, for all words, with independent speakers, with

unknown vocabulary size, with noise and with all type of languages. In our work we

have focused ASR system for Turkish Spoken Language.

3.2 Introduction

We examine speech recognition in two sides. One of them is human side and the

other of them is machine side. 2 sides are summarized in Figure 3.1.

At the human side sound waves are produced by vibration by helping articulation.

Than ears conveys this vibrations in to the brain. Last step brain is processed

vibration and recognition is completed as shown in Figure 3.2.

7

Side 1: Human

Recognition Synthesis

Side 2: Machine

Generation Understanding

Figure 3.1 Two side communication

Figure 3.2 Speech Processing (Human)

Speech Speech

Text Text

Meaning

8

At the other side machine take the sound waves from outside sources (microphone,

wav files etc.) than machine digitize the input files and try to estimate words by

linguistic interpretation as shown in Figure 3.3.

Figure 3.3 Speech Processing (Machine)

3.3 ASR With Turkish Spoken Language

As we mention before type of language is important detail for ASR system. System

should be design with characteristic information of language type. All languages has

own different alphabet and all different alphabets includes different letters. Same

letters could have different phonemes. In example, Turkish Spoken Language;

written language and utterance of phonemes orthography is same but in English

Spoken Language it is opposite. Shortly Turkish Spoken Language is written as

reading. All sounds and phonemes should be known for design ASR system. Turkish

Spoken Language Alphabet divides in to two with vowels and consonants as shown

below in Table 3.1[12] .

9

TURKISH ALPHABET

Vowels a-e-ı-i-o-ö-u-ü

Consonants b-c-ç-d-f-g-ğ-h-j-k-l-m-n-p-r-s-ş-t-v-y-z

Table 3.1 Turkish Alphabet

Classification of the vowels and consonants are shown below in Table 3.2 for the

Turkish Alphabet [12].

Vowels
Unrounded Vowel Rounded Vowel

Wide Close Wide Close

Back Vowel a ı o u

Front Vowel e i ö ü

Table 3.2a Classification of Vowels

Consonants Fricatives Stops Nasals Semivowels

Voiced c-j-v-z b-d-g m-n ğ-l-r-y

Unvoiced ç-f-h-s- ş t-k-p

Table 3.2b Classification of Consonants

The list of Turkish Alphabet related to IPA, ARPAbet, HTK (Hidden Markov

Toolkit) and Praat, is shown below in Table 3.3 [13].

10

Alphabet IPA

Phoneme

ARPAbet HTK Praat Alphabet IPA

Phoneme

ARPAbet HTK Praat

A /a/ AA a a M /m/ M m m

B /b/ B b b N /n/,/ɲ/ N. NX n n

C /dʒ/ JH c c O /o/ OW o o

Ç /tʃ/ CH C1 C Ö /œ/ O1 O

D /d/

D d d P /p/ P p p

E /e/,/æ/ EH, AE e e R /r/ R r r

F /f/

F f f S /s/ S s s

G /g/ G g g Ş /ʃ/ SH S1 S

Ğ /ɰ/ G1 G T /t/ T t t

H /h/ H h h U /u/,/ʊ/ UH u u

I / ı /

IH I1 I Ü /y/ Y U1 U

İ /i/

IY i i V /v/ V v v

J /ʒ/ ZH j j Y /j/ JH y y

K /k/

K k k Z /zh/ ZH z z

L /l/,/ɬ/ L l l

Table 3.3 Turkish Alphabet Phonetic Symbol List

11

3.4 Start-Up

ASR system is performed from two main part which as known as acoustic processor

and linguistic decoder. Acoustic processor performs short-term power spectrum

which is represented by Mel Frequency Cepstral Coefficients (MFCC). MFCC’s are

extracted using by HTK HCopy tool. Linguistic decoder is doing pattern

classification with acoustic model on HMM which patterns coming from acoustic

processor. In second step it tries to estimate spoken words from dictionary by helping

N-gram language. At the end of two main part, confidence score is performed for

confirm the success of estimation. All these steps are shown below in Figure 3.4.

Figure 3.4 Block diagram of ASR system.

3.5 Modeling

3.5.1 Hidden Markov Model

3.5.1.1 Bayes Formulation

The speech vector X is wanted to find in class W with highest probability for

recognize the spoken word in a sentence. Posteriori probability P(W|X) is needed for

solve this problem. Classification can be defined as,

^

arg m ax (|)
W

W P W X (3.1)

By using the Baye’s rule equation 3.1 can be written as,

(,) (|) ()
(|)

() ()

P X W P X W P W
P W X

P X P X
 (3.2)

Speech

Signal

Feature

Extraction

(MFCC)

Decoder

Acoustic

Model

Language

Model

Estimation,

Scores

12

Because of P(X) is independent, it can be eliminated equation can be re-written as,

^

arg m ax (|) ()
A L

w

W P X W P W (3.3)

Where (|)
A

P X W represent acoustic modeling and ()
L

P W language modeling.

3.5.1.2 Word Modeling

Left-to-right HMM structure is used for word modeling. A vector sequence

0 1 (1){ , , ... , }
xTX x x x

 is defined which belongs to word class W. At each time

moment 0,1, ..., (1)
x

t T HMM is equivalent to a state
t

s

 and it will generate a

vector tx

 with a probability |
t

tp x s

. Than it will make a state transition from

state
t

s

 to
1t

s

 with a probability
t

a

 to
1t

a

. Defined vector X

 can thus be

generated by using state of indices
0 1 (1)

{ , , ..., }
xT

 . The initial state probability

is given 1 for the first state and probability is given 0 for the other state. Related to

this the generation process starts with state
0

s and it continues from left to the right.

Figure 3.5 Left to right HMM for word recognition.

S0 S1
S2

a00

a02

a01

a11

a12

a22

13

3.5.1.3 Viterbi Algorithm

Viterbi algorithm is found the best state sequence for maximizes the likelihood of the

state sequence in observation sequence that is to say find the shortest way for reach

the goal.

Hidden state is defined as,

1 2
(,)

n
q q q q (3.4)

Observation sequence is defined as,

1 2
(,)

n
o o o o (3.5)

Emission probability is defined as,

 () (|
ik i k k i

b b b o P o q (3.6)

Maximal probability of state sequence is represented by ()
t

i where t is length and

i is state. Equation can be performed as,

 () m ax ((1), (2), ..., (1); (1), (2), ..., () | ())
t i

i P q q q t o o o t q t q (3.7)

 is N by T matrix and it is used to retrieve the optimal state sequence from the

previous step.

1
() 0, 1, ...,i i N (3.8)

1
() ((1))

i i
i p b o (3.9)

In recursion the most likelihood is found as shown below.

1
() max [()] (())

t i t ij j
j i a b o t

 (3.10)

1
() arg max [()]

t i t ij
j i a

 (3.11)

The algorithm is found the most probable states however there could be more than

one. In termination most probability is select from probable states ash shown below.

*
max [()]

i T
p i (3.12)

14

*
arg max [()]

T i T
q i (3.13)

From final to start path backtracking is expressed as,

* *

1 1
(), where 1, 2, ...,1

T t t
q q t T T

 (3.14)

3.5.1.4 Baum-Welch Algorithm

Baum-Welch algorithm is used for set the HMM’s parameters. Algorithm’s steps are

summarized as follows;

 Re-estimation is required for every parameter vector/matrix, storage locations

are referred to as accumulators.

 Forward and backward probabilities are calculated for all states (j) and times

(t).

 For each states and time, ()
t

i probability is used, and the current observation

sequence to update the accumulators for that state.

 Parameter values are performed by using the final accumulator.

 All steps are repeated until finding the maximum probability of (|)P O .

3.5.2 Acoustic Modeling

As we mention before in Bayes Formulation, conclusion performed by acoustic

model equation and language model equation. Acoustic model is an algorithm which

contains statistical representations of each sound that makes up a word. In English

language it is enough for work with 40 acoustic-phonetic models but in Turkish

Spoken Language which we are working on, only 29 acoustic-phonetic models are

enough because written language and utterance of phonemes orthography is same in

Turkish Language. This statistical representation expressed with helping by HMM.

Acoustic model equation is expressed in equation 3.3.

 1 2 1 2
(|) , , ..., | , , ...,

A A T T
P X W P X X X W W W (3.15)

15

If assumptions are done as below,

 t is lined up with word model i

 HMM model affirm by j

 Independent

 Each
T

X response to
i

j
w

Equation 3.4 can be re-write as below;

1

(|) |

T

i

A A T j

t

P X W P X w

 (3.16)

Each phonetic unit modeled with a mixture of Gaussians;

1

| ,

K

j T jk T jk jk

k

b X c N X U

 (3.17)

Where j T
b X represents to mixture of Gaussian normal densities, k represents to

the number of mixture components in the density function ,
jk

c represents to the

weight of the mixture component in state j with corresponds to k , N represents to

Gaussian density function,
jk

 represents to mean of Gaussian density function

corresponds to j k and
jk

U represents to covariance of Gaussian density function

corresponds to j k . In dictionary all words can be defined as mono-phones or tri-

phones. In example for “amerika” word; mono-phones are expressed “a-m-e-r-i-k-a”

and tri-phones are expressed “ame-mer-eri-rik-ika”.

3.5.3 Language Modeling

The second conclude equation of Bayes Formulation is language modeling.

Language model is an algorithm which contains word sequences and their

probabilities. Word sequence can be expressed as:

1 2
, , ...,

n
W w w w (3.18)

And language model equation which is expressed in equation 3.3 can be re-write as;

16

 1 2 1 3 1 2
() | |

L n
P W P W P W W P W W W (3.19)

 2 1
(|)

L n n n n
P W P W W W

 (3.20)

 It is not cost effective to doing estimation for large terms. Equation could become

effective with using N-gram model. (Eq. 3.21)

1 2 1 1 1
(|) (| ...)

n n n k n n
P W W W W P W W W

 (3.21)

When chain rule is applied into equation 3.10,

 1 2 1

1

() | ...

n

L i i i i k

i

P W P W W W W

 (3.22)

3.6 Hidden Markov Toolkit

3.6.1 Introduction

Hidden Markov Toolkit [15] which is based on Hidden Markov Model, is used for

recognize the speech. In our work, HTK Turkish speech recognition system which is

reconfigured in Boğazici University, is used. HTK toolkit is build up on two main

base; training tools and recognizer. Firstly training tools are estimated mathematical

parameters with respect to HMM and secondly unknown utterances are transcribed

with helping recognizer.

HTK toolkit performed with own tools and these tools are build up with 4 main

processing steps; data preparation, training, testing and analysis.

17

Figure 3.6 Flow diagram of HTK processes.

HLed
HLStats

H

HSLab

HCopy

HList

HQuant

Transcriptions Speech

HCompv, HInit, HRest, HERest, HSmooth, HHEd, HEAdapt

HDMan

Dictionary

Networks

HBuild
HParse

HMMs

HVite

Transcriptions

HResults

D
ata P

rep

Train
in

g
Testin

g
A

n
alysis

18

3.6.2 Data Preparation

Process starts with data preparation. An audio file (speech data) and their

transcriptions are needed for the input, if you haven’t, you can record it with HSLab.

And this speech data is needed to be converted in correct form with phone or word

labels. HCopy is a tool for parameterizing the data which is used for extracting

MFCC of the speech signal too. This parameterized data could be seen with HList

tool and data could be designed to make the required transformations with a label

editor tool HLed which could construct the Master Label Files too. Last step in data

preparation, statistics on label files are displayed with HLStats tool and VQ

codebook is built with HQuant tool. Now we are ready for the next step of the

process.

3.6.3 Training

HTK works with HMMs for built the desired topology. In this second step of the

process, phone models are built. An initial set of models are extracted with HInit tool

than further re-estimation doing for isolated words with HRest tool. Utterance’s (i.e

phone) locations are labeled for used as bootstrap data. Initial set of parameter

values are computed with segmental k-means procedure than mean and variance is

computed. In the initial estimation parameters are defined by using Viterbi

alignments than in re-estimation stage which is performed by HRest tool, Baum-

Welch algorithm is used. When there is no bootstrap data, initialization done by

HCompV tool. With initial set of models are created, HERest tool is performed for

embedded training. Baum-Welch and forward-backward algorithms are used in this

tool, in summary this tool is the heart of training process. As we mention before

HMMs are used, HHEd tool is an editor for change the HMM parameters of system.

19

Figure 3.7 Flow diagram of training process.

3.6.4 Testing

HVite tool which is allow recognition by applying language model into speech data.

It uses Viterbi algorithm. HVite takes as input word sequence, dictionary with

pronunciation and set of HMMs. All this needs are completed in previous steps with

helping BUSIM for Turkish Language. At the output tool is obtained phoneme based

and word based labeled segment time marks for the spoken data, than this output will

be used for prosodic feature extraction which will explain in next chapters.

3.6.5 Analysis

HTK processes are completed with measuring performance of the system. By

helping HResults tool, recognized words from the HTK tool are compared with given

manually wrote text input file. Success of system is appeared.

Labelled Utterances

 a m e r i k a

HInit

HRest

Transcriptions

Unlabelled

Utterances

 a m e r i k a

HERest

HHEd

HComp

V

Sub-Word

HMMs

20

Chapter 4

Prosodic Features

4.1 Definition

With the application of ASR system into an audio file, speech is converted into a text

file by the way pitch patterns and time scales are lost as mentioned before. These lost

patterns are called prosody. It carries structural, semantic and functional information.

Output of ASR is a text file and this file includes only words, there isn’t any

sentences boundary, capitalization, punctuation, headers or paragraphs. Prosodic

features along with to solve these problems. Prosodic feature includes pausing, pitch

and amplitude change difference, global pitch declination, melody, boundary tone

distribution and speaking rate variation. However prosodic features are irresponsive

from the word’s meanings and ASR; according to this, system get better performance

with no additional training data. Thus, performance gains can be evaluated quickly

and cheaply, without requiring additional infrastructure [5].

4.2 Features

There are three main types of features such as basic features, statistical features and

derived features.

4.2.1 Basic Features

Basic feature includes four types of feature. These features are;

-Base Features

-Duration Features

-F0 Features

21

-Energy Features

4.2.1.1 Base Features

Base features are included only the basic information of audio file such as location,

gender and identity.

4.2.1.2 Duration Features

Duration features are the basic type of prosodic features. It examines inter-words

according to pauses and durations of phones and rhymes. Pause features are passing

time between two boundaries word in second as shown in Figure 4.1. Furthermore

this features also using for to detect semantic information. The other side phone and

rhyme duration features are phone duration which is in previous rhyme of a word.

However this features using for to detect semantic information too. Word duration,

following word duration, last time rhyme duration and last phoneme duration are

given example for the duration features.

 ali topu at (pause) ali topu tut (pause)

 200ms 200ms 200ms 200ms 200ms 200ms 200ms

Figure 4.1 Sentence Boundaries

4.2.1.3 F0 Features

F0 Features are more difficult to model than the other prosodic features. It is related

with pitch information where pitch includes highness or lowness tone. This is largely

attributable a variability in the way pitch is used across speakers and speaking

contexts, complexity in representing pitch patterns, segmental effects and pitch

tracking discontinuities (such as doubling errors and pitch halving, the latter of which

is also associated with non-model voicing.). F0 obtained by using get_f0 and

fundamental frequency estimated by using autocorrelation. Output of this operation,

two main noises are produced. Probability of halving and doubling are estimated by a

lognormal tied mixture model (LTM). Then median filter is applied for smoothing to

Sentence Boundary Sentence Boundary

22

the two main noises. At the last step F0 is stylized using greedy algorithm which

detects discontinuities by mean square error method and features are completed by

compute the slopes. Minimum style fit F0, maximum style fit F0 and mean style fit F0

are given example for F0 features. Feature extraction is summarized in Figure 4.2.

Figure 4.2 Extractions of F0 Features

4.2.1.4 Energy Features

Energy features are extracted with energy calculations from each word. Minimum

energy, maximum energy, minimum next energy and maximum next energy are

given example for energy features.

4.2.2 Statistical Features

These features are not output of the tool. But these features are performed by

computation of original features like mean and deviation operations.

4.2.3 Derived Features

Derived features are formed by using basic features (duration features, F0 features

and energy features) and statistical features. Derived features can be computed by

using two basic features or using computed statistics. Normalized word duration,

normalized pause, normalized vowel duration, normalized rhyme duration, F0 derived

features, average phone duration and speaker specific normalization are type of

derived feature.

Pitch

Tracker
LTM Median

filtering

Linear

stylization

Feature

computation

23

4.3 Prosodic Feature Extraction

4.3.1 Basic Information

The Purdue Prosodic Feature Extraction tool [10] which based on Praat, is used for

prosodic feature extraction. The prosodic features are extracted directly from the

speech signal given its time alignments to a human generated transcription or to

automatic speech recognition (ASR) output. All types of prosodic features are detail

explained in Appendix A which features are extracted again in using Praat and also

scripts for ‘’Computing Global Statistics & Extraction Prosodic Features’’ expressed

in Appendix B. All steps of extraction as shown in Figure 4.3.

Figure 4.3 All Steps of Prosodic Feature Extraction

Forced Alignment

Transcript

Audio

Energy

Calculation

Energy/Pitch

conversion
Stylization Stylized Energy

Raw Energy

Energy Slope

Pitch Tracking Raw Pitch

Voiced/Unvoiced

Detection
VUV

Pitch Stylization Stylized Pitch

Pitch Slope

Word

Phone
Vowel

Identification

Rhyme

Identification

Vowel

Rhyme

24

Using output of feature extraction which is shown in Figure 4.3 before, types of

features can be computed as shown in Table 4.1.

 Table 4.1 Output of Feature Extraction and Feature Types Relationships.

Tool needs three input files for realizing feature extraction. Such input files are audio

file (WAV or AIFF) and phone-word alignments corresponding to audio file. Phone

alignments and word alignments should be rearranged for convert in Praat format

(.textgrid). Audio waveform corresponding to phone alignments and word

alignments are shown in Figure 4.4. ‘’.textgrid’’ praat format for phone and word are

shown in Table 4.1.

Figure 4.4 Audio waveform corresponding to phone and word alignments.

 Duration Features F0 Features Energy Features

Word + + +

Phone + - -

Vowel + - -

Rhyme + - -

VUV - + -

Raw Pitch - + -

Stylized Pitch - + -

Pitch Slope - + -

Raw Energy - - +

Stylized Energy - - +

Energy Slope - - +

25

Table 4.2 ‘’word.textgrid’’ and ‘’phone.textgrid’’ praat format corresponding to

figure 4.3 interval.

26

Additionally wav information list is prepared for labeling speakers which is also

using for extraction ‘’Base Features’’. List is shown in Table 4.3.

SESSION SPEAKER GENDER LOCATION

Demo_1 Speaker 1 Male ../demo/data/demo_1.wav

Demo_2 Speaker 2 Female ../demo/data/demo_2.wav

Demo_3 Speaker 3 Female ../demo/data/demo_3.wav

Demo_4 Speaker 4 Male ../demo/data/demo_4.wav

Table 4.3 Wav Information List

4.3.2 Structure Of The Prosodic Feature Extraction Tool

Structure is comprised from two main parts. One of them is called ‘’ Global Statistics

Computation’’. This part put efforts for computation basic features (see section

4.2.1) and statistical features (see section 4.2.2). Other part is called ‘’ Feature

Extraction’’. This part is extracted prosodic features using basic features and

statistical features. (see section 4.2.3). Flow diagram of Praat prosodic feature

extraction tool is shown in Figure 4.5.

4.3.3 Software Usage (Praat)

As an input, the wav file and corresponding word and phone aligned files (shown in

Figure 4.4) are loaded into the workspace (Example; ‘’demo/work_dir/”). Also for

the general information ‘’Wav Information List” table (shown in Table 4.3) should

be prepared which respect to input files. For the easy to use, user interface could be

used or program could be run from command windows too. Steps to run program

correctly could be seen from Table 4.4 both global statistic computation and prosodic

feature extraction in Praat.

27

Figure 4.5 Praat Prosodic Feature Extraction Toolbox Flow Diagram

Audio File word.textgrid phone.textgrid

Global Statistics

Computation

Tool

Initilization

Each Audio

Initilization

Pre-processing

Raw Data

Basic Feature

Extraction

Derived Feature

Computation

Clean-up

Finished?

Yes

No

Global

Statistic

Local Statistics

Computation

Tool Clean-up

Wav Information List

28

Global Statistics Computation

Enter the code.

praatstats_batch.praat ../demo-wavinfo_list.txt ../demo/work_dir yes

1. Run Praat.

2. Praat Objects / Read / Read from file / select_stats_batch.praat

3. Click Run on Script Editor.

4. Type ../demo-wavinfo_list.txt and ../demo/work_dir into the boxes and click

yes if you want to use existing parameter files, no to generate parameter files

from the beginning.

5. Click OK.

6. Process is displayed in the Praat Info Window.

Prosodic Feature Extraction

Enter the code,

praatmain_batch.praat ../demo-wavinfo_list.txt

user_pf_name_table.Tab\ ../demo/work_dir/stats_files

../demo/work_dir yes

1. Run Praat.

2. Praat Objects / Read / Read from file / select main_batch.praat

3. Click Run on Script Editor.

4. Type ../demo-wavinfo_list.txt and ../demo/work_dir into the boxes and click

yes if you want to use existing parameter files, no to generate parameter files

from the beginning.

5. Click OK.

6. Process is displayed in the Praat Info Window.

Table 4.4 Usage of Praat[10]

29

Extracted prosodic features could be found at the following directory.

“workspace/pf_files/” by using any word processors. Because of the table is

performed from rows and columns, Microsoft Office Excel word processor is best for

analyzing prosodic features in correct lines for the given word. Table 4.5 shows an

example for output of Praat. As we mention before all Prosodic Features and their

detail explanation is appear in appendix A.

WORD WAV SPKR_ID GEN WORD_START
FEATURE

NAMES

LAST

FEATURE

Word 1 Location ID GENDER FEATURE FEATURE FEATURE

Word 2 Location ID GENDER FEATURE FEATURE FEATURE

Word 3 Location ID GENDER FEATURE FEATURE FEATURE

…
…

..

…
…

..

…
…

..

…
…

..

…
…

..

…
…

..

…
…

..

Table 4.5 Output of Praat

30

Chapter 5

Morphological Features

5.1 Definition

Every language has own information and every language is encode own information

by own words also own letters. Morphology studies with how they encode this

information by the words, in addition it studies with structure of the words. Words

are performed by small units come together. Smallest unit which includes linguistic

information called morphemes and they are consisted from phonemes. Morphemes

are classified into two groups; free morphemes and bound morphemes. Free

morphemes are performed words by themselves. In example; play, stop etc. Bound

morphemes are not performed words by themselves but they attached to free

morphemes for performed a new word. In example; +ed, +ness etc. Turkish Spoken

Language which we are studying on, is get in to Agglutinative type of languages. In

agglutinative type of languages, bound morphemes are attached one or more free

morphemes for performed a new word. Nouns, pronouns, participles and infinitives

are nominal morphological features, these features are effect the new words because

of number (one or more) and cases. Again verb marker morphological features effect

the new words because of voice (Active or passive), polarity (Negative or positive),

tense, aspect, possessor (Singular or plural; 1,2,3) and modality.

 Continuous, Past, 1|single (I was coming.)

Figure 5.1 Agglutinative Type Of Language Example.

gel iyor du m

31

5.2 Morphological Processes

Morphological processes are examined in 3 groups as shown below;

-Inflectional morphology

-Derivational morphology

-Compounding morphology

5.2.1 Inflectional Morphology

Inflection morphology is modified the word because of tense, gender, number, aspect

or word contains both free morpheme and bound morpheme.

 Subject-verb agreement, tense, aspect;

Gel-iyor-um.=>Continous-1|Single – I am coming.

Gel-iyor-sun.=>Continous-2|Single - You are coming.

Gel-iyor.=>Continous-3|Single - He/She/It is coming.

Gel-iyor-uz.=>Continous-1|Plural – We are coming.

Gel-iyor-sunuz.=>Continous-2|Plural – They are coming.

Gel-iyor-lar.=>Continous-3|Plural – They are coming.

 Constituent function;

Okula-a gittim.- I went to the school.

Okul-u gördüm. – I saw the school.

Okul-dan nefret ettim. – I hated from the school.

Okul-da kaldɩm.- I stayed at the school.

 Number, case, possession, gender, noun-class for nouns;

Okul-lar-ɩmɩz-dan. – From our schools.

32

 Gender/Case (Respect to artikel, there is not any example in Turkish) ;

Hamburg ist eine schön-e (die)stadt. – Hamburg is a beautiful city.

5.2.2 Derivational Morphology

Derivation morphology performs a new word with addition phonemes to free

morphemes, the new word derived from the existing word. Productive derivational

morphology is applied in to almost of vocabulary and unproductive derivational

morphology is applied in to only few words of vocabulary.

Büyük (Big, Adj.) => Büyük-lük (Size, Noun)

Git (Go, Verb) => gid+er+ken (While going, Adverb)

5.2.3 Compounding

Compounding morphology performs a new word with addition of two or more free

morphemes. New words usually perform with 2 nouns come together. There will be

phonemes between two free morphemes in compounding.

Bilgi+sayar (Information; Noun , Counter; Noun) => Computer; Noun

5.3 Combining Morphemes

There’s a lot of way for make up a new word when combining morphemes. Bound

morphemes could be inserted among of free morpheme, head of free morpheme, end

of free morpheme or both head and end of free morpheme when combining

morphemes. Effect of this there could be some phoneme changes at boundary.

Related with this new word could be performed with duplicate the words or without

additional any boundary. Types of combining morphemes are as shown in table 5.1.

33

Concatenative Combination (Prefixation) ir+rasyonel

Concatenative Combination (Suffixation) elçi+lik

Concatenative Combination şarap=>şarab+ɩ

Concatenative Combination burun=>burn+u

Infixation (There is not any example in Turkish) fikas=>fumikas

Circumfixation (There is not any example in Turkish) sagen=>gesagt

Reduplication ma+s+mavi

Zero Morphology yüz (noun)=>yüz (Verb)

Table 5.1 Types of Combining Morphemes

5.4 Morphological Feature Extraction

5.4.1 Basic Information

According to our aim all type of features are extracted from open source tools such

as TRmorph feature extraction tool which is used for morphological feature

extraction. TRmorph tool [7] is a fairly complete and accurate two level

morphological analyzer for Turkish Spoken Language which is found by Çağrɩ

Çöltekin from University of Groningen. The tool implemented using finite stated

transducers (FSTs) like the all other morphological tools, especially Stuttgart finite

state transducer tool (SFST) is used. SFST is used because of tool set particularly

aimed for implementing morphological analyzers with open source. We used updated

version of this tool which is implemented with more popular finites state description

languages lexc and xfst from Xerox (Beesley and Karttunen 2003), using Foma

(Hulden 2009) [23] as the main development tool. But it doesn’t mean tool could

implement with only this compiler (Foma), system could implement with any lexc

and xfst compiler without additional effort. Because of the tool is aimed for usage of

developers, every user could customize any settings easily with respect to given

instructions on user manual [36]. Tool is as allowed to add or modify the lexical

entries and it could use for different subjects such as sentence segmentation, spell

checking, toping segmentation or etc. If we want summarized tool in short; system is

taken input Turkish spoken word and output of the tool is morphologic analyzed.

34

5.4.2 Structure Of The Morphological Feature Extraction Tool

Morphological computation could be done in two deals. Computational synthesis

produce the word from given a set constituent morphemes or information be

encoded. And secondly, computational analysis which we study on, separate and

identify the constituent morphemes and mark the information they encode from the

given word. Morphological analyzer is took given word as an input and try to find it

in memory. The box which we called Data is included the all lexicons for Turkish

spoken language which information included is specific for all languages. Lexicons

are structured collection of all the morphemes which are root words (free

morphemes) and morphemes (bound morphemes). At the second step, the box which

we called Engine and it is language independent, takes information from Data. As an

end, Engine separates given word (input) in to root words and morphemes.

Summarized of the all these steps as shown in figure 5.2.

Figure 5.2 Structure of the Morphological Feature Extraction Tool.

5.4.3 Dictionary

As we guess list of all the words in studied language should be given in to dictionary

but words format is important for tool works correctly and done analyzing with high

accuracy. Root words which are subset of lexicons, should be incorporate with

gidiyorum

Word

Data

(language

Specific)

Engine

(Language

Independent)

git<V><cont><1s>

Analyses

Morphological Analyzer

35

specific information if available. Specific information is not available in Turkish

spoken language but in some languages which are using articles, such as gender,

animateness or etc. information could affect the word as we mention previous

sections. And also in addition a list of morphemes along with the morphological

information and features should be added. These are plural morphemes, verb

morphemes and personality morphemes.

All words should be included both lexical form and surface form. Lexical form is

underlying representation of morphemes with all morphographemic (morphological

model) changes are applied and surface form is actual written form of the word.

Consistent representation of the word should be known too because according to

specific language rules, same word could be different in lexical form and surface

form. However some tags are used in TRmorph analyses which aren’t necessarily

match with any of the tags used in any grammer books. These tags are allowed to

easy access to the points. In the same time these tags could be defined as

classification which respect to Turkish spoken language’s specific rules. These tags

are represented with capital letters and as shown below table 5.2 with lexical-surface

form examples.

Tags Surface Form Lexical Form

A={a,e} Okul+lAr Okullar

I={ı,i,u,ü} Okul+lI Okullu

D={d,t} Okul+DA Okulda

P={p,b} Kitap+PI Kitabı

K={k,ğ,y} Bɩçak+KI Bıçağı

Table 5.2 Tags

36

Structure of morphology especially in Turkish spoken language is ambiguous. Same

word could be both noun and verb and because of surface form of the words are

represented with the tags there could be same written words but without the same

meaning. We could generate a lot of situations for ambiguity. Implementation could

be done with three approaches; list all word-forms as a database, heuristic/Rule-

based affix-stripping and finite state approaches which we’ll study on.

5.4.4 Approach

Along with the system could be generated in mathematical model, computation done

with high accuracy and provide representation towards to system needs; Finite state

approach [21] is used in morphological extraction tool.

5.4.4.1 Finite State Approach

Alphabet (A) of the language is a finite set and alphabet could be represent as a

subset of all words and all sentence in language (L) which could have meaning in

this type of language. But if we generate a set from Alphabet with all combination of

the characters (A*) that include in alphabet with meaningless, now this set become

superset of set L. A* is an infinite set and that the aim is limit the set for generate a

finite set. Because you couldn’t generate an infinite dictionary set thereby you

couldn’t match any word in dictionary set.

Figure 5.3 Limiting dictionary set.

L

A

A*

L1

L2

A*

 L2

 L2 L2

Alphabet
All possible string

(Infinite)

All possible string that include

in chosen type of language

(Finite)

37

Now our language is become a regular form so we could continue with Finite State

Recognizer. M represent abstract machine for regular languages, it is also accepted

as L is subset of A*. System starting in state q0, M proceeds by looking at each

symbol in w and it is end up in one of the final states when the string w is exhausted.

 0
, , , ,M Q A q N ext F inal (5.1)

Where,

0 1

0 0 0 1 1 1 1 0

0

,

,

, , , , , , , , , , ,

A a b

Q q q

N ext q b q q a q q b q q a q

Final q

Figure 5.4 Finite State Recognizer Approach

There are only three conditions for applying finite state recognizer approach. These

are finite states, finite alphabet (letters) and finite transition. All the information

should be included in recognizer in finite condition. An example is as shown below.

0

:

:

:

:

:

Q Set of states

A Alphabet

q Initial State

N ext N ext state function Q A

Final Final State

q0 q1

a

a

b

b

38

Ok, Okul, Okuyorum, Okudum, Okumuş…..

Figure 5.5 Finite State Recognizer Approach Example

5.4.4.2 Two-Level Description

Kimmo Koskenniemi thought multiple rules could be applied in parallel too. In those

days multiple rules are applied with cascade in sequence. He called this new way to

describe phonological alternations in finite state terms “Two-Level Morphology”.

Two-level morphology is based on three ideas. Firstly rules are applied in parallel,

secondly constraint could refer to lexical form and surface form both at the same

time and thirdly lexical lookup and morphological analysis are performed in tandem.

Towards all of this information, system should include specific rule which type of

language is chosen. The set of possible lexical and surface symbol correspondences

with respect to rule is represented by feasible pairs as shown below.

Table 5.3 Feasible Pairs

Lexical Form Kitab0ı

Surface Form Kitap+ı

Feasible Pair {k:k, i:i, t:t, a:a, b:p, 0:+, ı: ı }

 O

 K

U

Y

O

R

U

M

L

 D

U

M

Ş

U

M

39

The phonotics rules of contemporary Turkish have been encoded using 22 two-level

rules while the morphotatics of the agglutinative word structures has been encoded as

finite-state machines for verbal, nominal paradigms [18]. Turkish lexicons are

performed for nouns, adjectives, verbs, compound nouns, proper nouns, pronouns,

adverbs, connectives, exclamations, postpositions, acronyms, technical words, and

special cases. In Turkish there are 18500 nominal roots which is include adjectives

and nouns, 2450 verbal roots and 100 lexicons for suffixes.

Each rule helps to word for convert lexical form to surface form. Every word gets

through from all rules which are operated in parallel and checks independently. Rules

and feasible pairs are support themselves for create the output in surface form. Rules

are applied letter by letter in each recognizer, sees that same pair of letter. Two-Level

Morphology architecture for Turkish Spoken Language is as shown below.

Figure 5.6 Two-Level Morphology Architecture for Turkish Spoken Language

Lexical Form

Surface Form

R1 R2 R3 R22

40

5.4.5 Software Usage (TRmorph)

TRmorph which is an open source tool, could be download from google.code.com

freely. To compile TRmorph from the source, a lexc and xfst compiler is needed.

We used foma compiler which is an open-source tool too, and again it could be

download from google.code.com. It has similar interface with Xerox xfst and the

reason for choosing foma compiler is support most of the commands and the regular

expression syntax in Xerox xfst. Libreadline-dev and zliblg-dev packages are needed

for foma compiler and that could be downloaded with apt-get command in Linux.

After all applications towards necessary needs are installed, system is ready with

default options. All these options could be customized from options.h file which is

included in system files. System is started with foma command and then trmorph.fst

main file which could customize too, is import. Than morphologic feature extraction

could be done with up command. An example of TRmorph with morphological

feature extraction is shown below.

>>cd TRmorph-master/

>>foma

>>foma[0]:regex @”trmorph.fst”;

>>foma[1]:up okuyorum

oku<V><cont><1s>

Table 5.4 Usage of TRmoprh

41

Chapter 6

Lexical Features

6.1 Definition

Lexical features are corresponding with word of a language. N-gram method is

applied for extraction of lexical features. N-grams are an idea of word prediction

with respect to probabilistic mathematically models which could predict the next

word from the previous words. Such of these statistical models related to word

sequences are also called language models (LMs). So if we summarized, we are used

N-gram method which is a probabilistic language model for predicting the next label.

This probabilistic model is based on Markov model like all the other probabilistic

models. Our goal is to compute probability of a word with given previous word

information. Also that model has applications on probability, communication theory,

computation linguistic or biology and data compression.

6.2 Modeling

The main problem is predicted the next word label with given history. We could

write probabilistic equation such as;

 | p w ord history (6.1)

Words are a sequence such as
1 2
, , ...,

n
w w w and history is symbolized with

1n
w

.

Using chain rule of probability equation could be re-written;

 2 1 1

1 1 2 1 3 1 1 1

1

| | ... | |

n

n n k

n k

k

P w P w P w w P w w P w w P w w

 (6.2)

42

The chain rule is gave the connection between computing the joint probability of

current word and conditional probability of given previous word. Languages which

are covered the word sequence, are very long sets and computation of equation 6.2

becomes impossible.

Especially, we are used not all of the N-grams which are goes to infinite. So Markov

assumption which is the probability of a word depends only on the probability of a

limited history (finite), is done for compute this equation. Now we could generalize

the bigram which works with only one word into past to trigram which works with

two words into the past such as;

1 1

1

|

n

n

k k

k

P w P w w

 (6.3)

1-gram, Unigram n
p x

2-gram, Bigram 1
|

n n
p x x

3-gram, Trigram 2 1
| ,

n n n
p x x x

Table 6.1 N-grams

6.3 N-gram Usage

As we mention in previous section, N-gram is a sequence of terms, with the length of

N and it goes to infinite. But the system should be finite and until the trigram is

enough for get the correct lexical features. 1-gram sequences are called unigrams, 2-

gram sequences are called bigrams, 3-gram sequences are called trigram etc. Word

boundary of interest as called ‘’current’’ and the following word boundaries called

‘’previous’’ and ‘’next’’. Six lexical features are expressed when these 3 n-gram

types using together;

In other words we could re-write table according to N-gram rule with basically for

easy to understand;

43

 Unigrams:{previous}, {current}, {next}

 Bigrams:{current-next}, {previous-current}

 Trigrams:{previous-current-next}

Model could be applied for both word with respect to letters or sentences with

respect to words. In example for the word ‘’Alfabe’’ would be composed of

following N-grams;

1-gram sequence 2-gram sequence 3-gram sequence

Unigram Bigram Trigram

space ,A,L A-L, space-A space-A-L

Table 6.2a N-gram Example (Word)

In example for the sentence ‘’Ali topu at’’ would be composed of following N-

grams;

1-gram sequence 2-gram sequence 3-gram sequence

Unigram Bigram Trigram

 space,Ali,topu Ali-topu, space-Ali space-Ali-topu

Table 6.2b N-gram Example (Sentence)

When three n-gram sequences applied in to the word together,

{space} , {A} , {L} , {A-L} , {space-A} , {space-A-L}

When three n-gram sequences applied in to the sentence together,

{space} , {Ali} , {topu} , {Ali-topu} , {space-Ali} , {space-Ali-topu}

As it seen 6 features are expressed with unigram, bigram and trigram using together.

44

Chapter 7

Sentence Segmentation

7.1 Introduction

As we mention before output of the speech recognition system (ASR) doesn’t give

any information about the sentence boundary, the output of the system is just

utterance of the words. If there isn’t information about sentence boundary, text file

become nonsense and it’s hard to understand and reading emphasis for long

messages or sentences. In addition punctuations helps to spread emotions, give

information about structure of sentence and intonation. However according to

language type, some word’s meaning or sentence’s meaning could be change with

respect to punctuations. For instance two examples below include and not include

punctuations (sentence boundary information) for Turkish spoken language.

Sentence Meaning

Ihtiyar (s) adamı eve götürdü. Old man took him/her to the home

Ihtiyar adamı eve götürdü. He/She took old man to the home.

Table 7.1 Sentence Boundary

Sentence segmentation is a subject for automatically divide input text into

meaningful grammatical sentences. The way for this is labeling the boundaries in text

file. In the previous chapters we mention about prosodic features, lexical features and

morphologic features. These features help us to give a decision about the boundaries

in text file. In sentence segmentation, the main problem is classified boundaries into

two classes;

45

 Sentence Boundaries

 Non-sentence Boundaries

Figure 7.1 Classifications

7.2 Approach

The main problem could reduce such as a boundary classification problem. Suppose

that we have N times words, boundaries and features. The goal is try to estimate of

classification word between n
W

 and 1n
W

 . A posterior probability is needed for find

the boundary segmentation with highest probability given the information which is

word.

arg max (|)
B

P B W (7.1)

Where,

ij

 1, ..., R ep resents w ord sequence.

f 1, ..., and j 1, ..., R epresents fea ture sets.

 1, ..., R ep resents w ord boundaries.

i

i

i

w i N

i N M

b i N

y

1, ..., and 1, 1 R epresent logaritm ic operation. If 1, it is a sentence

 boundary (), if else 1, it is no t a sentence boundary ().

i N

s n

For each word, posterior probability is again computed and compared either it is a

sentence boundary or not. Probability equation can be re-written in sequence format

which formula can be apply all word sequence inside;

Words

Not Sentence

Boundary

Not Sentence

Boundary

46

| (7.2)

 (), P 1 | P 1 |

i i i

i i i i i

P b y f

b s Sentence boundary if b f b f

 (7.3)

 (), P 1 | P 1 | (7.4)
i i i i i

b n N ot Sentence boundary if b f b f

7.2.1 Learning Algorithms

We mention about some approach in previous section, we have a data without

information about sentence boundaries and our aim is to automatically label all this

data for the each word; is it sentence boundary or not. Initially breaks should be

found in sentences which we could decide all words as a break and secondly it

should be decided for s or n. Hence it becomes a classification problem and helping

by feature information, this classification should be done with high accuracy.

There are three different learning algorithms such as supervised, unsupervised and

semi-supervised learning algorithms. Supervised learning algorithm needs as a whole

labeled data for training a model and unsupervised learning algorithm is thoroughly

opposite with supervised learning algorithm which doesn’t need any labeled data for

training a model. Because of our aim is to obtain high accuracy with cost effectivity,

semi-supervised learning algorithm is chosen which, needs little labeled data in a

large amount of unlabeled data set for training a model.

7.2.1.1 Data Subsets

Whole data set is divided into three sets for generate; training, development and test

sets. These sets are need for training a model and which sets are optimized -

computing the scores for measure the success of trained model.

All of these 3 set are prepared for different purposes. Training set is prepared for to

optimize the parameters, development set is prepared for the finding the optimum

iteration number which is used to perform optimized model and test set is used to

measure final score.

According to our goal, classification should be done respect to speakers, words and

features. We have P times different speaker, N times different words and M times

different features. Initially we started to dividing data set with divide data sets into

47

subset with respect to P speakers, then for each subset we performed training,

development and test set pairs. Training, development and test sets must be

performed identically and without change order of the words. For improve the

system K-Fold Cross-Validation method which is one method of Cross-Validation

technique, could be used. In this method all data set divide into K subsets. i
X

 is

selected as development set i
D

 where
 ,

i i i
X f y

 and 1, ...,i K also the rest of

sets are used for training set i
T

.

Figure 7.2 Data Sets

7.2.1.2 Self-Training and Baseline

There are several ways that aim to improve the performance of semi-supervised

learning algorithm by incorporating large amounts of unlabeled data into the training

data set. Self-training method is one of from this methods, it is defined as a single-

view weakly supervised algorithm [35]. It is considered us a single view and also it is

provided us to only one single model. In this method again optimum iteration

number is found by the development data set and test data set is measured the score,

after that system is retrained but this time some particular hypothesis data pick up

from test data and it is add in to training set. Now training set is included mixture of

manually labeled and hypothesis labeled data thus training set is became more stable.

This circle or we can say loop, is continued until the reach threshold value which is

shown in equation 7.5.

By the way baseline is represented the basic semi-supervised trained model and we’ll

use it after to compare results between self-trained model. In this model according to

we mention in previous section, development data set is used for find the optimum

iteration number, test data set is measured the scores and model is trained only one

time.

Training

Data Set

Development

Data Set

Test

Data Set

Whole Data Set

48

 Stop Point q : 100N A (7.5)

Figure 7.3 Self-Trained Model

Figure 7.4 Baseline Model

Training

Data Set

Optimum

Iteration Number
Development

Data Set

Trained

Model

Final

Score

Training Data

Set (N)

Development

Data Set (M)

Test Data

Set (M)

Training Data

Set (N+100)

Development

Data Set (M)

Test Data

Set (M-100)

Training Data

Set (N+200)

Test Data

Set (M-200)

Development

Data Set (M)

Training Data

Set (N+Ax100)

Development

Data Set (M)

Test Data

Set (N-Ax100)

(1)

(2)

(q)

Test

Data Set

49

7.2.2 Adaboost Algorithm

Boosting is an approach to machine learning based on the idea of creating a highly

accurate prediction rule by combining many relatively weak and inaccurate rules and

the AdaBoost algorithm of Freund-Schapire was the first practical boosting

algorithm, and remains one of the most widely used and studied, with applications in

numerous fields [11]. Main idea is improve performance of learning algorithms, it

works combine with output of other weak learning algorithms and also it is

compatible with C, python and java against the other boosting algorithms.

Weak learner algorithms for any distribution they can find a classifier with

generalization error better than random guessing. According to researches weak

learners are classified the data correctly at better than fifty percent. But if boosting

algorithm is used, training data could be classified with nearly hundred percent

accurate. Adaboost algorithm is focused on difficult data points which have been

misclassified most by the previous weak classifier and it combine all these weak

classifiers with use an optimally weighted majority vote of weak classifier.

Algorithm shown as below;

1 1

1

 training data , , ..., ,

 and 1, 1

1
D istribution initialize w ith ()

 1, ..., :

 sin .

 : 1, 1 .

:

m m

i i

t

t

t

G iven x y x y

w here x X y

D i
m

For t T

Train w eak learner u g distribution D

G et w eak hypothesis h X

Aim select h w i

 :

 P r
tt i D t i i

th low w eighted eror

h x y

50

1

1

11
 ln

2

, 1, ..., :

exp

 ().

 strong

t

t

t

t t i t i

t i

t

t t

C hoose

U pdate for i m

D i y h x
D

Z

w here Z is a norm alization factor chosen so that D w ill be a distribution

Finally

1

 classifier could be defined as,

 () 7 .6

T

t t

t

H x sign h x

Table 7.2 Adaboost Algorithm

Result of the finally strong classifier as shown in equation 7.6 two types of errors are

occurred such as training error and generalization error. In the experiments while

iteration number is increasing, train error is decreased until the reach optimum

iteration. When optimum iteration is found train error becomes always zero. The

training error of final classifier defined as;

2 2

2 1 1 4 exp 2
t t t t t

tt t t

Z

 (7.7)

Again in the experiments while iterations number is increasing, same numbers of

weak classifier are combined. After optimum iteration is found, some weak

classifiers are combined more than the others and system is became complex. Hence

the test error in other words generalization error stars to increase. In other words

generalization error is the expected test error which could be defined as in terms of

training error where m is the size of the sample, the VC-dimension d of the base

classifier space and the number of rounds T of boosting with high probability, is at

most as shown in equation 7.8.

^

Pr ()
Td

H x y O
m

 (7.8)

51

7.3 Software Usage (Icsiboost)

Icsiboost which is an open-source tool is used for applying adaboost algorithm and it

can be reached from google.code.com freely [32]. Related to icsiboost there is four

input file is needed for the boosting. These are three sets which are dividing before

such as training set, development set, test set, and feature (names) file which includes

information type of prosodic features, morphological features and lexical features.

7.3.1 Labeling

The main idea in the system is automatically labeling the data and this process is

done by helping relationship of features between sentence segmentation information.

Hence obtain the data sets, words boundaries should be labeled in feature output

table which is include all type of features. A new column is added into table as

shown in Table 7.3 for sentence boundary information. n ‘s are added for not a

sentence boundary and s ‘s are added for sentence boundary manually with respect

listening audio file.

Words Feature Names (
ij

f) Labels(
i

b)

Word 1 Features
ij

f where j=1,…,M n

Word 2 Features
ij

f where j=1,…,M s

…

…

…

Word n Features
ij

f where j=1,…,M s

Table 7.3 Labeled Features Table

After the labeled feature table is performed, first column which includes the word’s

information is removed and also only interested feature’s rows are selected for

preparing the next step.

Than this decomposed new data is divided into three such as; training set,

development set and test set finally sets are divided into subset which is mentioned

52

before. Training set named as “trial.data”, development set named as “trial.test” and

test set named as ‘’tiral.test’’ which shown below.

Selected Features (
ij

f)

Columns 1 to M
Labels(

i
b) Data Sets

Features
ij

f

Where j=1,…,M and i=1,…,q

s or n

Training Set

Size=(q,M+1)

(trial.data)

Features
ij

f

Where j=1,…,M and i=1,…,q+p

s or n

Development Set

Size=(p,M+1)

(trial.dev)

Features

Where j=1,…,M and i=1,…,q+p+r
s or n

Test Set

Size=(r,M+1)

(trial.test)

Table 7.4 Contents

7.3.2 Feature Addressing

As we mention at begin, there is four input files for start the training. Three of them

is now ready which of these are training set, development set and test set. Names file

which shows the system, addresses and names of the feature still needs for starting to

train. There are three types of feature which we are extracted, we worked with two of

them such as continues valued features, label valued features. Continues valued

features are gave exactly real numbers and label valued features are gave options i.e.

is it verb, adjective or noun? This information is included in names file which is

named as “trial.names”. At the first line of the file shows the label information (
i

b)

and it defines to trainer which label is trained i.e. for sentence boundary (s) and not a

sentence boundary (n). Following lines are for listing the features in order with

respect to data sets. Continues valued features are defined as ‘’continues’’ and label

valued features are defined with all possible outcomes.

53

s,n.

Feature1: ,continuous.

Feature2: ,continuous.

Feature3: f,r.

Table 7.5 Names File

7.3.3 Training The Model

Four input files are ready and now we can start to train the model with icsiboost.

Before the start we should be sure of all input files are in the same directory. Model

training starts with the code;

icsiboost –S trial –n 100 > parameters.txt

Where “trial” is the input file, “100” is the iteration number and “parameters.txt” is

the output file. Output file includes five types of parameters. First column denotes

weighted error, second column denotes theoretical error, third column denotes

development error, fourth column denotes test error and fifth column denotes

training error for each round according chosen iteration number. When model is

trained with high iteration number, weight error will increase and either theoretical

error or training error will decrease but in oppositely after a certain number of

iteration, model become too complex and development-test error decrease until the

reach optimum number of operation. After that errors will start to increase.

rnd 1: wh-err= 0.274495 th-err= 0.274495 dev= 0.032311 test= 0.041042 train= 0.034448

rnd 2: wh-err= 0.767378 th-err= 0.210641 dev= 0.031609 test= 0.030899 train= 0.024963

rnd 3: wh-err= 0.820982 th-err= 0.172933 dev= 0.031609 test= 0.030899 train= 0.024963

rnd 4: wh-err= 0.883527 th-err= 0.152791 dev= 0.041676 test= 0.033084 train= 0.024963

rnd 5: wh-err= 0.923448 th-err= 0.141094 dev= 0.030906 test= 0.029806 train= 0.020469

rnd 6: wh-err= 0.930887 th-err= 0.131343 dev= 0.030204 test= 0.029338 train= 0.020469

rnd 7: wh-err= 0.947551 th-err= 0.124454 dev= 0.030204 test= 0.029338 train= 0.020469

rnd 8: wh-err= 0.942822 th-err= 0.117338 dev= 0.029267 test= 0.029806 train= 0.020469

rnd 9: wh-err= 0.959168 th-err= 0.112547 dev= 0.033013 test= 0.029806 train= 0.018472

rnd 10: wh-err= 0.960902 th-err= 0.108146 dev= 0.033013 test= 0.029963 train=

0.017973

Table 7.6 Training Model and Errors

…
..

…

54

7.3.4 Testing Performance

After the model is trained, results of development set and test set appear with the

command such as;

 icsiboost –S trial –C < trial.dev > resultsdev.txt

icsiboost –S trial –C < trial.test > resultstest.txt

The first code generates ‘’resultsdev.txt’’ file which includes results for development

set and the second code generates ‘’resulttest.txt’’ file which includes results for test

set. There are four columns in this file. First and second columns are specified

manually labels (
i

b) such as sentence boundary (s) and not a sentence boundary (n).

The sequence {0 1} represents not a sentence boundary (n) and the sequence {1 0}

represents sentence boundary (s). Icsiboost is preferred represent labels with [0, 1]

instead of [-1,1]. Third and fourth columns are specified results of the binary

classifier. Signs are importance to make decision between the class (s or n) and

magnitude of the parameters specified confidence measure scores. The sequence {-

,+} represents not a sentence boundary (n) and the sequence {+,-} represents

sentence boundary (s).

0 1 -0.601237747037 0.601237747037

0 1 -0.505622123388 0.505622123388

0 1 -0.505622123388 0.505622123388

0 1 -0.283534787175 0.283534787175

0 1 -0.899572923912 0.899572923912

0 1 -0.280858442462 0.280858442462

0 1 -0.505622123388 0.505622123388

0 1 -0.516929451725 0.516929451725

0 1 -0.601237747037 0.601237747037

0 1 -0.505622123388 0.505622123388

 Table 7.7 Results

…

55

7.3.5 Evaluation Matrix and Methods

All of these four columns which inside of “resultdev.txt / resulttest.txt”, should

compared for see the agreement of results (trained model) and manually labels.

Either trained model and manually labels could agree that the word is sentence

boundary and not a sentence boundary or disagree. All of the four possibilities

represented such as True Positive (TP), True Negative (TN), False Positive (FP), and

False Negative (FN) which four possibility explained detail in table 7.8.

True Positive (TP): Correctly labeled sentence boundary.

True Negative (TN): Correctly labeled not a sentence boundary.

False Positive (FP): Incorrectly labeled sentence boundary, not a sentence boundary

in fact.

False Negative (FN): Incorrectly labeled not a sentence boundary, sentence

boundary fact.

Decision Table {1 0} {0 1}

{+,-} TP FP

{-,+} FN TN

 Table 7.8 Decision Table

Also performance analyzing is done by F-Measure score and Nist Error rate. These

two scores are measured with respect count number of TN, TP, FN and FP. In

addition Precision and Recall should be evaluated too for performed the F-Measure

score and Nist Error rate.

7.3.5.1 Precision

Precision which implies repeatability of system, is the ratio between correctly labeled

sentence boundary (TP) and all sentence boundary decisions (TP+FP). Precision is

zero when there is no correct decision and it gets the maximum value when there

isn’t any incorrect decision.

Precision measured as;

56

Pr
TP

ecision
TP FP

 (7.9)

7.3.5.2 Recall

Recall is the ratio between correctly labeled sentence boundary (TP) and all sentence

boundaries in fact (TP+FN). Recall is zero in the case absence of correctly labeled

sentence boundary and it gets one when there isn’t any incorrect sentence boundary.

Recall measured as;

 (7.10)

7.3.5.3 True Negative Rate

True negative rate measured the performance of detect not a sentence boundary

(TN). True negative rate is zero in the case absence of correctly labeled not a

sentence boundary and it gets one when there isn’t any incorrect labeled sentence

boundary. True negative rate measured as;

TN

True Negative Rate
TN FP

 (7.11)

7.3.5.4 Accuracy

Accuracy is the ratio between all correct labeled decisions (TP+TN) over all

decisions (TN+TP+FN+FP). Accuracy is zero when there isn’t any correctly labeled

decision and accuracy is one when all decisions are correctly labeled. Accuracy

measured as;

 (7.12)

R e
TP

call
TP FN

TP TN

Accuracy
TN TP FN FP

57

7.3.5.5 F-measure Score

F-measure is the one of score which we are used for analyzing performance on the

graphics. F-measure score tests accuracy in terms of harmonic mean of precision and

recall. F-measure score goes to zero when the limit of sum of precision and recall

goes to zero from to positive. F-measure score is one when with precision or recall is

one too. F-measure score measured as;

 (7.13)

7.3.5.6 Nist Error Rate

Nist error rate is the other score which we are used for analyzing performance on the

graphics. Nist error rate known as National Institute of Standards and Technology

error rate and it aims to get minimize score for take a meaning with good

performance. Nist error rate is a ratio between all wrong decisions (FN+FP) over all

of sentence boundary in fact (TP+FN). Nist error rate is zero when there is no

incorrect decision and nist error rate gets maximum value when all manually labels

are wrong.

FN FP

Nist Error
TP FN

 (7.14)

2 Pr Re
-

Pr Re

ecision call
F measure Score

ecision call

58

Chapter 8

Experiments and Conclusion

8.1 Overview

We work with fifteen different experiment groups for getting the best result. Prosodic

features which extracted from Praat, morphological features which extracted from

TRmorph and Kemal Oflazer’s tool, lexical features which extracted with perl scripts

and M1 features [29] which includes in prosodic feature set is used in the

experiments. Performance analyzing is done considering based on F-measure score

and Nist error rate which values are described detail in previous chapter.

Experiments are applied based on both multi-speaker and single-speaker. Both 10-

fold cross validation and 5-fold cross validation methods are used.

Voice of America Turkish (VOA) [33] broadcast news records are chosen an input

audio file for the experiments. Segment time marks (STM) files are used which

extract in previous works [9] from BUSIM [34] speech group in Bogazici University.

Original STM files are contained punctuation which used as a reference too. Each

broadcast news record contains multi-speaker, takes duration 30 minutes, 16 kHz and

16 bit sampled ‘’wav’’ audio file. Table 1 and Table 2 show us the detail of input

whole broadcast news data together.

Type Of

Word

Foreign

Nouns

Foreign Proper

Name

Turkish Proper

Name

All types of

Word

Quantity 49 762 607 11572

Table 8.1 Data Analysis (Types)

59

Speakers Gender Quantity of Words
Quantity of

Sentences

Speaker 1 Male 20K 1361

Speaker 2 Female 20K 1448

Speaker 3 Male 1365 91

Speaker 4 Male 4561 248

Speaker 5 Male 1321 76

Speaker 6 Female 2482 183

All Speakers Male + Female 49729 3407

Table 8.2 Data Analysis (Quantities)

The other important point which we care about is using open-source tools and

software. Ubuntu is used as operation system which based on UNIX and whole tools

are compatible with this operation system.

System builds start with re-organizing STM files with several Perl scripts and

dividing data with respect to each speaker. Secondly HCopy tool which is inside in

HTK, is used for extract MFCC vectors. With using MFCC vectors, the word and

phoneme based CTM file are obtained by helping HVite tool which is inside in HTK

tool too. Then prosodic features are extracted using Mary Harper’s plugin based on

Praat tool afterwards sentence boundaries are labeled manually.

Like all this steps, morphological features and lexical features are extracted. Table 3

shows us the all types of feature details and their quantities.

Feature Set Type Quantity

LEX Lexical Feature Set 6

DUR+M1 Duration+M1 Prosodic Feature Set 94

DUR+F0 Duration+Pitch Prosodic Feature Set 142

M1 M1 Prosodic Feature Set 33

MORP Morphological Feature Set 10

Table 8.3 Feature Sets, Contents and Quantities

60

Now we are ready to second main step of the system which mostly progressed on

icsiboost. The data is divided into three sets such as training set, development set and

test. Training is done by icsiboost based on self-training method and performance

evaluation is measured with respect to f-measure score and nist error rate.

Speakers are grouped into three such as Speaker 1 only, Speaker 2 only and all

speakers (Speaker1+Speker2+Speaker3+Speaker4+Speaker5+Speaker 6). Data size

is restricted with 6000 because minimum size of a group is 20K and data should

divide into three identically.

Performance of the system is criticized with table view and graphical view. Both of

the view is based on f-measure score and nist error rate. Graphics shows us f-

measure and nist error rate with percentage for data size 1000 words, data size 3000

words and data size 6000 words. Self-training and baseline plots are showed in same

graphic and all this information extracted for both respect to maximum f-measure

score and minimum nist error rate. Self-training’s f-measure scores are greater than

the baseline is expected and also baseline’s nist error rates are greater than the

baseline is expected too. Again table shows us f-measure and nist error rate values

with percentage for data size 1000 words, data size 3000 words and data size 6000

words. All this information extracted for both respect to maximum f-measure score

and minimum nist error rate. Self-training’s f-measure scores are greater than the

baseline is expected and also baseline’s nist error rates are greater than the baseline is

expected too. Self-labeled (words) row is explained us to how many sample is added

from test data to training data with decided labels from previous model to reach

maximized model. I.e if we have 1000 word data size and if we reach the maximized

model in 3500 word, initially there is 1000 word in training set and 2500 word is

adding which is decided in previous model.

61

8.2 Experiments

15 different experiments are done by several ways, as shown below.

8.2.1 Experimental Group 1

Speaker 1 data, lexical feature set and 10-fold cross validation method is used. In

self-training, first 100 samples which gets the maximum confidence score is adding

into training data set with decided labels from previous model, for each iteration and

this samples are took out from the test set.

Respect to maximum f-measure score

Respect to minimum nist error rate

Figure 8.1 Graphical view of experiment 1 (Speaker 1 with Lexical Features)

0 1000 3000 6000
65

70

75

80

85

F
-m

e
a

s
u

re
 (

%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
35

40

45

50

55

N
IS

T
 E

rr
o
r

(%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
65

70

75

80

85

F
-m

e
a

s
u

re
 (

%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
35

40

45

50

55

N
IS

T
 E

rr
o
r

(%
)

Data Size [words]

Baseline

Self-Training

62

 Maximum F-measure Minimum Nist

Man. Labeled
Data=1000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 68.1200 52.1680 68.1200 52.1680

Self-Training 70.9630 50.7970 70.9630 50.7970

Self-Labeled
(words)

13400 13400 13400 13400

 Maximum F-measure Minimum Nist

Man. Labeled
Data=3000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 76.1730 42.8690 76.1730 42.8690

Self-Training 74.0030 45.6770 74.0030 45.6770

Self-Labeled
(words)

11400 11400 11400 11400

 Maximum F-measure Minimum Nist

Man. Labeled
Data=6000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 80.1420 35.3780 80.1420 35.3780

Self-Training 79.8600 36.0970 79.8600 36.0970

Self-Labeled
(words)

8400 8400 8400 8400

Table 8.4 Table view of experiment 1 (Speaker 1 with Lexical Features)

63

8.2.2 Experimental Group 2

Speaker 2 data, lexical feature set and 10-fold cross validation method is used. In

self-training, first 100 samples which gets the maximum confidence score is adding

into training data set with decided labels from previous model, for each iteration and

this samples are took out from the test set.

Respect to maximum f-measure score

Respect to minimum nist error rate

Figure 8.2 Graphical view of experiment 2 (Speaker 2 with Lexical Features)

0 1000 3000 6000
76

78

80

82

F
-m

e
a

s
u

re
 (

%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
30

35

40

45

50

N
IS

T
 E

rr
o

r
(%

)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
76

77

78

79

80

81

F
-m

e
a

s
u

re
 (

%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
35

40

45

N
IS

T
 E

rr
o

r
(%

)

Data Size [words]

Baseline

Self-Training

64

 Maximum F-measure Minimum Nist

Man. Labeled
Data=1000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 76.6400 44.9550 76.6400 44.9550

Self-Training 77.6520 42.3190 77.6520 42.3190

Self-Labeled
(words)

13900 13900 13900 13900

 Maximum F-measure Minimum Nist

Man. Labeled
Data=3000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 78.1640 40.3050 78.1640 40.3050

Self-Training 78.7980 39.8630 78.7980 39.8630

Self-Labeled
(words)

11900 11900 11900 11900

 Maximum F-measure Minimum Nist

Man. Labeled
Data=6000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 81.1410 34.9320 80.8950 35.2730

Self-Training 80.9950 35.1460 80.9340 35.1410

Self-Labeled
(words)

8900 8900 8900 8900

Table 8.5 Table view of experiment 2 (Speaker 2 with Lexical Features)

65

8.2.3 Experimental Group 3

All speaker data, lexical feature set and 10-fold cross validation method is used. In

self-training, first 100 samples which gets the maximum confidence score is adding

into training data set with decided labels from previous model, for each iteration and

this samples are took out from the test set.

Respect to maximum f-measure score

Respect to minimum nist error rate

Figure 8.3 Graphical view of experiment 3 (All speakers with Lexical Features)

0 1000 3000 6000
60

65

70

75

80

F
-m

e
a

s
u
re

 (
%

)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
45

50

55

60

65

N
IS

T
 E

rr
o
r

(%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
60

65

70

75

80

F
-m

e
a

s
u
re

 (
%

)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
45

50

55

60

N
IS

T
 E

rr
o
r

(%
)

Data Size [words]

Baseline

Self-Training

66

 Maximum F-measure Minimum Nist

Man. Labeled
Data=1000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 68.5360 60.3830 68.9110 58.9310

Self-Training 65.6040 61.8470 61.7600 58.0510

Self-Labeled
(words)

43100 43100 42700 42700

 Maximum F-measure Minimum Nist

Man. Labeled
Data=3000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 65.7170 57.6620 65.7170 57.6620

Self-Training 68.3330 54.6520 68.3330 54.6520

Self-Labeled
(words)

39800 39800 39800 39800

 Maximum F-measure Minimum Nist

Man. Labeled
Data=6000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 73.1760 46.8280 73.1760 46.8280

Self-Training 75.0330 45.1650 75.0330 45.1650

Self-Labeled
(words)

36500 36500 36500 36500

Table 8.6 Table view of experiment 3 (All speakers with Lexical Features)

67

8.2.4 Experimental Group 4

Speaker 1 data, DUR+M1 prosodic feature set and 10-fold cross validation method is

used. In self-training, first 100 samples which gets the maximum confidence score is

adding into training data set with decided labels from previous model, for each

iteration and this samples are took out from the test set.

Respect to f-measure score

Respect to mimumum nist error rate

Figure 8.4 Graphical view of experiment 4 (Speaker 1 with DUR+M1 Prosodic

Feature Set)

0 1000 3000 6000
88

89

90

91

92

F
-m

e
a

s
u
re

 (
%

)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
16

18

20

22

N
IS

T
 E

rr
o

r
(%

)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
88

89

90

91

92

F
-m

e
a

s
u
re

 (
%

)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
16

18

20

22

N
IS

T
 E

rr
o

r
(%

)

Data Size [words]

Baseline

Self-Training

68

 Maximum F-measure Minimum Nist

Man. Labeled
Data=1000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 88.7800 21.7370 88.7800 21.7370

Self-Training 89.3570 20.6210 89.3570 20.6210

Self-Labeled
(words)

3300 3300 3300 3300

 Maximum F-measure Minimum Nist

Man. Labeled
Data=3000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 90.3350 18.9490 90.3350 18.9490

Self-Training 90.7460 18.1140 90.7460 18.1140

Self-Labeled
(words)

1600 1600 1600 1600

 Maximum F-measure Minimum Nist

Man. Labeled
Data=6000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 91.5480 16.6520 91.5480 16.6520

Self-Training 91.8460 16.0420 91.8460 16.0420

Self-Labeled
(words)

1100 1100 1100 1100

Table 8.7 Table view of experiment 4 (Speaker 1 with DUR+M1 Prosodic Feature

Set)

69

8.2.5 Experimental Group 5

Speaker 2 data, DUR+M1 prosodic feature set and 10-fold cross validation method is

used. In self-training, first 100 samples which gets the maximum confidence score is

adding into training data set with decided labels from previous model, for each

iteration and this samples are took out from the test set.

Respect to maximum f-measure score

Respect to minimum nist error rate

Figure 8.5 Graphical view of experiment 5 (Speaker 2 with DUR+M1 Prosodic

Feature Set)

0 1000 3000 6000
88

90

92

94

96

F
-m

e
a

s
u

re
 (

%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
10

15

20

25

N
IS

T
 E

rr
o
r

(%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
88

90

92

94

96

F
-m

e
a

s
u
re

 (
%

)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
10

15

20

25

N
IS

T
 E

rr
o
r

(%
)

Data Size [words]

Baseline

Self-Training

70

 Maximum F-measure Minimum Nist

Man. Labeled
Data=1000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 88.9300 21.3150 88.9300 21.3150

Self-Training 89.5710 19.9500 89.5710 19.9500

Self-Labeled
(words)

1900 1900 1900 1900

 Maximum F-measure Minimum Nist

Man. Labeled
Data=3000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 92.5170 14.5460 92.5170 14.5460

Self-Training 92.9050 13.8580 92.9050 13.8580

Self-Labeled
(words)

4100 4100 4100 4100

 Maximum F-measure Minimum Nist

Man. Labeled
Data=6000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 93.7510 12.2820 93.7510 12.2820

Self-Training 94.1240 11.5330 94.1240 11.5330

Self-Labeled
(words)

1800 1800 1800 1800

Table 8.8 Table view of experiment 5 (Speaker 2 with DUR+M1 Prosodic Feature

Set)

71

8.2.6 Experimental Group 6

All speaker data, DUR+M1 prosodic feature set and 5-fold cross validation method is

used. In self-training, first 100 samples which gets the maximum confidence score is

adding into training data set with decided labels from previous model, for each

iteration and this samples are took out from the test set.

Respect to maximum f-measure score

Respect to minimum nist error rate

Figure 8.6 Graphical view of experiment 6 (All speakers with DUR+M1 Prosodic

Feature Set)

0 1000 3000 6000
84

85

86

87

88

F
-m

e
a

s
u
re

 (
%

)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
25

26

27

28

29

N
IS

T
 E

rr
o

r
(%

)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
84

85

86

87

88

F
-m

e
a

s
u
re

 (
%

)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
25

26

27

28

29

N
IS

T
 E

rr
o
r

(%
)

Data Size [words]

Baseline

Self-Training

72

 Maximum F-measure Minimum Nist

Man. Labeled
Data=1000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 84.6940 28.9860 84.6940 28.9860

Self-Training 85.0860 28.1480 85.0860 28.1480

Self-Labeled
(words)

1200 1200 1200 1200

 Maximum F-measure Minimum Nist

Man. Labeled
Data=3000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 85.8060 30.9540 85.8060 30.9540

Self-Training 87.0100 27.9000 87.0100 27.9000

Self-Labeled
(words)

11000 11000 11000 11000

 Maximum F-measure Minimum Nist

Man. Labeled
Data=6000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 86.4360 27.1320 86.4360 27.1320

Self-Training 86.9820 26.2860 86.9820 26.2860

Self-Labeled
(words)

100 100 100 100

Table 8.9 Table view of experiment 6 (All speakers with DUR+M1 Prosodic Feature

Set)

73

8.2.7 Experimental Group 7

Speaker 1 data, DUR+F0 prosodic feature set and 10-fold cross validation method is

used. In self-training, first 100 samples which gets the maximum confidence score is

adding into training data set with decided labels from previous model, for each

iteration and this samples are took out from the test set.

Respect to maximum f-measure score

Respect to minimum nist error rate

Figure 8.7 Graphical view of experiment 7 (Speaker 1 with DUR+F0 Prosodic

Feature Set)

0 1000 3000 6000
86

88

90

92

94

F
-m

e
a

s
u
re

 (
%

)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
10

15

20

25

30

N
IS

T
 E

rr
o
r

(%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
86

88

90

92

94

F
-m

e
a

s
u

re
 (

%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
10

15

20

25

30

N
IS

T
 E

rr
o

r
(%

)

Data Size [words]

Baseline

Self-Training

74

 Maximum F-measure Minimum Nist

Man. Labeled
Data=1000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 86.4720 25.1710 86.4530 25.1990

Self-Training 87.2620 23.8320 87.2180 23.7910

Self-Labeled
(words)

4300 4300 3600 3600

 Maximum F-measure Minimum Nist

Man. Labeled
Data=3000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 90.7830 18.2080 90.7830 18.2080

Self-Training 91.2600 17.0790 91.2600 17.0790

Self-Labeled
(words)

5800 5800 5800 5800

 Maximum F-measure Minimum Nist

Man. Labeled
Data=6000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 92.0390 15.6570 92.0390 15.6570

Self-Training 92.1260 15.3670 92.1260 15.3670

Self-Labeled
(words)

1700 1700 1700 1700

Table 8.10 Table view of experiment 7 (Speaker 1 with DUR+F0 Prosodic Feature

Set)

75

8.2.8 Experimental Group 8

Speaker 2 data, DUR+F0 prosodic feature set and 10-fold cross validation method is

used. In self-training, first 100 samples which gets the maximum confidence score is

adding into training data set with decided labels from previous model, for each

iteration and this samples are took out from the test set.

Respect to maximum f-measure score

Respect to minimum nist error rate

Figure 8.8 Graphical view of experiment 8 (Speaker 2 with DUR+F0) Prosodic

Feature Set)

0 1000 3000 6000
91

92

93

94

95

F
-m

e
a

s
u

re
 (

%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
10

12

14

16

N
IS

T
 E

rr
o

r
(%

)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
91

92

93

94

95

F
-m

e
a

s
u
re

 (
%

)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
10

12

14

16

N
IS

T
 E

rr
o
r

(%
)

Data Size [words]

Baseline

Self-Training

76

 Maximum F-measure Minimum Nist

Man. Labeled
Data=1000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 91.7840 15.9650 91.7840 15.9650

Self-Training 91.9240 15.6990 91.9240 15.6990

Self-Labeled
(words)

4000 4000 4000 4000

 Maximum F-measure Minimum Nist

Man. Labeled
Data=3000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 93.6150 12.5500 93.6150 12.5500

Self-Training 94.2590 11.2670 94.2590 11.2670

Self-Labeled
(words)

2000 2000 2000 2000

 Maximum F-measure Minimum Nist

Man. Labeled
Data=6000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 94.6360 10.5590 94.6360 10.5590

Self-Training 94.8600 10.1300 94.8600 10.1300

Self-Labeled
(words)

1400 1400 1400 1400

Table 8.11 Table view of experiment 8 (Speaker 2 with DUR+F0 Prosodic Feature

Set)

77

8.2.9 Experimental Group 9

All speaker data, DUR+F0 prosodic feature set and 5-fold cross validation method is

used. In self-training, first 100 samples which gets the maximum confidence score is

adding into training data set with decided labels from previous model, for each

iteration and this samples are took out from the test set.

Respect to maximum f-measure score

Respect to minimum f-measure score

Figure 8.9 Graphical view of experiment 9 (All speakers with DUR+F0) Prosodic

Feature Set)

0 1000 3000 6000
70

75

80

85

90

F
-m

e
a

s
u

re
 (

%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
25

30

35

40

45

50

N
IS

T
 E

rr
o

r
(%

)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
70

75

80

85

90

F
-m

e
a

s
u

re
 (

%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
25

30

35

40

45

50

N
IS

T
 E

rr
o
r

(%
)

Data Size [words]

Baseline

Self-Training

78

 Maximum F-measure Minimum Nist

Man. Labeled
Data=1000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 74.5440 41.3540 74.5280 41.3740

Self-Training 78.4260 36.4480 78.3740 36.4300

Self-Labeled
(words)

5800 5800 4700 4700

 Maximum F-measure Minimum Nist

Man. Labeled
Data=3000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 83.4840 31.3220 83.4660 31.3720

Self-Training 84.7040 28.8920 84.6400 28.8200

Self-Labeled
(words)

5100 5100 7200 7200

 Maximum F-measure Minimum Nist

Man. Labeled
Data=6000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 79.7540 46.2820 79.7540 46.2820

Self-Training 85.5020 26.8520 85.5020 26.8520

Self-Labeled
(words)

1700 1700 1700 1700

Table 8.12 Table view of experiment 9 (All speakers with DUR+F0 Prosodic Feature

Set)

79

8.2.10 Experimental Group 10

Speaker 1 data, M1 prosodic feature set and 10-fold cross validation method is used.

In self-training, first 100 samples which gets the maximum confidence score is

adding into training data set with decided labels from previous model, for each

iteration and this samples are took out from the test set.

Maksimum f-measure skorlarına göre

Minimum NIST hatalarına göre

Figure 8.10 Graphical view of experiment 10 (Speaker 1 with M1 Prosodic Feature

Set)

0 1000 3000 6000
88

88.5

89

89.5

90

90.5

F
-m

e
a

s
u

re
 (

%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
19

20

21

22

23

24

N
IS

T
 E

rr
o
r

(%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
88

88.5

89

89.5

90

90.5

F
-m

e
a

s
u

re
 (

%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
19

20

21

22

23

24

N
IS

T
 E

rr
o
r

(%
)

Data Size [words]

Baseline

Self-Training

80

 Maximum F-measure Minimum Nist

Man. Labeled
Data=1000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 88.0620 23.3650 88.0620 23.3650

Self-Training 88.5860 22.2980 88.5860 22.2980

Self-Labeled
(words)

2600 2600 2600 2600

 Maximum F-measure Minimum Nist

Man. Labeled
Data=3000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 89.1390 21.4630 89.1390 21.4630

Self-Training 89.3010 21.0440 89.3010 21.0440

Self-Labeled
(words)

1300 1300 1300 1300

 Maximum F-measure Minimum Nist

Man. Labeled
Data=6000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 90.0810 19.6230 90.0810 19.6230

Self-Training 90.3460 19.1040 90.3460 19.1040

Self-Labeled
(words)

700 700 700 700

Table 8.13 Table view of experiment 10 (Speaker 1 with M1 Prosodic Feature Set)

81

8.2.11 Experimental Group 11

Speaker 2 data, M1 prosodic feature set and 10-fold cross validation method is used.

In self-training, first 100 samples which gets the maximum confidence score is

adding into training data set with decided labels from previous model, for each

iteration and this samples are took out from the test set.

Respect to maximum f-measure score

Respect to minimum nist error rate

Figure 8.11 Graphical view of experiment 11 (Speaker 2 with M1 Prosodic Feature

Set)

0 1000 3000 6000
88

89

90

91

92

93

F
-m

e
a

s
u

re
 (

%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
14

16

18

20

22

24

N
IS

T
 E

rr
o
r

(%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
88

89

90

91

92

93

F
-m

e
a

s
u

re
 (

%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
14

16

18

20

22

24

N
IS

T
 E

rr
o

r
(%

)

Data Size [words]

Baseline

Self-Training

82

 Maximum F-measure Minimum Nist

Man. Labeled
Data=1000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 88.4160 22.5800 88.4160 22.5800

Self-Training 88.5880 22.1580 88.5880 22.1580

Self-Labeled
(words)

1900 1900 1900 1900

 Maximum F-measure Minimum Nist

Man. Labeled
Data=3000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 91.1740 17.3200 91.1740 17.3200

Self-Training 91.4890 16.6940 91.4890 16.6940

Self-Labeled
(words)

300 300 300 300

 Maximum F-measure Minimum Nist

Man. Labeled
Data=6000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 92.2510 15.2320 92.2510 15.2320

Self-Training 92.5230 14.6770 92.5230 14.6770

Self-Labeled
(words)

300 300 300 300

Table 8.14 Table view of experiment 11 (Speaker 2 with M1 Prosodic Feature Set)

83

8.2.12 Experimental Group 12

All speaker data, M1 prosodic feature set and 5-fold cross validation method is used.

In self-training, first 100 samples which gets the maximum confidence score is

adding into training data set with decided labels from previous model, for each

iteration and this samples are took out from the test set.

Respect to maximum f-measure score

Respect to minimum nist error rate

Figure 8.12 Graphical view of experiment 12 (All speakers with M1 Prosodic

Feature Set)

0 1000 3000 6000
83

84

85

86

F
-m

e
a

s
u

re
 (

%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
26

28

30

32

34

N
IS

T
 E

rr
o

r
(%

)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
83

84

85

86

F
-m

e
a

s
u

re
 (

%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
26

28

30

32

34

N
IS

T
 E

rr
o

r
(%

)

Data Size [words]

Baseline

Self-Training

84

 Maximum F-measure Minimum Nist

Man. Labeled
Data=1000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 83.0020 33.4800 83.0020 33.4800

Self-Training 83.8600 31.3080 83.8600 31.3080

Self-Labeled
(words)

7600 7600 7600 7600

 Maximum F-measure Minimum Nist

Man. Labeled
Data=3000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 83.7140 32.2460 83.7140 32.2460

Self-Training 85.1300 29.2800 85.1300 29.2800

Self-Labeled
(words)

2500 2500 2500 2500

 Maximum F-measure Minimum Nist

Man. Labeled
Data=6000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 85.6500 27.8680 85.6500 27.8680

Self-Training 85.6500 27.8680 85.6500 27.8680

Self-Labeled
(words)

0 0 0 0

Table 8.15 Table view of experiment 12 (All speakers with M1 Prosodic Feature Set)

85

8.2.13 Experimental Group 13

Speaker 1 data, morphological feature set and 5-fold cross validation method is used.

In self-training, first 100 samples which gets the maximum confidence score is

adding into training data set with decided labels from previous model, for each

iteration and this samples are took out from the test set.

Respect to maximum f-measure score

Respect to minimum nist error rate

Figure 8.13 Graphical view of experiment 13 (Speaker 1 with Morphological Feature

Set)

0 1000 3000 6000
88

88.5

89

89.5

F
-m

e
a

s
u

re
 (

%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
20.5

21

21.5

22

22.5

23

N
IS

T
 E

rr
o
r

(%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
88

88.5

89

89.5

F
-m

e
a

s
u

re
 (

%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
20.5

21

21.5

22

22.5

23

N
IS

T
 E

rr
o

r
(%

)

Data Size [words]

Baseline

Self-Training

86

 Maximum F-measure Minimum Nist

Man. Labeled
Data=1000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 88.3100 22.7120 88.3100 22.7120

Self-Training 88.8740 21.9280 88.8740 21.9280

Self-Labeled
(words)

7300 7300 7300 7300

 Maximum F-measure Minimum Nist

Man. Labeled
Data=3000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 88.4920 22.3100 88.4840 22.3120

Self-Training 88.8980 21.6240 88.8840 21.6220

Self-Labeled
(words)

1000 1000 400 400

 Maximum F-measure Minimum Nist

Man. Labeled
Data=6000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 88.9360 21.8260 88.9360 21.8260

Self-Training 89.4080 20.6580 89.4080 20.6580

Self-Labeled
(words)

4500 4500 4500 4500

Table 8.16 Table view of experiment 13 (Speaker 1 with Morphological Feature Set)

87

8.2.14 Experimental Group 14

Speaker 2 data, morphological feature set and 10-fold cross validation method is

used. In self-training, first 100 samples which gets the maximum confidence score is

adding into training data set with decided labels from previous model, for each

iteration and this samples are took out from the test set.

Respect to maximum f-measure score

Respect to minimum nist error rate

Figure 8.14 Graphical view of experiment 14 (Speaker 2 with Morphological Feature

Set)

0 1000 3000 6000
90

91

92

93

F
-m

e
a

s
u
re

 (
%

)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
14

15

16

17

18

19

N
IS

T
 E

rr
o
r

(%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
90

91

92

93

F
-m

e
a

s
u
re

 (
%

)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
14

15

16

17

18

19

N
IS

T
 E

rr
o
r

(%
)

Data Size [words]

Baseline

Self-Training

88

 Maximum F-measure Minimum Nist

Man. Labeled
Data=1000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 90.5380 18.2580 90.4330 18.2680

Self-Training 90.4650 18.4100 90.4330 18.2680

Self-Labeled
(words)

5400 5400 0 0

 Maximum F-measure Minimum Nist

Man. Labeled
Data=3000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 91.7590 16.0140 91.7590 16.0140

Self-Training 91.8380 15.8480 91.8380 15.8480

Self-Labeled
(words)

100 100 100 100

 Maximum F-measure Minimum Nist

Man. Labeled
Data=6000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 92.6950 14.3010 92.6950 14.3010

Self-Training 92.7520 14.2450 92.7520 14.2450

Self-Labeled
(words)

100 100 100 100

Table 8.17 Table view of experiment 14 (Speaker 2 with Morphological Feature Set)

89

8.2.15 Experimental Group 15

All speaker data, morphological feature set and 5-fold cross validation method is

used. In self-training, first 100 samples which gets the maximum confidence score is

adding into training data set with decided labels from previous model, for each

iteration and this samples are took out from the test set.

Respect to maximum f-measure scpre

Respect to minimum nist error rate

Figure 15 Graphical view of experiment 15 (All speakers with Morphological

Feature Set)

0 1000 3000 6000
86.5

87

87.5

88

88.5

F
-m

e
a

s
u

re
 (

%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
22

23

24

25

26

N
IS

T
 E

rr
o
r

(%
)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
86.5

87

87.5

88

88.5

F
-m

e
a

s
u
re

 (
%

)

Data Size [words]

Baseline

Self-Training

0 1000 3000 6000
22

23

24

25

26

N
IS

T
 E

rr
o

r
(%

)

Data Size [words]

Baseline

Self-Training

90

 Maximum F-measure Minimum Nist

Man. Labeled
Data=1000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 86.6860 25.4120 86.8500 25.1920

Self-Training 87.1720 24.6580 87.1200 24.6540

Self-Labeled
(words)

100 100 7500 7500

 Maximum F-measure Minimum Nist

Man. Labeled
Data=3000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 87.3240 24.1300 87.3240 24.1300

Self-Training 87.6120 23.7660 87.6120 23.7660

Self-Labeled
(words)

800 800 800 800

 Maximum F-measure Minimum Nist

Man. Labeled
Data=6000

F-measure
(%)

NIST (%) F-measure
(%)

NIST (%)

Baseline 87.8180 23.3600 87.8240 23.3500

Self-Training 88.2020 22.8400 88.1440 22.8360

Self-Labeled
(words)

1500 1500 100 100

Table 8.18 Table view of experiment 15 (All speakers with Morphological Feature

Set)

91

8.3 Conclusion

To conclude, we have to try increase feature types to solve sentence segmentation

problem. In addition boosting algorithm is used to get a strong learner with respect to

prosodic features, morphological features and lexical features; we worked for

increase the scores according to previous works. For receiving much more scores,

co-training algorithm can be used which is multi view learning algorithm against to

single view self-training algorithm. All of the system tools which we used, are open

source and we modified all these tools in to Turkish Spoken language. It is also mean

that these tools could be used for all the other language with small effort. We have

observed that morphological feature set, M1 prosodic feature set and DUR+F0

prosodic feature set are performed maximum performance and system is given

similar response both single speaker and multi speaker. This work could be

considered as the first step of further ASR applications such as topic segmentation,

sentence translation and summarization.

92

References

[1] E. Shriberg, A. Stolcke, D. Hakkani-Tur, G. Tur, Prosody-based automatic

segmentation of speech into sentences and topics, 2000.

[2] Y. Gotoh and S. Renals, Sentence boundary detection in broadcast speech

transcripts, 2000.

[3] J. Huang, G. Zweig, Maximum entropy model for punctuation annotation from

speech, 2002.

[4] Y. Liu, E. Shriberg, A. Stolcke, B. Peskin, J. Ang, D. Hillard, M. Ostendorf, M.

Tomalin, P. Woodland, and M. Harper, Structural metadata research in the EARS

program, 2000.

[5] Zimmermann M., Hakkani-Tür D., Fung J., Mirghafori N., Gottlieb L., Liu Y.

and Shriberg E., The ICSI+ multi-lingual sentence segmentation, 2006.

[6] Dalva D., D.Revidi I., Guz U., Gurkan H., Extractionf and Comparison of

Various Prosodic Feature Sets on Sentence Segmentation Task for Turkish

Broadcast News Data, 2014.

[7] Coltekin C., A Freely Available Morphological Analyzer For Turkish, 2010.

[8] Tur G., Oflazer Kemal A statistical information extraction system for, 2000.

[9] Dalva D., Automatic Speech Recognition System for Turkish Spoken Language,

MSc. Thesis, June 2012.

[10] Huang Z., Chen L., Harper M.P., Purdue Prosodic Feature Extraction Tool on

Praat, 2006.

[11] Schapire R.E., The Boosting Approach to Machine Learning An Overview,

2001.

93

[12] Turk Dil Kurumu,

http://www.tdk.gov.tr

[13] Turkish Alphabet

http://en.wikipedia.org/wiki/Turkish_alphabet

[14] Papoulis A., Pillai S. U, Probability, Random Variables and Stochastic

Processes, 4th edition, 2002.

[15] Young S., Everman G., Gales M., Hain T., Kershaw D., Liu X., Moore G., Odell

J., Ollason D., Povey D., Valtchev V. Woodland P., The HTK Book, 2009.

[16] Glass J., A Brief Introduction to Automatic Speech Recognition, 2007.

[17] Guz U., Favre B., Tur D., Tur G., Generative and Discriminative Methods

Using Morphological Information for Sentence Segmentation of Turkish, 2009.

[18] Oflazer K., Two-Level Description of Turkish Morphology, 1993.

[19] Ritchie G., Languages Genereated by Two-Level Morphological Rules, 1992.

[20] R.Beesley K., Karttunen L., Two-Level Rule Compilter, 2003.

[21]Oflazer K., Computational Morphology, 2009.

[22] Koskenniemi K. , Two Level Morphology: A General Computational Model for

Word-Form Recgonition and Production, 1983.

[23] Foma

http://code.google.com/p/foma/

[24]Trmorph

http://code.google.com/p/dkpro-core-gpl/

[25] Yuret D., Yatbaz M. A., Unsupervised Morphological Disambiguation using

Statistical Language Models, 2009.

[26] Nather P., N-gram Based Text Categorization, 2005.

[27] Brill E., Discovering the Lexical Features of a Language, 1991.

[28] J.Mooney R., Natural Language Processing: N-Gram Language Models.

http://en.wikipedia.org/wiki/Turkish_alphabet
http://code.google.com/p/foma/
http://code.google.com/p/dkpro-core-gpl/

94

[29] Guz U., Cuendet S., Tur D., Tur G., Multi-View Semi-Supervised Learning for

Dialog Act Segmentation of Speech, 2010.

[30] Guz U., Gurkan H., Dalva D., Comparing Performances of Various Prosodic

Feature Sets on Sentence Segmentation Task for Turkish Broadcast News, 2013.

[31] Matas J., Sochman J., Adaboost.

[32] Icsiboost

http://code.google.com/p/icsiboost

[33] Amerika’nin Sesi

http://www.voanews.com/turkish

[34] BUSIM

http://www.ee.boun.edu.tr/busim

[35] Mihalcea R., Co-training and Self-training for Word Sense Disambiguation,

2004.

[36] Coltekin C., Trmorph: A morphological analyzer for Turkish (User Manual).

2013.

http://code.google.com/p/icsiboost
http://www.voanews.com/turkish
http://www.ee.boun.edu.tr/busim

95

Appendix A Prosodic Feature List

A.1 Basic Features

A.1.1 Base Features

 WAV : Location information of current audio file.

 SPK_ID: Identification information of speaker.

 SPK_GEN: Gender information of speaker.

A.1.2 Duration Features

 WORD: Recent word boundary.

 WORD_START: Starting time of the recent word boundary.

 WORD_END: Ending time of the recent word boundary.

 FWORD: Next word boundary.

 FWORD_START: Starting of the next word boundary.

 FWORD_END: Ending time of the next word boundary.

 PAUSE_START: Starting time of the pause boundary.

 PAUSE_END: Ending time of the pause.

 PAUSE_DUR: Duration time of the pause.

 WORD_PHONES: Phone and durations in the word(phone1:duration1…)

 FLAG: Specify reliable phone duration according to threshold.

(SUSP=Suspicious word, ?=Error or not include phones, 0=otherwise)

 LAST_VOWEL: Last vowel in recent word boundary.

 LAST_VOWEL_START: Starting time of the last vowel in the recent word

boundary.

96

 LAST_VOWEL_END: Ending time of the last vowel in the recent word

boundary.

 LAST_VOWEL_DUR: Duration of the last vowel in the previous word

boundary.

 LAST_RHYME START: Starting time of the last rhyme in the recent word

boundary.

 LAST_RHYME_END: Ending time of the last rhyme in the recent word

boundary.

 NORM_LAST_RHYME_DUR:

_ _ _

() ()

_ ()
every phone in word

dur phone mean phone

std dev phone

 PHONES_IN_LAST_RHYME: Whole number of phones in the last rhyme.

A.1.3 F0 Features

 MIN_F0: The minimum raw F0 value of current word.

 MAX_F0: The maximum raw F0 value of current word.

 MEAN_F0: The mean raw F0 value of current word.

 MIN_F0_NEXT: The minimum raw F0 value of the word after boundary.

 MAX_F0_NEXT: The maximum raw F0 value of the word after boundary.

 MEAN_F0_NEXT: The mean raw F0 value of the word after boundary.

 MIN_F0_WIN: The minimum raw F0 value of the word N frames before a

boundary. (If there isn’t enough data, maximum number of frames are used.)

 MAX_F0_WIN: The maximum raw F0 value of the word N frames before a

boundary. (If there isn’t enough data, maximum number of frames are used.)

 MEAN_F0_WIN: The mean raw F0 value of the word N frames before a

boundary. (If there isn’t enough data, maximum number of frames are used.)

 MIN_F0_NEXT_WIN: The minimum raw F0 value of the word N frames

before from after boundary. (If there isn’t enough data, maximum number of

frames are used.)

 MAX_F0_NEXT_WIN: The maximum raw F0 value of the word N frames

before from after boundary. (If there isn’t enough data, maximum number of

frames are used.)

97

 MEAN_F0_NEXT_WIN: The mean raw F0 value of the word N frames

before from after boundary. (If there isn’t enough data, maximum number of

frames are used.)

 MIN_STYLIFT_F0: The minimum stylized F0 value of current word.

 MAX_STYLIFT_F0: The maximum stylized F0 value of current word.

 MEAN_STYLIFT_F0: The mean stylized F0 value of current word.

 FIRST_STYLIFT_F0: The first stylized F0 value of current word.

 LAST_STYLIFT_F0: The last stylized F0 value of current word.

 MIN_STYLIFT_F0_NEXT: The minimum stylized F0 value of the word

after a boundary.

 MAX_STYLIFT_F0_NEXT: The maximum stylized F0 value of the word

after a boundary.

 MEAN_STYLIFT_F0_NEXT: The mean stylized F0 value of the word after

a boundary.

 FIRST_STYLIFT_F0_NEXT: The first stylized F0 value of the word after a

boundary.

 LAST_STYLIFT_F0_NEXT: The last stylized F0 value of the word after a

boundary.

 MIN_STYLIFT_F0_WIN: The minimum stylized F0 value of the word N

frames before a boundary. (If there isn’t enough data, maximum number of

frames are used.)

 MAX_STYLIFT_F0_WIN: The maximum stylized F0 value of the word N

frames before a boundary. (If there isn’t enough data, maximum number of

frames are used.)

 MEAN_STYLIFT_F0_WIN: The mean stylized F0 value of the word N

frames before a boundary. (If there isn’t enough data, maximum number of

frames are used.)

 FIRST_STYLIFT_F0_WIN: The first stylized F0 value of the word N frames

before a boundary. (If there isn’t enough data, maximum number of frames

are used.)

 LAST_STYLIFT_F0_WIN: The last stylized F0 value of the word N frames

before a boundary. (If there isn’t enough data, maximum number of frames

are used.)

98

 MIN_STYLIFT_F0_NEXT_WIN: The minimum stylized F0 value of the

word N frames before from after boundary. (If there isn’t enough data,

maximum number of frames are used.)

 MAX_STYLIFT_F0_NEXT_WIN: The maximum stylized F0 value of the

word N frames before from after boundary. (If there isn’t enough data,

maximum number of frames are used.)

 MEAN_STYLIFT_F0_NEXT_WIN: The mean stylized F0 value of the word

N frames before from after boundary. (If there isn’t enough data, maximum

number of frames are used.)

 FIRST_STYLIFT_F0_NEXT_WIN: The first stylized F0 value of the word N

frames before from after boundary. (If there isn’t enough data, maximum

number of frames are used.)

 LAST_STYLIFT_F0_NEXT_WIN: The last stylized F0 value of the word N

frames before from after boundary. (If there isn’t enough data, maximum

number of frames are used.)

 PATTERN_WORD: Detects falling slope, unvoiced section and rising slope

which represent by ‘’ f ’’, ‘’ u ’’ and ‘’ r ’’.

 PATTERN_WORD_CALLAPSED: Similar with PATTERN_WORD;

sequence are represented by one symbol(‘’ f ’’, ‘’ u ’’ and ‘’ r ’’).

 PATTERN_SLOPE: Similar with PATTERN_WORD; values are listed.

 PATTERN_WORD_NEXT: Detects falling slope, unvoiced section and

rising slope which represent by ‘’ f ’’, ‘’ u ’’ and ‘’ r ’’ of the word after a

boundary.

 PATTERN_WORD_CALLAPSED_NEXT: Similar with

PATTERN_WORD_NEXT; sequence are represented by one symbol(‘’ f ’’,

‘’ u ’’ and ‘’ r ’’) .

 PATTERN_SLOPE_NEXT: Similar with PATTERN_WORD_NEXT;

values are listed.

 PATTERN_WORD_WIN: Detects falling slope, unvoiced section and rising

slope which represent by ‘’ f ’’, ‘’ u ’’ and ‘’ r ’’ of the word N frames

before a boundary. (If there isn’t enough data, maximum number of frames

are used.)

99

 PATTERN_WORD_CALLAPSED_WIN: Similar with

PATTERN_WORD_WIN; sequence are represented by one symbol(‘’ f ’’,

‘’ u ’’ and ‘’ r ’’). (If there isn’t enough data, maximum number of frames

are used.)

 PATTERN_SLOPE_WIN: Similar with PATTERN_WIN; values are listed.

(If there isn’t enough data, maximum number of frames are used.)

 PATTERN_WORD_NEXT_WIN: Detects falling slope, unvoiced section

and rising slope which represent by ‘’ f ’’, ‘’ u ’’ and ‘’ r ’’ of the word N

frames before from after a boundary. (If there isn’t enough data, maximum

number of frames are used.)

 PATTERN_WORD_CALLAPSED_NEXT_WIN: Similar with

PATTERN_WORD_NEXT_WIN; sequence are represented by one

symbol(‘’ f ’’, ‘’ u ’’ and ‘’ r ’’) . (If there isn’t enough data, maximum

number of frames are used.)

 PATTERN_SLOPE_NEXT_WIN: Similar with

PATTERN_WORD_NEXT_WIN; values are listed. (If there isn’t enough

data, maximum number of frames are used.)

 NO_PREVIOUS_SSF: Number of sequentially frames with in the word

which have same slope as last voiced frame in previous word.

 NO_PREVIOUS_VF: Number of sequentially voiced frames with in the

word from last voiced frame in the word backwards.

 NO_FRAMES_I_S_WE: Number of sequentially frames between the last

voiced frame which have a proper to a sequence of voiced frames larger than

min_frame_length in the current word and at the end of that word.

 NO_SUCESSOR_SSF: Number of successor sequentially frames with in the

word which have same slope as the first voiced frame in current word.

 NO_SUCCESSOR_VF: Number of sequentially voiced frames with in the

word from the first voiced frame in the following word.

 NO_FRAMES_WS_FS: Number of sequentially frames between the first

frame of the current word and the first voiced frame in that word which have

a proper to a sequence of voiced frames larger than min_frame_length.

100

 NO_PREVIOUS_SSF_NEXT: Number of sequentially frames with in the

word which have same slope as last voiced frame in previous word for the

word after a boundary.

 NO_PREVIOUS_VF_NEXT: Number of sequentially voiced frames with in

the word from last voiced frame in the word backwards for the word after a

boundary.

 NO_FRAMES_I_S_WE_NEXT: Number of sequentially frames between the

last voiced frame which have a proper to a sequence of voiced frames larger

than min_frame_length in the current word and at the end of that word for the

word after a boundary.

 NO_SUCESSOR_SSF_NEXT: Number of successor sequentially frames

with in the word which have same slope as the first voiced frame in current

word for the word after a boundary.

 NO_SUCCESSOR_VF_NEXT: Number of sequentially voiced frames with

in the word from the first voiced frame in the following word for the word

after a boundary.

 NO_FRAMES_WS_FS_NEXT: Number of sequentially frames between the

first frame of the current word and the first voiced frame in that word which

have a proper to a sequence of voiced frames larger than min_frame_length

for the word after a boundary.

 NO_PREVIOUS_SSF_WIN: Number of sequentially frames with in the

word which have same slope as last voiced frame in previous word for the

word N frames before a boundary . (If there isn’t enough data, maximum

number of frames are used.)

 NO_PREVIOUS_VF_WIN: Number of sequentially voiced frames with in

the word from last voiced frame in the word backwards for the word N

frames before a boundary. (If there isn’t enough data, maximum number of

frames are used.)

 NO_FRAMES_I_S_WE_WIN: Number of sequentially frames between the

last voiced frame which have a proper to a sequence of voiced frames larger

than min_frame_length in the current word and at the end of that word for the

word N frames before a boundary. (If there isn’t enough data, maximum

number of frames are used.)

101

 NO_SUCESSOR_SSF_WIN: Number of successor sequentially frames with

in the word which have same slope as the first voiced frame in current word

for the word N frames before a boundary. (If there isn’t enough data,

maximum number of frames are used.)

 NO_SUCCESSOR_VF_WIN: Number of sequentially voiced frames with in

the word from the first voiced frame in the following word for the word N

frames before a boundary. (If there isn’t enough data, maximum number of

frames are used.)

 NO_FRAMES_WS_FS_WIN: Number of sequentially frames between the

first frame of the current word and the first voiced frame in that word which

have a proper to a sequence of voiced frames larger than min_frame_length

for the word N frames before a boundary. (If there isn’t enough data,

maximum number of frames are used.)

 NO_PREVIOUS_SSF_NEXT_WIN: Number of sequentially frames with in

the word which have same slope as last voiced frame in previous word for the

word N frames before from after a boundary. (If there isn’t enough data,

maximum number of frames are used.)

 NO_PREVIOUS_VF_NEXT_WIN: Number of sequentially voiced frames

with in the word from last voiced frame in the word backwards for the word

N frames before from after a boundary. (If there isn’t enough data, maximum

number of frames are used.)

 NO_FRAMES_I_S_WE_NEXT_WIN: Number of sequentially frames

between the last voiced frame which have a proper to a sequence of voiced

frames larger than min_frame_length in the current word and at the end of

that word N frames before from after a boundary. (If there isn’t enough data,

maximum number of frames are used.)

 NO_SUCESSOR_SSF_NEXT_WIN: Number of successor sequentially

frames with in the word which have same slope as the first voiced frame in

current word N frames before from after a boundary. (If there isn’t enough

data, maximum number of frames are used.)

 NO_SUCCESSOR_VF_NEXT_WIN: Number of sequentially voiced frames

with in the word from the first voiced frame in the following word for the

102

word N frames before from after a boundary. (If there isn’t enough data,

maximum number of frames are used.)

 NO_FRAMES_WS_FS_NEXT_WIN: Number of sequentially frames

between the first frame of the current word and the first voiced frame in that

word which have a proper to a sequence of voiced frames larger than

min_frame_length for the word N frames before from after a boundary. (If

there isn’t enough data, maximum number of frames are used.)

 PATTERN_BOUNDARY: Combine of PATTERN_WORD and

PATTERN_NEXT_WORD.

 SLOPE_DIFF: The difference between the last non-zero slope of the word

and the first non-zero slope of the following word. ‘’?’ is default value for not

found features.

A.1.4 Energy Features

Energy features are formeed similar with F0 features as listed below,

 MIN_ENERGY

 MAX_ENERGY

 MEAN_ENERGY

 MIN_ENERGY_NEXT

 MAX_ENERGY_NEXT

 MEAN_ENERGY_NEXT

 MIN_ENERGY_WIN

 MAX_ENERGY_WIN

 MEAN_ENERGY_WIN

 MIN_ENERGY_NEXT_WIN

 MAX_ENERGY_NEXT_WIN

 MEAN_ENERGY_NEXT_WIN

 MIN_STYLIFT_ENERGY

 MAX_STYLIFT_ENERGY

 MEAN_STYLIFT_ENERGY

 FIRST_STYLIFT_ENERGY

 LAST_STYLIFT_ENERGY

103

 MIN_STYLIFT_ENERGY_NEXT

 MAX_STYLIFT_ENERGY_NEXT

 MEAN_STYLIFT_ENERGY_NEXT

 FIRST_STYLIFT_ENERGY_NEXT

 LAST_STYLIFT_ENERGY_NEXT

 MIN_STYLIFT_ENERGY_WIN

 MAX_STYLIFT_ENERGY_WIN

 MEAN_STYLIFT_ENERGY_WIN

 FIRST_STYLIFT_ENERGY_WIN

 LAST_STYLIFT_ENERGY_WIN

 MIN_STYLIFT_ENERGY_NEXT_WIN

 MAX_STYLIFT_ENERGY_NEXT_WIN

 MEAN_STYLIFT_ENERGY_NEXT_WIN

 FIRST_STYLIFT_ENERGY_NEXT_WIN

 LAST_STYLIFT_ENERGY_NEXT_WIN

 ENERGY_PATTERN_WORD

 ENERGY_PATTERN_WOD_CALLAPSED

 ENERGY_PATTERN_SLOPE

 ENERGY_PATTERN_WORD_NEXT

 ENERGY_PATTERN_WOD_CALLAPSED_NEXT

 ENERGY_PATTERN_SLOPE_NEXT

 ENERGY_PATTERN_WORD_WIN

 ENERGY_PATTERN_WOD_CALLAPSED_WIN

 ENERGY_PATTERN_SLOPE_WIN

 ENERGY_PATTERN_WORD_NEXT_WIN

 ENERGY_PATTERN_WOD_CALLAPSED_NEXT_WIN

 ENERGY_PATTERN_SLOPE_NEXT_WIN

 ENERGY_PATTERN_BOUNDARY

 ENERGY_SLOPE_DIFF

104

A.2 Statistical Tables

 Phone_dur_stats: Table includes the mean phone duration, the standard

deviation of the phone duration, the number of occurrences of that phone in

the training database and the phone duration threshold for each phone.

Computation as shown in Equation XX.

() () 10 _ ()threshold phone mean phone std dev phone (A.1)

 Pause_dur.stats: Table includes mean and standard deviation of the pauses in

the training database for each audio.

 Spkr_feat.stats: Table has rows as number of speakers. Each row includes

voiced and unvoiced frames, F0 and F0 slope, energy and energy slope.

Detailed features as listed below,

o MEAN_VOICED: The average length of voiced frames.

o STDEV_VOICED: The standard deviation of voiced frames.

o COUNT_VOICED: The number of voiced frames.

o MEAN_UNVOICED: The average length of unvoiced frames.

o STDEV_UNVOICED: The standard deviation of unvoiced frames.

o COUNT_UNVOICED: The number of unvoiced frames.

o MEAN_PITCH: The average F0 value.

o STDEV_PITCH: The standard deviation F0 value.

o COUNT_PITCH: The number of F0 value.

o MEAN_SLOPE: The mean pitch slope.

o STDEV_SLOPE: The standard deviation of pitch slope.

o COUNT_SLOPE: The number of pitch slope.

o MEAN_ENERGY: The average energy value.

o STDEV_ENERGY: The standard deviation of energy value.

o COUNT_ENERGY: The number of energy value.

o MEAN_ENERGY_SLOPE: The mean slope.

o STDEV_ENERGY_SLOPE: The standard deviation of the slope.

o COUNT_ENERGY_SLOPE: The number of energy slope.

 Spkr_phone_dur.stats: Feature has tables as number of speakers. Similar with

phone_dur_stats, it considers all of the speakers.

105

 Last_rhyme_dur.stats: Table includes mean phone duration for the phones in

the last rhyme, the standard deviation of the phone duration for the ohones in

the last rhyme, and the number of last rhymes used for each audio.

 Pause_dur.stats: Table has rows as number of speakers. Detailed features as

listed below,

o MEAN: The mean duration of the pauses.

o STDEV: The standard deviation of the duration of the pauses.

o MEAN_LOG: The mean of the log duration of the pauses.

o STDEV_LOG: The standard deviation of the log duration of the

pauses.

o COUNT_PAUSE: The number of the pauses.

A.3 Derived Features

Derive features are formed from basic features and statistics.

A.3.1 Normalized Word Duration

 WORD_DUR = WORD_END – WORD_START (A.2)

 WORD_AV_DUR =
_ _ _

()
every phone in word

mean phone (A.3)

 NORM_WORD_DUR = WORD_DUR / WORD_AV_DUR (A.4)

A.3.2 Normalized Pause

 PAU_DUR_N = PAU_DUR / PAUSE_MEAN (A.5)

A.3.3 Normalized Vowel Duration

 LAST_VOWEL_DUR_Z = (LAST_VOWEL_DUR –

ALL_PHONE_DUR_MEAN) / ALL_PHONE_DUR_STDEV (A.6)

 LAST_VOWEL_DUR_N = LAST_VOWEL_DUR /

ALL_PHONE_DUR_MEAN (A.7)

 LAST_VOWEL_DUR_ZSP = (LAST_VOWEL_DUR –

SPKR_PHONE_DUR_MEAN) / SPKR_PHONE_DUR_STDEV (A.8)

 LAST_VOWEL_DUR_NSP = LAST_VOW_DUR /

SPKR_PHONE_DUR_MEAN (A.9)

106

A.3.4 Normalized Rhyme Duration

 LAST_RHYME_DUR_PH = LAST_RHYME_DUR /

PHONES_IN_LAST_RHYME (A.10)

 LAST_RHYME_DUR_PH_ND = (LAST_RHYME_DUR /

PHONES_IN_LAST_RHYME) –

LAST_RHYME_PHONE_DUR_MEAN (A.11)

 LAST_RHYME_DUR_PH_NR = (Last_RHYME_DUR /

PHONES_IN_LAST_RHYME) /

LAST_RHYME_PHONE_DUR_MEAN (A.12)

 LAST_RHYME_NORM_DUR_PH = NORM_LAST_RHYME_DUR /

PHONES_IN_LAST_RHYME (A.13)

 LAST_RHYME_NORM_DUR_PH_ND =

(NORM_LAST_RHYME_DUR / PHONES_IN_LAST_RHYME) –

NORM_LAST_RHYME_PHONE_DUR_MEAN (A.14)

 LAST_RHYME_NORM_DUR_PH_NR=

(NORM_LAST_RHYME_DUR / PHONES_IN_LAST_RHYME) /

NORM_LAST_RHYME_PHONE_DUR_MEAN (A.15)

 LAST_RHYME_DUR_WHOLE_ND= LAST_RHYME_DUR –

LAST_RHYME_WHOLE_DUR_MEAN (A.16)

 LAST_RHYME_WHOLE_DUR_NR = LAST_RHYME_DUR /

LAST_RHYME_WHOLE_DUR_MEAN (A.17)

 LAST_RHYME_WHOLE_DUR_Z = (LAST_RHYME_DUR –

LAST_RHYME_WHOLE_DUR_MEAN) /

LAST_RHYME_WHOLE_DUR_STDEV (A.18)

A.3.5 F0 Derived Features

F0 derived features are formed from F0 features.

 SPKR_FEAT_F0_MODE = exp(SPKR_F0_MEAN) (A.19)

 SPKR_FEAT_F0_TOPLN = 0.75x(exp(SPKR_F0_MEAN) (A.20)

 SPKR_FEAT_F0_BASELN = 1.5x(exp(SPKR_F0_MEAN) (A.21)

 SPKR_FEAT_F0_STDLN = exp(SPKR_F0_STDEV) (A.22)

107

 SPKR_FEAT_F0_RANGE = SPKR_FEAT_F0_TOPLN –

SPKR_FEAT_F0_BASELN (A.23)

 F0K_WORD_DIFF_HIHI_N = log(MAX_STYLFIT_F0 /

MAX_STYLIFT_F0_NEXT) (A.24)

 F0K_WORD_DIFF_HILO_N = log(MAX_STYLFIT_F0 /

MIN_STYLFIT_F0_NEXT) (A.25)

 F0K_WORD_DIFF_LOLO_N = log(MIN_STYLFIT_F0 /

MIN_STYLFIT_F0_NEXT) (A.26)

 F0K_WORD_DIFF_LOHI_N = log(MIN_STYLFIT_F0 /

MAX_STYLFIT_F0_NEXT) (A.27)

 F0K_WORD_DIFF_NNMN_N = log(MEAN_STYLFIT_F0 /

MEAN_STYLFIT_F0_NEXT) (A.28)

 F0K_WORD_DIFF_HIHI_NG = (log (MAX_STYLFIT_F0) / log

(MAX_STYLFIT_F0_NEXT)) / SPKR_FEAT_F0_RANGE (A.29)

 F0K_WORD_DIFF_HILO_NG = (log (MAX_STYLFIT_F0) / log

(MIN_STYLFIT_F0_NEXT))/ SPKR_FEAT_F0_RANGE (A.30)

 F0K_WORD_DIFF_LOLO_NG = (log (MIN_STYLFIT_F0) / log

(MIN_STYLFIT_F0_NEXT))/ SPKR_FEAT_F0_RANGE (A.31)

 F0K_WORD_DIFF_LOHI_NG = (log (MIN_STYLFIT_F0) / log

(MAX_STYLFIT_F0_NEXT))/ SPKR_FEAT_F0_RANGE (A.32)

 F0K_WORD_DIFF_MNMN_NG = (log (MEAN_STYLFIT_F0) / log

(MEAN_STYLFIT_F0_NEXT))/ SPKR_FEAT_F0_RANGE (A.33)

 F0K_WIN_DIFF_HIHI_N = log (MAX_STYLFIT_F0_WIN /

MAX_STYLFIT F0_WIN_NEXT) (A.34)

 F0K_WIN_DIFF_HILO_N = log (MAX_STYLFIT_F0_WIN /

MIN_STYLFIT_F0_WIN_NEXT) (A.35)

 F0K_WIN_DIFF_LOLO_N = log (MIN_STYLFIT_F0_WIN /

MIN_STYLFIT_F0_WIN_NEXT) (A.36)

 F0K_WIN_DIFF_LOHI_N = log (MIN_STYLFIT_F0_WIN /

MAX_STYLFIT_F0_WIN_NEXT) (A.37)

 F0K_WIN_DIFF_MNMN_NG = log (MEAN_STYLFIT_F0_WIN /

MEAN_STYLFIT_F0_WIN_NEXT) (A.38)

108

 F0K_WIN_DIFF_HIHI_NG = (log (MAX_STYLFIT_F0_WIN) / log

(MAX_STYLFIT_F0_WIN_NEXT)) / SPKR_FEAT_F0_RANGE (A.39)

 F0K_WIN_DIFF_HILO_NG = (log (MAX_STYLFIT_F0_WIN) / log

(MIN_STYLFIT_F0_WIN_NEXT)) / SPKR_FEAT_F0_RANGE (A.40)

 F0K_WIN_DIFF_LOLO_NG = (log (MIN_STYLFIT_F0_WIN) / log

(MIN_STYLFIT_F0_WIN_NEXT)) / SPKR_FEAT_F0_RANGE (A.41)

 F0K_WIN_DIFF_LOHI_NG = (log (MIN_STYLFIT_F0_WIN) / log

(MAX_STYLFIT_F0_WIN_NEXT)) / SPKR_FEAT_F0_RANGE (A.42)

 F0K_WIN_DIFF_MNMN_NG = (log (MEAN STYLFIT F0 WIN) / log

(MEAN STYLFIT F0 WIN NEXT)) / SPKR FEAT F0 RANGE (A.43)

 F0K_DIFF_LAST_KBASELN = LAST_STYLFIT_F0 –

SPKR_FEAT_F0_BASELN (A.44)

 F0K DIFF MEAN KBASELN = MEAN STYLFIT F0 - SPKR FEAT F0

BASELN (A.45)

 F0K_DIFF_WINMIN_KBASELN = MIN_STYLFIT_F0_WIN –

SPKR_FEAT_F0_ BASELN (A.46)

 F0K_LR_LAST_KBASELN = log (LAST_STYLFIT_F0 /

SPKR_FEAT_F0_BASELN) (A.47)

 F0K_LR_MEAN_KBASELN = log (MEAN_STYLFIT_F0 /

SPKR_FEAT_F0_BASELN) (A.48)

 F0K_LR_WINMIN_KBASELN = log (MIN_STYLFIT_F0_WIN /

SPKR_FEAT_F0_BASELN) (A.49)

 F0K_ZRANGE_MEAN_KBASELN = (MEAN_STYLFIT_F0 –

SPKR_FEAT_F0_BASELN) / SPKR_FEAT_F0_RANGE (A.50)

 F0K ZRANGE_MEAN_KTOPLN = (SPKR_FEAT_F0_TOPLN –

MEAN_STYLFIT_F0) / SPKR_FEAT_F0_RANGE (A.51)

 F0K_ZRANGE_MEANNEXT_KBASELN = (MEAN_STYLFIT_F0_NEXT

–SPKR_FEAT_F0_BASELN) / SPKR_FEAT_F0_RANGE (A.52)

 F0K_ZRANGE_MEANNEXT_KTOPLN = (SPKR_FEAT_F0_TOPLN –

MEAN_FEAT_F0_NEXT) / SPKR_FEAT_F0_RANGE (A.53)

 F0K_DIFF_MEANNEXT_KTOPLN = MEAN_STYLFIT_F0_NEXT –

SPKR_FEAT_F0_TOPLN (A.54)

109

 F0K_DIFF_MAXNEXT_KTOPLN = MAX_STYLFIT_F0_NEXT –

SPKR_FEAT_F0_TOPLN (A.55)

 F0K_DIFF_WINMAXNEXT_KTOPLN = MAX STYLFIT_F0_NEXT_WIN

– SPKR_FEAT_F0_TOPLN (A.56)

 F0K_LR_MEANNEXT_KTOPLN = log (MEAN_STYLFIT_F0_NEXT /

SPKR_FEAT_F0_TOPLN) (A.57)

 F0K_LR_MAXNEXT_KTOPLN = log (MAX_STYLFIT_F0_NEXT /

SPKR_FEAT_F0_TOPLN) (A.58)

 F0K_LR_WINMAXNEXT_KTOPLN = log

(MAX_STYLFIT_F0_NEXT_WIN / SPKR_FEAT_F0_TOPLN) (A.59)

 F0K_MAXK_MODE_N = log (MAX_STYLFIT_F0 /

SPKR_FEAT_F0_MODE) (A.60)

 F0K_MAXK_NEXT_MODE_N = log (MAX_STYLFIT_F0_NEXT /

SPKR_FEAT_F0_MODE) (A.61)

 F0K_MAXK_MODE_Z = (MAX_STYLFIT_F0 –

SPKR_FEAT_F0_MODE) / SPKR_FEAT_F0_RANGE (A.62)

 F0K_MAXK_NEXT_MODE_Z = (MAX_STYLFIT_F0_NEXT –

SPKR_FEAT_F0_MODE) / SPKR_FEAT_F0_RANGE (A.63)

 F0K_WORD_DIFF_BEGBEG = log (FIRST_STYLFIT_F0 /

FIRST_STYLFIT_F0_NEXT) (A.64)

 F0K_WORD_DIFF_ENDBEG = log (LAST_STYLFIT_F0 /

FIRST_STYLFIT_F0_NEXT) (A.65)

 F0K_INWRD_DIFF = log (FIRST_STYLFIT_F0 / LAST_STYLFIT_F0)

 (A.66)

 LAST_SLOPE: The last ‘’f’’ or’’ r’’ slope in PATTERN_SLOPE.

 FIRST SLOPE NEXT: The first ’’ f’’ or ‘’ r’’ slope in

PATTERN_SLOPE_NEXT.

 SLOPE_DIFF_N = SLOPE_DIFF / SKPR_FEAT_F0_SD_SLOPE (A.67)

 LAST_SLOPE_N = LAST_SLOPE/ LAST_STYLFIT_F0 (A.68)

110

A.3.6 Energy Derived Features

Energy derived features are formed from energy features. They are computed

similarly as the derived F features as listed below.

 ENERGY_WORD_DIFF_HIHI_N

 ENERGY_WORD_DIFF_HILO_N

 ENERGY_WORD_DIFF_LOLO_N

 ENERGY_WORD_DIFF_LOHI_N

 ENERGY_WORD_DIFF_MNMN_N

 ENERGY_WORD_DIFF_HIHI_NG

 ENERGY_WORD_DIFF_HILO_NG

 ENERGY_WORD_DIFF_LOLO_NG

 ENERGY_WORD_DIFF_LOHI_NG

 ENERGY_WORD_DIFF_MNMN_NG

 ENERGY_WIN_DIFF_HIHI_N

 ENERGY_WIN_DIFF_HILO_N

 ENERGY_WIN_DIFF_LOLO_N

 ENERGY_WIN_DIFF_LOHI_N

 ENERGY_WIN_DIFF_MNMN_NG

 ENERGY_WIN_DIFF_HIHI_NG

 ENERGY_WIN_DIFF_HILO_NG

 ENERGY_WIN_DIFF_LOLO_NG

 ENERGY_WIN_DIFF_LOHI_NG

 ENERGY_WIN_DIFF_MNMN_NG

 ENERGY_DIFF_LAST_KBASELN

 ENERGY_DIFF_MEAN_KBASELN

 ENERGY_DIFF_WINMIN_KBASELN

 ENERGY_LR_LAST_KBASELN

 ENERGY_LR_MEAN_KBASELN

 ENERGY_LR_WINMIN_KBASELN

 ENERGY_ZRANGE_MEAN_KBASELN

 ENERGY_ZRANGE_MEAN_KTOPLN

 ENERGY_ZRANGE_MEANNEXT_KBASELN

111

 ENERGY_ZRANGE_MEANNEXT_KTOPLN

 ENERGY_DIFF_MEANNEXT_KTOPLN

 ENERGY_DIFF_MAXNEXT_KTOPLN

 ENERGY_DIFF_WINMAXNEXT_KTOPLN

 ENERGY_LR_MEANNEXT_KTOPLN

 ENERGY_LR_MAXNEXT_KTOPLN

 ENERGY_LR_WINMAXNEXT_KTOPLN

 ENERGY_MAXK_MODE_N

 ENERGY_MAXK_NEXT_MODE_N

 ENERGY_MAXK_MODE_Z

 ENERGY_MAXK_NEXT_MODE_Z

 ENERGY_WORD_DIFF_BEGBEG

 ENERGY_WORD_DIFF_ENDBEG

 ENERGY_INWRD_DIFF

 ENERGY_LAST_SLOPE

 ENERGY_SLOPE_DIFF_N

 ENERGY_LAST_SLOPE_N

A.3.7 Average Phone Duration

 AVG_PHONE_DUR_Z =
_ _ _

_ () /#
every phone in word

phone z phone phones

 (A.69)

 MAX_PHONE_DUR_Z =
_ _ _

m ax _ ()
every phone in word

phone z phone

 (A.70)

 AVG_PHONE_DUR_N =
_ _ _

_ [] /#
every phone in w ord

phone n phone phones

 (A.71)

A.3.8 Speaker Specific Normalization

 AVG_PHONE_DUR_ZSP =

_ _ _
_ [] /#

every phone in word
phone zsp phone phones (A.72)

 MAX_PHONE_DUR_ZSP =
_ _ _ _ []

m ax
every phone in word phone zsp phone

 (A.73)

 AVG_PHONE_DUR_NSP =

_ _ _
_ [] /#

every phone in w ord
phone nsp phone phones (A.74)

112

 MAX_PHONE_DUR_NSP =
_ _ _

max _ []
every phone in word

phone nsp phone (A.75)

To be performed features with over only the vowels listed below (similar to

_PHONE_DUR_) ;

 AVG_VOWEL_DUR_Z

 MAX_VOWEL_DUR_Z

 AVG_VOWEL_DUR_N

 MAX_VOWEL_DUR_N

 AVG_VOWEL_DUR_ZSP

 MAX_VOWEL_DUR_ZSP

 AVG_VOWEL_DUR_NSP

 MAX_VOWEL_DUR_NSP

113

Appendix B Praat Scripts

B.1 Scripts For Computing Global Statistics (‘’code/stats’’)

 stats_batch_praat: The interface for accepts inputs and controls the statistics.

 operations.praat: Highest level of the operation flow.

 io.praat: Controller for input and output files.

 table.praat: Controller for table operations.

 stats.praat: Routines for computing statistics.

 routine.praat: Routines for obtaining various basic elements.

 utils.praat: Routines for some miscellaneous utility.

 config.praat: Configuration of the pre-defined parameter values, such as

frame and window size, default file names, etc.

B.2 Scripts for Extracting Prosodic Features (‘’code/’’)

 main_batch.praat: The interface for accepts inputs and controls the statistics.

 operations.praat: Highest level of operation flow.

 io.praat: Controller for input and output files.

 table.praat: Controller for table operations.

 fetch.praat: Higher level routines for extracting basic prosodic features.

 routine.praat: Routines for obtaining various basic elements, and lower

level routines that implement feature extraction.

 derive.praat: Routines for computing derived features.

 utils.praat: Routines for some miscellaneous utility.

 config.praat: Configuration of the pre-defined parameter values, such

as frame and window size, default file names, etc.

 pf_list_files/feature_name_table.Tab: Contains a list of feature names.

114

Appendix C Morphological Feature List

 Alpha: Symbols of the alphabet

 Adj: Adjective

 Adv: Adverb

 Cnj: Conjunction

 Det: Determiner

 Exist: The word var and yok

 Ij: Interjection

 N: Noun

 Not: The word değil

 Num: Number

 Onom: Onomatopoeia

 Postp: Postposition

 Prn: Pronoun

 Punc: Punctuation

 Q: Question particle mI

 V: Verb

 1s: First person single

 2s: Second person single

 3s: Third person single

 1p: First person plural

 2p: Second person plural

 3p: Third person plural

115

Curriculum Vitae

Izel Revidi was born on 25
th

 May 1990 in Istanbul, Turkey. He received his BS

degree in Electrical and Electronics Engineering from Işık University, Istanbul,

Turkey in 2012. He is an engineer in Electronic Security Solutions market since

2013. His research interest covers speech processing, speech modeling, automatic

speech recognition and machine learning.

