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PROSODIC, MORPHOLOGICAL AND LEXICAL FEATURE EXTRACTION OF 

TURKISH BROADCAST NEWS DATA 

 

Abstract 

 

Sentence segmentation from speech is part of a process that aims at enriching the 

unstructured stream of words that are the output of standard speech recognizers. Its 

role is to find the sentence units in this stream of words. Sentence segmentation is a 

preliminary step toward speech understanding. Once the sentence boundaries are 

detected, further syntactic and/or semantic analysis can be performed on these 

sentences. 

 

Usually, speech recognizer output lacks the textual cues to these entities (such as 

headers, paragraphs, sentence punctuation, and capitalization). However, speech 

provides extra non-lexical cues, related to features like pitch, energy, pause and word 

durations as prosodic features; verb, noun or adjective as a morphological features 

and also lexical features. These prosodic, morphological and lexical features are 

provides a complementary information for segmentation of speech into sentences.   

 

Our goal is examine feature the extraction and use of prosodic information which has 

been done in previous works, in addition to lexical features and morphological for 

spoken language processing of Turkish with open source tools. 
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TÜRKÇE HABER VERİSİNDEN BÜRÜNSEL, BİÇİMSEL VE SÖZCÜKSEL 

ÖZELLİKLERİN ÇIKARIMI 

 

Özet 

 

Cümle bölütlemesi otomatik konuşma tanıma sisteminden çıkan sözcüklerin içeriğini 

zenginleştirmeyi hedefleyen sürecin bir parçasıdır. Cümle bölütlemesi, gelen kelime 

akışının bütün bir cümle olarak tanımlanması görevini üstlenir ve konuşma 

anlamının çıkarılması sürecinin bir önceki aşamasını oluşturur. Cümle sınırlarının 

bulunması ile birlikte cümle üzerinde sözdizimi ve/veya anlamsal analiz 

yapılabilmektedir. 

 

Genellikle otomatik konuşma tanıma sisteminden alınan çıktılarda başlık, paragraf, 

noktalama, büyük/küçük harf gibi bilgileri içeren metin işaretleri yer almamaktadır. 

Ancak konuşma hali hazırda enerji, duraklama bilgisi, kelimenin geçiş süresi gibi 

bürünsel özellikleri; kelimenin yüklem, isim veya sıfat olması gibi biçimsel 

özellikleri ve sözcüksel özellikleri barındırmaktadır. Bu bürünsel, biçimsel ve 

sözcüksel özellikler cümle bölütlemesinin yapılabilmesi için tamamlayıcı bir bilgi 

sağlamaktadır. 

 

Yapılan çalışmadaki amacımız daha önceki çalışmalarda yapılmış bürünsel 

özelliklerin çıkarımı ve kullanımına ek olarak; biçimsel ve sözcüksel özellikler açık 

kaynak kodlu araçlar ile Türkçe Konuşma Dili üzerinde çıkarımı ve kullanımıdır. 
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Chapter 1 

 

Introduction 

 

Speech, writing and sign are the only three main acts to communicate humans 

between them. And speech is the easy way for the communication in case two people 

speak with same language. By the development of technology new communication 

types are occurred such as e-mail, video calls etc. 

First communication start in 3500 BC with the paintings on the walls of the caves 

and it continued to develop rapidly until the internet-WWW is born in 1994. 

Invention of phonautograph which is the earliest known device for recording and 

printing waveform of the sounds in to a paper, could be accepted the first step of 

speech processing. This device invented by Edouard-Leon Scott de Martinville in 

1857. Today speech signals could represent with an electrical signal by using sources 

such as a microphone. These signals could be processed in any basic computer or 

electronic device. Also these signals could reconstruct and transmit easily with 

digital signal processing (DSP) methods. 

In this work we concentrate on Turkish Spoken Language and convert ASR system’s 

output which system is used for convert speech signal to a simple text file with 

recognized words, into a meaningful data. It is must for the human and machine 

communication. A data without sentence boundary labels doesn’t make sense for the 

human. Using by prosodic, morphological and lexical features; we aimed to label 

sentence boundaries automatically. Sentence segmentation is need for such as topic 

segmentation, topic summarization, parsing, machine translation, information 

extraction, online subtitling and question answering applications. 

 

The goal of the sentence segmentation is made a decision for the each word, is it a 

sentence boundary or not, with an acceptable error. Prosodic features include timing 
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and pitch patterns; morphological features include what and how information 

encoded in to a word; and lexical features include order information of the words. All 

these information is used for giving decision correctly.  

Thesis starts with the information about related works which is done previous works. 

In Chapter 3, definition of ASR, modified ASR into Turkish Spoken Language, 

Modeling (Hidden Markov Model, Word Model, Acoustic Model and Language 

Model) and usage of HTK Toolkit has introduced. In Chapter 4, definition of 

Prosodic Feature, types of Prosodic Feature, how to extract Prosodic Features and 

usage of Praat Toolkit has introduced. In Chapter 5, definition of Morphological 

Features, morphological process, how to extract Morphological Features and usage 

of TRmorph Toolkit hast introduced. In Chapter 6, definition of Lexical Features, 

modeling and usage of N-gram models has introduced. In Chapter 7, introduction to 

sentence segmentation problem, approaches, usage of Icsiboost has introduced. And 

lastly Chapter 8 includes overview of experiments, experiments and conclusion has 

introduced. 
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Chapter 2 

 

Related Works 

 

ASR systems are very trend topics; there are lot of researches and publications 

with several ways on this subject. Although ASR systems work for conversion of 

speech in to a text file, in our work we focused on Sentence Segmentation which 

tries to conversion of a text file into meaningful state, topic from a lot of subject 

which related with ASR system. Again Sentence Segmentation problem is solved 

with several ways for several different situations. Different languages, different 

feature sets and different learning algorithms separate all these researches in their 

self. Thus we can group these researches into type of language, type of features, 

feature extraction methods and type of machine learning algorithms. 

 

Sentence boundary detection (and similarly adding punctuation mark) in speech 

has been studied in an attempt to enrich speech recognition output [1, 2, 3, 4] and 

in the previous approaches for this task, different classifiers have been evaluated 

(e.g. hidden Markov model (HMM), maximum entropy), utilizing both textual-

prosodic information [5]. In example, different approaches such as HMM, 

maximum entropy and conditional random fields are applied in same research for 

both conversational telephone speech and broadcast news speech [4]. In ‘’The 

ICSI+ multi-lingual sentence segmentation system" reasearch is based on 

Mandarin and English Spoken Language (Multi-Language System) but also there 

is applications for the other different languages such as Czech, Chineese etc.  

 

In past, feature extraction systems have depended mostly on lexical information 

for segmentation (Kubala et al., 1998; Allan et al.1998; Hearst, 1997; Kozima, 

1993; Yamron et al., 1998; among others) [1]. In “Prosody-based automatic 

segmentation of speech into sentences and topics” research against to past 
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automatic information extraction systems lexical and prosodic features are used 

together based on English Spoken Language. Sentence segmentation decision is 

given using decision tree and Hidden Markov Modeling techniques where 

prosodic cues with word-based approaches are combined. Performance is 

evaluated on two speeches which are broadcast news and switchboard, result of 

this it is shown that prosodic model is performed better than the other word-based 

statistical language models for both two speeches. 

 

Differently in “Automatic Speech Recognition System for Turkish Spoken 

Language” [9] research only Prosodic Features are used for deteceting sentence 

boundaries in Turkish broadcast news data. HTK tool is used for application of 

ASR and feature extaction is done with Praat Toolbox [10]. This research shows 

that related to tool’s feature outputs; when F0 features, duration features and 

energy features are used together, system performs the maximum performance. 

Again in differently, adaboost algorithm[12] is applied for improve the scores 

and to get a strong learning algorithm. 

 

In related works as we see mostly lexical and prosodic features are used and 

researches are mostly based on English Spoken Language. But against to others 

in ‘’A Freely Available Morphological Analyzer for Turkish” [7] and "A 

statistical information extraction system for Turkish," [8] researches 

morphological features are used to detect sentence boundaries and both 

researches are based on Turkish Spoken Language however in English Spoken 

Language there is very small number of possible word forms with a given word if 

it is compared with Turkish Spoken Language. To conclude it is seen that 

because of Turkish is a agglutinative type of language, the construction of a 

language model for Turkish Spoken Language can’t be directly adapted from 

English Spoken Language. At the other side Çağrı Çöltekin’s tool against to 

Kemal Oflazer’s tool created before, is the first freely available two-level 

morphological analyzer for Turkish Spoken Language. 
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Above all of these in our work we try to combine all these different approaches 

together. As a solution to sentence segmentation problem which is detected to 

sentence boundaries; prosodic, morphological and lexical features are used 

together. All features are extracted with mathematically modeled language 

models by helping related tools. For reach the highest scores and to get a strong 

learning algorithm, boosting method is used. Lastly our system is based on 

Turkish Spoken Language and also we try to use open source and easy to 

modified for all languages tools. 
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Chapter 3 

 

Automatic Speech Recognition 

 

3.1 Definition 

Automatic Speech Recognition (ASR) can be defined as conversion of spoken word 

in to a text file in basically. This system that allows, machine is identified words 

which comes out from the speaker in to a source device (microphone etc.) and 

transform it to a digital text file. Thus provides communication between human and 

machine and the most important benefit is cost reduction. In present day’s 

technology, machines take place of the human and it obliges machine-human 

relationship. ASR system requires limited time period of speaker training after that 

system is captured words from a large vocabulary with high accuracy. ASR system 

researches has drove for more than 50 years, the goal of ASR is, recognizing doing 

with hundred percent accuracy, for all words, with independent speakers, with 

unknown vocabulary size, with noise and with all type of languages. In our work we 

have focused ASR system for Turkish Spoken Language.   

3.2 Introduction 

We examine speech recognition in two sides. One of them is human side and the 

other of them is machine side. 2 sides are summarized in Figure 3.1. 

At the human side sound waves are produced by vibration by helping articulation. 

Than ears conveys this vibrations in to the brain. Last step brain is processed 

vibration and recognition is completed as shown in Figure 3.2. 

 

 

 



 

7 
 

 

 

Side 1: Human 

Recognition                                                     Synthesis 

 

 

Side 2: Machine 

Generation                                                    Understanding 

 

 

Figure 3.1 Two side communication 

 

                                        

  

                                                       

Figure 3.2 Speech Processing (Human) 
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At the other side machine take the sound waves from outside sources (microphone, 

wav files etc.) than machine digitize the input files and try to estimate words by 

linguistic interpretation as shown in Figure 3.3. 

 

 

 

 

Figure 3.3 Speech Processing (Machine) 

 

3.3 ASR With Turkish Spoken Language 

As we mention before type of language is important detail for ASR system. System 

should be design with characteristic information of language type. All languages has 

own different alphabet and all different alphabets includes different letters. Same 

letters could have different phonemes. In example, Turkish Spoken Language; 

written language and utterance of phonemes orthography is same but in English 

Spoken Language it is opposite. Shortly Turkish Spoken Language is written as 

reading. All sounds and phonemes should be known for design ASR system. Turkish 

Spoken Language Alphabet divides in to two with vowels and consonants as shown 

below in Table 3.1[12] . 

 

 



 

9 
 

TURKISH ALPHABET 

Vowels a-e-ı-i-o-ö-u-ü 

Consonants b-c-ç-d-f-g-ğ-h-j-k-l-m-n-p-r-s-ş-t-v-y-z 

 

Table 3.1 Turkish Alphabet 

 

Classification of the vowels and consonants are shown below in Table 3.2 for the 

Turkish Alphabet [12]. 

 

Vowels 
Unrounded Vowel Rounded Vowel 

Wide Close Wide Close 

Back Vowel a ı o u 

Front Vowel e i ö ü 

 

Table 3.2a Classification of Vowels 

Consonants Fricatives Stops Nasals Semivowels 

Voiced c-j-v-z b-d-g m-n ğ-l-r-y 

Unvoiced ç-f-h-s- ş t-k-p   

 

Table 3.2b Classification of Consonants 

 

The list of Turkish Alphabet related to IPA, ARPAbet, HTK (Hidden Markov 

Toolkit) and Praat, is shown below in Table 3.3 [13]. 
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Alphabet IPA 

Phoneme 

ARPAbet HTK Praat Alphabet IPA 

Phoneme 

ARPAbet HTK Praat 

A /a/ AA a a M /m/ M m m 

B /b/ B b b N /n/,/ɲ/ N. NX n n 

C /dʒ/ JH c c O /o/ OW o o 

Ç /tʃ/ CH C1 C Ö /œ/  O1 O 

D /d/ 

 

D d d P /p/ P p p 

E /e/,/æ/ EH, AE e e R /r/ R r r 

F /f/ 

 

F f f S /s/ S s s 

G /g/ G g g Ş /ʃ/ SH S1 S 

Ğ /ɰ/  G1 G T /t/ T t t 

H /h/ H h h U /u/,/ʊ/ UH u u 

I / ı / 

 

IH I1 I Ü /y/ Y U1 U 

İ /i/ 

 

IY i i V /v/ V v v 

J /ʒ/ ZH j j Y /j/ JH y y 

K /k/ 

 

K k k Z /zh/ ZH z z 

L /l/,/ɬ/ L l l      

 

Table 3.3 Turkish Alphabet Phonetic Symbol List 
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3.4 Start-Up 

ASR system is performed from two main part which as known as acoustic processor 

and linguistic decoder. Acoustic processor performs short-term power spectrum 

which is represented by Mel Frequency Cepstral Coefficients (MFCC). MFCC’s are 

extracted using by HTK HCopy tool. Linguistic decoder is doing pattern 

classification with acoustic model on HMM which patterns coming from acoustic 

processor. In second step it tries to estimate spoken words from dictionary by helping 

N-gram language. At the end of two main part, confidence score is performed for 

confirm the success of estimation. All these steps are shown below in Figure 3.4.  

 

 

           

      

 

 

Figure 3.4 Block diagram of ASR system. 

3.5 Modeling 

 

3.5.1 Hidden Markov Model 

 

3.5.1.1 Bayes Formulation 

The speech vector X is wanted to find in class W with highest probability for 

recognize the spoken word in a sentence. Posteriori probability P(W|X) is needed for 

solve this problem. Classification can be defined as, 

^

arg m ax ( | )
W

W P W X     (3.1) 

By using the Baye’s rule equation 3.1 can be written as, 

( , ) ( | ) ( )
( | )

( ) ( )

P X W P X W P W
P W X

P X P X
    (3.2) 

Speech 

Signal 

Feature 

Extraction 

(MFCC) 

Decoder 

Acoustic 

Model 

Language 

Model 

Estimation, 

Scores 
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Because of P(X) is independent, it can be eliminated equation can be re-written as, 

^

arg m ax ( | ) ( )
A L

w

W P X W P W   (3.3) 

Where ( | )
A

P X W represent acoustic modeling and ( )
L

P W language modeling. 

 

3.5.1.2 Word Modeling 

Left-to-right HMM structure is used for word modeling. A vector sequence 

0 1 ( 1){ , , ... , }
xTX x x x

   

  is defined which belongs to word class W. At each time 

moment 0,1, ..., ( 1)
x

t T   HMM is equivalent to a state 
t

s


 and it will generate a 

vector tx


 with a probability |
t

tp x s



 
 
 

. Than it will make a state transition from 

state 
t

s


 to 
1t

s
 

 with a probability
t

a


 to 
1t

a
 

. Defined vector X


 can thus be 

generated by using state of indices
0 1 ( 1)

{ , , ..., }
xT

   


 .  The initial state probability 

is given 1 for the first state and probability is given 0 for the other state. Related to 

this the generation process starts with state 
0

s  and it continues from left to the right.  

 

 

 

 

 

 

Figure 3.5 Left to right HMM for word recognition. 
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3.5.1.3 Viterbi Algorithm 

Viterbi algorithm is found the best state sequence for maximizes the likelihood of the 

state sequence in observation sequence that is to say find the shortest way for reach 

the goal. 

Hidden state is defined as, 

1 2
( , .... )

n
q q q q              (3.4) 

Observation sequence is defined as, 

1 2
( , .... )

n
o o o o              (3.5) 

Emission probability is defined as, 

 ( ) ( |
ik i k k i

b b b o P o q               (3.6) 

Maximal probability of state sequence is represented by ( )
t

i  where t  is length and 

i  is state. Equation can be performed as, 

 ( ) m ax ( (1), (2), ..., ( 1); (1), (2), ..., ( ) | ( ) )
t i

i P q q q t o o o t q t q              (3.7) 

 is N by T matrix and it is used to retrieve the optimal state sequence from the 

previous step. 

1
( ) 0,  1, ...,i i N                (3.8) 

1
( ) ( (1))

i i
i p b o               (3.9) 

In recursion the most likelihood is found as shown below. 

1
( ) max [ ( ) ] ( ( ))

t i t ij j
j i a b o t 


          (3.10) 

1
( ) arg max [ ( ) ]

t i t ij
j i a


            (3.11) 

The algorithm is found the most probable states however there could be more than 

one. In termination most probability is select from probable states ash shown below. 

*
max [ ( )]

i T
p i            (3.12) 
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*
arg max [ ( )]

T i T
q i            (3.13) 

From final to start path backtracking is expressed as, 

* *

1 1
( ),  where 1, 2, ...,1

T t t
q q t T T

 
              (3.14) 

 

3.5.1.4 Baum-Welch Algorithm 

Baum-Welch algorithm is used for set the HMM’s parameters. Algorithm’s steps are 

summarized as follows; 

 Re-estimation is required for every parameter vector/matrix, storage locations 

are referred to as accumulators. 

 Forward and backward probabilities are calculated for all states ( j ) and times     

( t ). 

 For each states and time, ( )
t

i probability is used, and the current observation 

sequence to update the accumulators for that state. 

 Parameter values are performed by using the final accumulator. 

 All steps are repeated until finding the maximum probability of ( | )P O  .   

 

3.5.2 Acoustic Modeling 

As we mention before in Bayes Formulation, conclusion performed by acoustic 

model equation and language model equation. Acoustic model is an algorithm which 

contains statistical representations of each sound that makes up a word. In English 

language it is enough for work with 40 acoustic-phonetic models but in Turkish 

Spoken Language which we are working on, only 29 acoustic-phonetic models are 

enough because written language and utterance of phonemes orthography is same in 

Turkish Language. This statistical representation expressed with helping by HMM. 

Acoustic model equation is expressed in equation 3.3. 

    1 2 1 2
( | ) , , ..., | , , ...,

A A T T
P X W P X X X W W W          (3.15) 
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If assumptions are done as below, 

 t   is lined up with word model i  

 HMM model affirm by j  

 Independent 

 Each 
T

X  response to 
i

j
w  

Equation 3.4 can be re-write as below; 

 
1

( | ) |

T

i

A A T j

t

P X W P X w



           (3.16) 

Each phonetic unit modeled with a mixture of Gaussians; 

   
1

| ,

K

j T jk T jk jk

k

b X c N X U


           (3.17) 

Where  j T
b X  represents to mixture of Gaussian normal densities, k   represents to 

the number of mixture components in the density function , 
jk

c  represents to the 

weight of the mixture component in state j with corresponds to k , N represents to 

Gaussian density function, 
jk

  represents to mean of Gaussian density function 

corresponds to j k  and 
jk

U  represents to covariance of Gaussian density function 

corresponds to j k . In dictionary all words can be defined as mono-phones or tri-

phones. In example for “amerika” word; mono-phones are expressed “a-m-e-r-i-k-a” 

and tri-phones are expressed “ame-mer-eri-rik-ika”. 

 

3.5.3 Language Modeling 

The second conclude equation of Bayes Formulation is language modeling. 

Language model is an algorithm which contains word sequences and their 

probabilities. Word sequence can be expressed as: 

1 2
, , ...,

n
W w w w                      (3.18) 

And language model equation which is expressed in equation 3.3 can be re-write as; 
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     1 2 1 3 1 2
( ) | | .....

L n
P W P W P W W P W W W         (3.19) 

  2 1
( | )

L n n n n
P W P W W W

 
           (3.20) 

 It is not cost effective to doing estimation for large terms. Equation could become 

effective with using N-gram model. (Eq. 3.21) 

1 2 1 1 1
( | .... ) ( | ... )

n n n k n n
P W W W W P W W W

   
         (3.21) 

When chain rule is applied into equation 3.10, 

 1 2 1

1

( ) | ...

n

L i i i i k

i

P W P W W W W
   



          (3.22) 

 

3.6 Hidden Markov Toolkit  

 

3.6.1 Introduction 

Hidden Markov Toolkit [15] which is based on Hidden Markov Model, is used for 

recognize the speech. In our work, HTK Turkish speech recognition system which is 

reconfigured in Boğazici University, is used. HTK toolkit is build up on two main 

base; training tools and recognizer. Firstly training tools are estimated mathematical 

parameters with respect to HMM and secondly unknown utterances are transcribed 

with helping recognizer. 

HTK toolkit performed with own tools and these tools are build up with 4 main 

processing steps; data preparation, training, testing and analysis. 
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Figure 3.6 Flow diagram of HTK processes. 
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3.6.2 Data Preparation 

Process starts with data preparation. An audio file (speech data) and their 

transcriptions are needed for the input, if you haven’t, you can record it with HSLab. 

And this speech data is needed to be converted in correct form with phone or word 

labels. HCopy is a tool for parameterizing the data which is used for extracting 

MFCC of the speech signal too. This parameterized data could be seen with HList 

tool and data could be designed to make the required transformations with a label 

editor tool HLed which could construct the Master Label Files too. Last step in data 

preparation, statistics on label files are displayed with HLStats tool and VQ 

codebook is built with HQuant tool. Now we are ready for the next step of the 

process. 

 

3.6.3 Training 

HTK works with HMMs for built the desired topology. In this second step of the 

process, phone models are built. An initial set of models are extracted with HInit tool 

than further re-estimation doing for isolated words with HRest tool. Utterance’s (i.e 

phone) locations are labeled for used as bootstrap data. Initial set of parameter 

values are computed with segmental k-means procedure than mean and variance is 

computed. In the initial estimation parameters are defined by using Viterbi 

alignments than in re-estimation stage which is performed by HRest tool, Baum-

Welch algorithm is used. When there is no bootstrap data, initialization done by 

HCompV tool. With initial set of models are created, HERest tool is performed for 

embedded training. Baum-Welch and forward-backward algorithms are used in this 

tool, in summary this tool is the heart of training process. As we mention before 

HMMs are used, HHEd tool is an editor for change the HMM parameters of system. 
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Figure 3.7 Flow diagram of training process. 

3.6.4 Testing 

HVite tool which is allow recognition by applying language model into speech data. 

It uses Viterbi algorithm. HVite takes as input word sequence, dictionary with 

pronunciation and set of HMMs. All this needs are completed in previous steps with 

helping BUSIM for Turkish Language. At the output tool is obtained phoneme based 

and word based labeled segment time marks for the spoken data, than this output will 

be used for prosodic feature extraction which will explain in next chapters. 

3.6.5 Analysis 

HTK processes are completed with measuring performance of the system. By 

helping HResults tool, recognized words from the HTK tool are compared with given 

manually wrote text input file. Success of system is appeared.  
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Chapter 4 

 

Prosodic Features 

 

4.1 Definition 

With the application of ASR system into an audio file, speech is converted into a text 

file by the way pitch patterns and time scales are lost as mentioned before. These lost 

patterns are called prosody. It carries structural, semantic and functional information. 

Output of ASR is a text file and this file includes only words, there isn’t any 

sentences boundary, capitalization, punctuation, headers or paragraphs. Prosodic 

features along with to solve these problems. Prosodic feature includes pausing, pitch 

and amplitude change difference, global pitch declination, melody, boundary tone 

distribution and speaking rate variation. However prosodic features are irresponsive 

from the word’s meanings and ASR; according to this, system get better performance 

with no additional training data. Thus, performance gains can be evaluated quickly 

and cheaply, without requiring additional infrastructure [5].  

4.2 Features 

There are three main types of features such as basic features, statistical features and 

derived features. 

4.2.1 Basic Features 

Basic feature includes four types of feature. These features are; 

-Base Features 

-Duration Features 

-F0 Features 
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-Energy Features 

4.2.1.1 Base Features 

Base features are included only the basic information of audio file such as location, 

gender and identity. 

4.2.1.2 Duration Features 

Duration features are the basic type of prosodic features. It examines inter-words 

according to pauses and durations of phones and rhymes. Pause features are passing 

time between two boundaries word in second as shown in Figure 4.1. Furthermore 

this features also using for to detect semantic information. The other side phone and 

rhyme duration features are phone duration which is in previous rhyme of a word. 

However this features using for to detect semantic information too. Word duration, 

following word duration, last time rhyme duration and last phoneme duration are 

given example for the duration features. 

                                                                                                                                                                                 

    

 ali    topu    at    (pause)    ali    topu    tut    (pause) 

        200ms            200ms    200ms                    200ms     200ms             200ms     200ms 

Figure 4.1 Sentence Boundaries 

4.2.1.3 F0 Features 

F0 Features are more difficult to model than the other prosodic features. It is related 

with pitch information where pitch includes highness or lowness tone. This is largely 

attributable a variability in the way pitch is used across speakers and speaking 

contexts, complexity in representing pitch patterns, segmental effects and pitch 

tracking discontinuities (such as doubling errors and pitch halving, the latter of which 

is also associated with non-model voicing.). F0 obtained by using get_f0 and 

fundamental frequency estimated by using autocorrelation. Output of this operation, 

two main noises are produced. Probability of halving and doubling are estimated by a 

lognormal tied mixture model (LTM). Then median filter is applied for smoothing to 

Sentence Boundary                                                     Sentence Boundary                                                     
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the two main noises. At the last step F0 is stylized using greedy algorithm which 

detects discontinuities by mean square error method and features are completed by 

compute the slopes. Minimum style fit F0, maximum style fit F0 and mean style fit F0 

are given example for F0 features. Feature extraction is summarized in Figure 4.2. 

 

  

 

  

 

Figure 4.2 Extractions of F0 Features 

 

4.2.1.4 Energy Features 

Energy features are extracted with energy calculations from each word. Minimum 

energy, maximum energy, minimum next energy and maximum next energy are 

given example for energy features. 

4.2.2 Statistical Features 

These features are not output of the tool. But these features are performed by 

computation of original features like mean and deviation operations. 

4.2.3 Derived Features 

Derived features are formed by using basic features (duration features, F0 features 

and energy features) and statistical features. Derived features can be computed by 

using two basic features or using computed statistics. Normalized word duration, 

normalized pause, normalized vowel duration, normalized rhyme duration, F0 derived 

features, average phone duration and speaker specific normalization are type of 

derived feature. 
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4.3 Prosodic Feature Extraction 

 

4.3.1 Basic Information 

The Purdue Prosodic Feature Extraction tool [10] which based on Praat, is used for 

prosodic feature extraction. The prosodic features are extracted directly from the 

speech signal given its time alignments to a human generated transcription or to 

automatic speech recognition (ASR) output. All types of prosodic features are detail 

explained in Appendix A which features are extracted again in using Praat and also 

scripts for ‘’Computing Global Statistics & Extraction Prosodic Features’’ expressed 

in Appendix B. All steps of extraction as shown in Figure 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 All Steps of Prosodic Feature Extraction 
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Using output of feature extraction which is shown in Figure 4.3 before, types of 

features can be computed as shown in Table 4.1. 

 

 

 

 

 

 

 

                 Table 4.1 Output of Feature Extraction and Feature Types Relationships. 

 

Tool needs three input files for realizing feature extraction. Such input files are audio 

file (WAV or AIFF) and phone-word alignments corresponding to audio file. Phone 

alignments and word alignments should be rearranged for convert in Praat format 

(.textgrid). Audio waveform corresponding to phone alignments and word 

alignments are shown in Figure 4.4. ‘’.textgrid’’ praat format for phone and word are 

shown in Table 4.1. 

 

Figure 4.4 Audio waveform corresponding to phone and word alignments. 

 Duration Features F0 Features Energy Features 

Word + + + 

Phone + - - 

Vowel + - - 

Rhyme + - - 

VUV - + - 

Raw Pitch - + - 

Stylized Pitch - + - 

Pitch Slope - + - 

Raw Energy - - + 

Stylized Energy - - + 

Energy Slope - - + 
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Table 4.2 ‘’word.textgrid’’ and ‘’phone.textgrid’’ praat format corresponding to 

figure 4.3 interval. 
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Additionally wav information list is prepared for labeling speakers which is also 

using for extraction ‘’Base Features’’. List is shown in Table 4.3. 

 

SESSION SPEAKER GENDER LOCATION 

Demo_1 Speaker 1 Male  ../demo/data/demo_1.wav 

Demo_2 Speaker 2 Female ../demo/data/demo_2.wav 

Demo_3 Speaker 3 Female ../demo/data/demo_3.wav 

Demo_4 Speaker 4 Male ../demo/data/demo_4.wav 

 

Table 4.3 Wav Information List 

 

4.3.2 Structure Of The Prosodic Feature Extraction Tool 

Structure is comprised from two main parts. One of them is called ‘’ Global Statistics 

Computation’’. This part put efforts for computation basic features (see section 

4.2.1) and statistical features (see section 4.2.2). Other part is called ‘’ Feature 

Extraction’’. This part is extracted prosodic features using basic features and 

statistical features. (see section 4.2.3). Flow diagram of Praat prosodic feature 

extraction tool is shown in Figure 4.5. 

4.3.3 Software Usage (Praat) 

As an input, the wav file and corresponding word and phone aligned files (shown in 

Figure 4.4) are loaded into the workspace (Example; ‘’demo/work_dir/”). Also for 

the general information ‘’Wav Information List” table (shown in Table 4.3) should 

be prepared which respect to input files. For the easy to use, user interface could be 

used or program could be run from command windows too.  Steps to run program 

correctly could be seen from Table 4.4 both global statistic computation and prosodic 

feature extraction in Praat. 
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Figure 4.5 Praat Prosodic Feature Extraction Toolbox Flow Diagram 
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Global Statistics Computation  

Enter the code. 

praatstats_batch.praat ../demo-wavinfo_list.txt ../demo/work_dir yes  

1. Run Praat. 

2. Praat Objects / Read / Read from file / select_stats_batch.praat 

3. Click Run on Script Editor. 

4. Type ../demo-wavinfo_list.txt and ../demo/work_dir into the boxes and click 

yes if you want to use existing parameter files, no to generate parameter files 

from the beginning.  

5. Click OK. 

6. Process is displayed in the Praat Info Window. 

Prosodic Feature Extraction 

Enter the code, 

praatmain_batch.praat ../demo-wavinfo_list.txt 

user_pf_name_table.Tab\ ../demo/work_dir/stats_files 

../demo/work_dir yes 

1. Run Praat. 

2. Praat Objects / Read / Read from file / select main_batch.praat 

3. Click Run on Script Editor. 

4. Type ../demo-wavinfo_list.txt and ../demo/work_dir into the boxes and click 

yes if you want to use existing parameter files, no to generate parameter files 

from the beginning.  

5. Click OK. 

6. Process is displayed in the Praat Info Window. 

 

Table 4.4 Usage of Praat[10] 
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Extracted prosodic features could be found at the following directory. 

“workspace/pf_files/” by using any word processors. Because of the table is 

performed from rows and columns, Microsoft Office Excel word processor is best for 

analyzing prosodic features in correct lines for the given word. Table 4.5 shows an 

example for output of Praat. As we mention before all Prosodic Features and their 

detail explanation is appear in appendix A.  

 

WORD WAV SPKR_ID GEN WORD_START 
FEATURE 

NAMES 

LAST 

FEATURE 

Word 1 Location ID GENDER FEATURE FEATURE FEATURE 

Word 2 Location ID GENDER FEATURE FEATURE FEATURE 

Word 3 Location ID GENDER FEATURE FEATURE FEATURE 

…
…

.. 

…
…

.. 

…
…

.. 

…
…

.. 

…
…

.. 

…
…

.. 

…
…

.. 

 

Table 4.5 Output of Praat 
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Chapter 5 

 

Morphological Features 

 

5.1 Definition 

Every language has own information and every language is encode own information 

by own words also own letters. Morphology studies with how they encode this 

information by the words, in addition it studies with structure of the words. Words 

are performed by small units come together.  Smallest unit which includes linguistic 

information called morphemes and they are consisted from phonemes. Morphemes 

are classified into two groups; free morphemes and bound morphemes. Free 

morphemes are performed words by themselves. In example; play, stop etc. Bound 

morphemes are not performed words by themselves but they attached to free 

morphemes for performed a new word. In example; +ed, +ness etc.  Turkish Spoken 

Language which we are studying on, is get in to Agglutinative type of languages. In 

agglutinative type of languages, bound morphemes are attached one or more free 

morphemes for performed a new word. Nouns, pronouns, participles and infinitives 

are nominal morphological features, these features are effect the new words because 

of number (one or more) and cases. Again verb marker morphological features effect 

the new words because of voice (Active or passive), polarity (Negative or positive), 

tense, aspect, possessor (Singular or plural; 1,2,3) and modality. 

 

                                                                         Continuous, Past, 1|single (I was coming.)  

 

Figure 5.1 Agglutinative Type Of Language Example. 

 

gel iyor du m 
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5.2 Morphological Processes 

Morphological processes are examined in 3 groups as shown below; 

-Inflectional morphology 

-Derivational morphology 

-Compounding morphology 

5.2.1 Inflectional Morphology 

Inflection morphology is modified the word because of tense, gender, number, aspect 

or word contains both free morpheme and bound morpheme. 

 Subject-verb agreement, tense, aspect; 

Gel-iyor-um.=>Continous-1|Single – I am coming. 

Gel-iyor-sun.=>Continous-2|Single -  You are coming. 

Gel-iyor.=>Continous-3|Single - He/She/It is coming. 

Gel-iyor-uz.=>Continous-1|Plural – We are coming. 

Gel-iyor-sunuz.=>Continous-2|Plural – They are coming. 

Gel-iyor-lar.=>Continous-3|Plural – They are coming. 

 Constituent function; 

Okula-a gittim.- I went to the school. 

Okul-u gördüm. – I saw the school. 

Okul-dan nefret ettim. – I hated from the school. 

Okul-da kaldɩm.- I stayed at the school. 

 Number, case, possession, gender, noun-class for nouns; 

Okul-lar-ɩmɩz-dan. – From our schools. 
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 Gender/Case (Respect to artikel, there is not any example in Turkish) ; 

Hamburg ist eine schön-e (die)stadt. – Hamburg is a beautiful city. 

5.2.2 Derivational Morphology 

Derivation morphology performs a new word with addition phonemes to free 

morphemes, the new word derived from the existing word. Productive derivational 

morphology is applied in to almost of vocabulary and unproductive derivational 

morphology is applied in to only few words of vocabulary. 

Büyük (Big, Adj.) => Büyük-lük (Size, Noun) 

Git (Go, Verb) => gid+er+ken (While going, Adverb) 

5.2.3 Compounding 

Compounding morphology performs a new word with addition of two or more free 

morphemes. New words usually perform with 2 nouns come together. There will be 

phonemes between two free morphemes in compounding. 

Bilgi+sayar (Information; Noun , Counter; Noun) => Computer; Noun 

 

5.3 Combining Morphemes 

There’s a lot of way for make up a new word when combining morphemes. Bound 

morphemes could be inserted among of free morpheme, head of free morpheme, end 

of free morpheme or both head and end of free morpheme when combining 

morphemes. Effect of this there could be some phoneme changes at boundary. 

Related with this new word could be performed with duplicate the words or without 

additional any boundary. Types of combining morphemes are as shown in table 5.1. 
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Concatenative Combination (Prefixation) ir+rasyonel 

Concatenative Combination (Suffixation) elçi+lik  

Concatenative Combination şarap=>şarab+ɩ 

Concatenative Combination burun=>burn+u 

Infixation (There is not any example in Turkish) fikas=>fumikas 

Circumfixation (There is not any example in Turkish) sagen=>gesagt 

Reduplication ma+s+mavi 

Zero Morphology yüz (noun)=>yüz (Verb) 

 

Table 5.1 Types of Combining Morphemes 

 

5.4 Morphological Feature Extraction 

 

5.4.1 Basic Information 

According to our aim all type of features are extracted from open source tools such 

as TRmorph feature extraction tool which is used for morphological feature 

extraction. TRmorph tool [7] is a fairly complete and accurate two level 

morphological analyzer for Turkish Spoken Language which is found by Çağrɩ 

Çöltekin from University of Groningen. The tool implemented using finite stated 

transducers (FSTs) like the all other morphological tools, especially Stuttgart finite 

state transducer tool (SFST) is used. SFST is used because of tool set particularly 

aimed for implementing morphological analyzers with open source. We used updated 

version of this tool which is implemented with more popular finites state description 

languages lexc and xfst from Xerox (Beesley and Karttunen 2003), using Foma 

(Hulden 2009) [23] as the main development tool. But it doesn’t mean tool could 

implement with only this compiler (Foma), system could implement with any lexc 

and xfst compiler without additional effort. Because of the tool is aimed for usage of 

developers, every user could customize any settings easily with respect to given 

instructions on user manual [36]. Tool is as allowed to add or modify the lexical 

entries and it could use for different subjects such as sentence segmentation, spell 

checking, toping segmentation or etc.  If we want summarized tool in short; system is 

taken input Turkish spoken word and output of the tool is morphologic analyzed. 
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5.4.2 Structure Of The Morphological Feature Extraction Tool 

Morphological computation could be done in two deals. Computational synthesis 

produce the word from given a set constituent morphemes or information be 

encoded. And secondly, computational analysis which we study on, separate and 

identify the constituent morphemes and mark the information they encode from the 

given word. Morphological analyzer is took given word as an input and try to find it 

in memory. The box which we called Data is included the all lexicons for Turkish 

spoken language which information included is specific for all languages. Lexicons 

are structured collection of all the morphemes which are root words (free 

morphemes) and morphemes (bound morphemes). At the second step, the box which 

we called Engine and it is language independent, takes information from Data. As an 

end, Engine separates given word (input) in to root words and morphemes. 

Summarized of the all these steps as shown in figure 5.2. 

 

 

 

 

 

 

 

 

Figure 5.2 Structure of the Morphological Feature Extraction Tool. 

 

5.4.3 Dictionary 

As we guess list of all the words in studied language should be given in to dictionary 

but words format is important for tool works correctly and done analyzing with high 

accuracy. Root words which are subset of lexicons, should be incorporate with 

gidiyorum 

Word 

Data   

(language 

Specific) 

Engine 

(Language 

Independent) 

git<V><cont><1s> 

Analyses 

Morphological Analyzer 



35 
 

specific information if available. Specific information is not available in Turkish 

spoken language but in some languages which are using articles, such as gender, 

animateness or etc. information could affect the word as we mention previous 

sections. And also in addition a list of morphemes along with the morphological 

information and features should be added. These are plural morphemes, verb 

morphemes and personality morphemes.  

All words should be included both lexical form and surface form. Lexical form is 

underlying representation of morphemes with all morphographemic (morphological 

model) changes are applied and surface form is actual written form of the word. 

Consistent representation of the word should be known too because according to 

specific language rules, same word could be different in lexical form and surface 

form. However some tags are used in TRmorph analyses which aren’t necessarily 

match with any of the tags used in any grammer books. These tags are allowed to 

easy access to the points. In the same time these tags could be defined as 

classification which respect to Turkish spoken language’s specific rules. These tags 

are represented with capital letters and as shown below table 5.2 with lexical-surface 

form examples. 

 

Tags Surface Form Lexical Form 

A={a,e} Okul+lAr Okullar 

I={ı,i,u,ü} Okul+lI Okullu 

D={d,t} Okul+DA Okulda 

P={p,b} Kitap+PI Kitabı 

K={k,ğ,y} Bɩçak+KI Bıçağı 

 

Table 5.2 Tags 
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Structure of morphology especially in Turkish spoken language is ambiguous. Same 

word could be both noun and verb and because of surface form of the words are 

represented with the tags there could be same written words but without the same 

meaning. We could generate a lot of situations for ambiguity. Implementation could 

be done with three approaches; list all word-forms as a database, heuristic/Rule-

based affix-stripping and finite state approaches which we’ll study on. 

5.4.4 Approach 

Along with the system could be generated in mathematical model, computation done 

with high accuracy and provide representation towards to system needs; Finite state 

approach [21] is used in morphological extraction tool. 

5.4.4.1 Finite State Approach 

Alphabet (A) of the language is a finite set and alphabet could be represent as a 

subset of all words and all sentence in language (L) which could have meaning in 

this type of language. But if we generate a set from Alphabet with all combination of 

the characters (A*) that include in alphabet with meaningless, now this set become 

superset of set L. A* is an infinite set and that the aim is limit the set for generate a 

finite set. Because you couldn’t generate an infinite dictionary set thereby you 

couldn’t match any word in dictionary set. 

 

   

 

 

 

 

 

Figure 5.3 Limiting dictionary set.
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Now our language is become a regular form so we could continue with Finite State 

Recognizer. M represent abstract machine for regular languages, it is also accepted 

as L is subset of A*. System starting in state q0, M proceeds by looking at each 

symbol in w and it is end up in one of the final states when the string w is exhausted.  

 0
, , , ,M Q A q N ext F inal             (5.1) 

Where, 

 

 

 

 

 

 

 

 

 

 

 

            

 

0 1

0 0 0 1 1 1 1 0

0

,

,

, , , , , , , , , , ,

A a b

Q q q

N ext q b q q a q q b q q a q

Final q









 

Figure 5.4 Finite State Recognizer Approach 

 

There are only three conditions for applying finite state recognizer approach. These 

are finite states, finite alphabet (letters) and finite transition. All the information 

should be included in recognizer in finite condition. An example is as shown below. 

 

0

:   

:

:  

:    

:  

Q Set of states

A Alphabet

q Initial State

N ext N ext state function Q A

Final Final State



q0 q1 

a 

 

a 

 

b 

 

b 
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Ok, Okul, Okuyorum, Okudum, Okumuş….. 

 

Figure 5.5 Finite State Recognizer Approach Example 

5.4.4.2 Two-Level Description 

Kimmo Koskenniemi thought multiple rules could be applied in parallel too. In those 

days multiple rules are applied with cascade in sequence. He called this new way to 

describe phonological alternations in finite state terms “Two-Level Morphology”. 

Two-level morphology is based on three ideas. Firstly rules are applied in parallel, 

secondly constraint could refer to lexical form and surface form both at the same 

time and thirdly lexical lookup and morphological analysis are performed in tandem. 

Towards all of this information, system should include specific rule which type of 

language is chosen. The set of possible lexical and surface symbol correspondences 

with respect to rule is represented by feasible pairs as shown below.  

 

      

Table 5.3 Feasible Pairs 

Lexical Form Kitab0ı 

Surface Form Kitap+ı 

Feasible Pair {k:k, i:i, t:t, a:a, b:p, 0:+, ı: ı } 
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The phonotics rules of contemporary Turkish have been encoded using 22 two-level 

rules while the morphotatics of the agglutinative word structures has been encoded as 

finite-state machines for verbal, nominal paradigms [18]. Turkish lexicons are 

performed for nouns, adjectives, verbs, compound nouns, proper nouns, pronouns, 

adverbs, connectives, exclamations, postpositions, acronyms, technical words, and 

special cases. In Turkish there are 18500 nominal roots which is include adjectives 

and nouns, 2450 verbal roots and 100 lexicons for suffixes.   

Each rule helps to word for convert lexical form to surface form. Every word gets 

through from all rules which are operated in parallel and checks independently. Rules 

and feasible pairs are support themselves for create the output in surface form. Rules 

are applied letter by letter in each recognizer, sees that same pair of letter. Two-Level 

Morphology architecture for Turkish Spoken Language is as shown below. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Two-Level Morphology Architecture for Turkish Spoken Language 
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Surface Form 

R1 R2 R3 R22 
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5.4.5 Software Usage (TRmorph) 

TRmorph which is an open source tool, could be download from google.code.com 

freely. To compile TRmorph from the source, a lexc and xfst compiler is needed.  

We used foma compiler which is an open-source tool too, and again it could be 

download from google.code.com. It has similar interface with Xerox xfst and the 

reason for choosing foma compiler is support most of the commands and the regular 

expression syntax in Xerox xfst. Libreadline-dev and zliblg-dev packages are needed 

for foma compiler and that could be downloaded with apt-get command in Linux.  

After all applications towards necessary needs are installed, system is ready with 

default options. All these options could be customized from options.h file which is 

included in system files. System is started with foma command and then trmorph.fst 

main file which could customize too, is import. Than morphologic feature extraction 

could be done with up command. An example of TRmorph with morphological 

feature extraction is shown below. 

 

>>cd TRmorph-master/                                               

>>foma                                                                

>>foma[0]:regex @”trmorph.fst”;                              

>>foma[1]:up okuyorum                                            

oku<V><cont><1s>                                                                       

Table 5.4 Usage of TRmoprh  
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Chapter 6 

 

Lexical Features 

 

6.1 Definition 

Lexical features are corresponding with word of a language. N-gram method is 

applied for extraction of lexical features. N-grams are an idea of word prediction 

with respect to probabilistic mathematically models which could predict the next 

word from the previous words. Such of these statistical models related to word 

sequences are also called language models (LMs). So if we summarized, we are used 

N-gram method which is a probabilistic language model for predicting the next label. 

This probabilistic model is based on Markov model like all the other probabilistic 

models. Our goal is to compute probability of a word with given previous word 

information.  Also that model has applications on probability, communication theory, 

computation linguistic or biology and data compression. 

 

6.2 Modeling 

The main problem is predicted the next word label with given history.  We could 

write probabilistic equation such as; 

 |  p w ord history              (6.1) 

Words are a sequence such as 
1 2
, , ...,

n
w w w  and history is symbolized with

1n
w


. 

Using chain rule of probability equation could be re-written; 

           2 1 1

1 1 2 1 3 1 1 1

1

| | ... | |

n

n n k

n k

k

P w P w P w w P w w P w w P w w
 



        (6.2) 
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The chain rule is gave the connection between computing the joint probability of 

current word and conditional probability of given previous word. Languages which 

are covered the word sequence, are very long sets and computation of equation 6.2 

becomes impossible. 

Especially, we are used not all of the N-grams which are goes to infinite. So Markov 

assumption which is the probability of a word depends only on the probability of a 

limited history (finite), is done for compute this equation. Now we could generalize 

the bigram which works with only one word into past to trigram which works with 

two words into the past such as; 

   
1 1

1

|  

n

n

k k

k

P w P w w




                         (6.3) 

1-gram, Unigram  n
p x  

2-gram, Bigram  1
|

n n
p x x


 

3-gram, Trigram  2 1
| ,

n n n
p x x x

 
 

 

Table 6.1 N-grams 

 

6.3 N-gram Usage 

As we mention in previous section, N-gram is a sequence of terms, with the length of 

N and it goes to infinite. But the system should be finite and until the trigram is 

enough for get the correct lexical features. 1-gram sequences are called unigrams, 2-

gram sequences are called bigrams, 3-gram sequences are called trigram etc. Word 

boundary of interest as called ‘’current’’ and the following word boundaries called 

‘’previous’’ and ‘’next’’. Six lexical features are expressed when these 3 n-gram 

types using together; 

In other words we could re-write table according to N-gram rule with basically for 

easy to understand; 

 



43 
 

 Unigrams:{previous}, {current}, {next} 

 Bigrams:{current-next}, {previous-current} 

 Trigrams:{previous-current-next} 

Model could be applied for both word with respect to letters or sentences with 

respect to words. In example for the word ‘’Alfabe’’ would be composed of 

following N-grams; 

1-gram sequence 2-gram sequence 3-gram sequence 

Unigram Bigram Trigram 

space ,A,L A-L, space-A  space-A-L 

        

Table 6.2a N-gram Example (Word) 

 

In example for the sentence ‘’Ali topu at’’ would be composed of following N-

grams; 

1-gram sequence 2-gram sequence 3-gram sequence 

Unigram Bigram Trigram 

 space,Ali,topu Ali-topu, space-Ali  space-Ali-topu 

 

Table 6.2b N-gram Example (Sentence) 

 

When three n-gram sequences applied in to the word together, 

{space}  , {A}  , {L} , {A-L} , {space-A} , {space-A-L} 

When three n-gram sequences applied in to the sentence together, 

{space}  , {Ali} , {topu} , {Ali-topu} , {space-Ali} , {space-Ali-topu} 

As it seen 6 features are expressed with unigram, bigram and trigram using together. 
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Chapter 7 

 

Sentence Segmentation 

 

7.1 Introduction 

As we mention before output of the speech recognition system (ASR) doesn’t give 

any information about the sentence boundary, the output of the system is just 

utterance of the words. If there isn’t information about sentence boundary, text file 

become nonsense and it’s hard to understand and reading emphasis for long 

messages or sentences. In addition punctuations helps to spread emotions, give 

information about structure of sentence and intonation. However according to 

language type, some word’s meaning or sentence’s meaning could be change with 

respect to punctuations. For instance two examples below include and not include 

punctuations (sentence boundary information) for Turkish spoken language. 

Sentence Meaning 

Ihtiyar (s) adamı eve götürdü. Old man took him/her to the home 

Ihtiyar  adamı eve götürdü. He/She took old man to the home. 

 

Table 7.1 Sentence Boundary 

Sentence segmentation is a subject for automatically divide input text into 

meaningful grammatical sentences. The way for this is labeling the boundaries in text 

file. In the previous chapters we mention about prosodic features, lexical features and 

morphologic features. These features help us to give a decision about the boundaries 

in text file. In sentence segmentation, the main problem is classified boundaries into 

two classes; 
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 Sentence Boundaries 

 Non-sentence Boundaries 

 

 

 

 

        

Figure 7.1 Classifications 

 

7.2 Approach 

The main problem could reduce such as a boundary classification problem. Suppose 

that we have N times words, boundaries and features. The goal is try to estimate of 

classification word between n
W

 and 1n
W

 . A posterior probability is needed for find 

the boundary segmentation with highest probability given the information which is 

word. 

arg max ( | )
B

P B W             (7.1) 

Where, 

ij

     

    1, ...,                            R ep resents w ord sequence.

f      1, ...,  and j 1, ...,   R epresents fea ture sets.

     1, ...,                           R ep resents w ord boundaries.

i

i

i

w i N

i N M

b i N

y



 



 
1, ...,  and 1, 1     R epresent logaritm ic operation. If 1,  it is a sentence 

                                                boundary ( ), if else 1,  it is no t a sentence boundary ( ).

i N

s n

     

 

 

For each word, posterior probability is again computed and compared either it is a 

sentence boundary or not. Probability equation can be re-written in sequence format 

which formula can be apply all word sequence inside; 

Words 

Not Sentence 

Boundary 

Not Sentence 

Boundary 
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|                                                                                                                 (7.2)

 (  ),                   P 1 | P 1 |           

i i i

i i i i i

P b y f

b s Sentence boundary if b f b f



     

   

          (7.3)

 (   ),          P 1 | P 1 |                      (7.4)
i i i i i

b n N ot Sentence boundary if b f b f     

 

7.2.1 Learning Algorithms 

We mention about some approach in previous section, we have a data without 

information about sentence boundaries and our aim is to automatically label all this 

data for the each word; is it sentence boundary or not. Initially breaks should be 

found in sentences which we could decide all words as a break and secondly it 

should be decided for s or n. Hence it becomes a classification problem and helping 

by feature information, this classification should be done with high accuracy. 

There are three different learning algorithms such as supervised, unsupervised and 

semi-supervised learning algorithms. Supervised learning algorithm needs as a whole 

labeled data for training a model and unsupervised learning algorithm is thoroughly 

opposite with supervised learning algorithm which doesn’t need any labeled data for 

training a model. Because of our aim is to obtain high accuracy with cost effectivity, 

semi-supervised learning algorithm is chosen which, needs little labeled data in a 

large amount of unlabeled data set for training a model. 

7.2.1.1 Data Subsets  

Whole data set is divided into three sets for generate; training, development and test 

sets. These sets are need for training a model and which sets are optimized - 

computing the scores for measure the success of trained model. 

All of these 3 set are prepared for different purposes. Training set is prepared for to 

optimize the parameters, development set is prepared for the finding the optimum 

iteration number which is used to perform optimized model and test set is used to 

measure final score.  

According to our goal, classification should be done respect to speakers, words and 

features. We have P times different speaker, N times different words and M times 

different features. Initially we started to dividing data set with divide data sets into 
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subset with respect to P speakers, then for each subset we performed training, 

development and test set pairs. Training, development and test sets must be 

performed identically and without change order of the words. For improve the 

system K-Fold Cross-Validation method which is one method of Cross-Validation 

technique, could be used. In this method all data set divide into K subsets. i
X

 is 

selected as development set i
D

 where 
 ,

i i i
X f y

 and 1, ...,i K also the rest of 

sets are used for training set i
T

. 

 

 

 

Figure 7.2 Data Sets 

7.2.1.2 Self-Training and Baseline 

There are several ways that aim to improve the performance of semi-supervised 

learning algorithm by incorporating large amounts of unlabeled data into the training 

data set. Self-training method is one of from this methods, it is defined as a single-

view weakly supervised algorithm [35]. It is considered us a single view and also it is 

provided us to only one single model. In this method again optimum iteration 

number is found by the development data set and test data set is measured the score, 

after that system is retrained but this time some particular hypothesis data pick up 

from test data and it is add in to training set. Now training set is included mixture of 

manually labeled and hypothesis labeled data thus training set is became more stable. 

This circle or we can say loop, is continued until the reach threshold value which is 

shown in equation 7.5. 

By the way baseline is represented the basic semi-supervised trained model and we’ll 

use it after to compare results between self-trained model. In this model according to 

we mention in previous section, development data set is used for find the optimum 

iteration number, test data set is measured the scores and model is trained only one 

time. 

 

Training 

Data Set 

Development 

Data Set 

Test      

Data Set 

Whole Data Set 
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                                                                Stop Point q :  100N A                                 (7.5) 

Figure 7.3 Self-Trained Model 

 

 

 

 

 

 

 

 

 

Figure 7.4 Baseline Model 
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7.2.2 Adaboost Algorithm 

Boosting is an approach to machine learning based on the idea of creating a highly 

accurate prediction rule by combining many relatively weak and inaccurate rules and  

the AdaBoost algorithm of Freund-Schapire  was the first practical boosting 

algorithm, and remains one of the most widely used and studied, with applications in 

numerous fields [11]. Main idea is improve performance of learning algorithms, it 

works combine with output of other weak learning algorithms and also it is 

compatible with C, python and java against the other boosting algorithms. 

 

Weak learner algorithms for any distribution they can find a classifier with 

generalization error better than random guessing. According to researches weak 

learners are classified the data correctly at better than fifty percent. But if boosting 

algorithm is used, training data could be classified with nearly hundred percent 

accurate. Adaboost algorithm is focused on difficult data points which have been 

misclassified most by the previous weak classifier and it combine all these weak 

classifiers with use an optimally weighted majority vote of weak classifier. 

Algorithm shown as below; 
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Table 7.2 Adaboost Algorithm 

Result of the finally strong classifier as shown in equation 7.6 two types of errors are 

occurred such as training error and generalization error. In the experiments while 

iteration number is increasing, train error is decreased until the reach optimum 

iteration. When optimum iteration is found train error becomes always zero. The 

training error of final classifier defined as; 

 
2 2

2 1 1 4 exp 2  
t t t t t

tt t t

Z    
 

        
 

               (7.7) 

Again in the experiments while iterations number is increasing, same numbers of 

weak classifier are combined. After optimum iteration is found, some weak 

classifiers are combined more than the others and system is became complex. Hence 

the test error in other words generalization error stars to increase. In other words 

generalization error is the expected test error which could be defined as in terms of 

training error where m is the size of the sample, the VC-dimension d of the base 

classifier space and the number of rounds T of boosting with high probability, is at 

most as shown in equation 7.8. 

 
^

Pr ( )  
Td

H x y O
m

 
    

 

   (7.8) 
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7.3 Software Usage (Icsiboost) 

Icsiboost which is an open-source tool is used for applying adaboost algorithm and it 

can be reached from google.code.com freely [32]. Related to icsiboost there is four 

input file is needed for the boosting. These are three sets which are dividing before 

such as training set, development set, test set, and feature (names) file which includes 

information type of prosodic features, morphological features and lexical features.  

7.3.1 Labeling 

The main idea in the system is automatically labeling the data and this process is 

done by helping relationship of features between sentence segmentation information. 

Hence obtain the data sets, words boundaries should be labeled in feature output 

table which is include all type of features. A new column is added into table as 

shown in Table 7.3 for sentence boundary information. n ‘s are added for not a 

sentence boundary and s ‘s are added for sentence boundary manually with respect 

listening audio file. 

Words Feature Names (
ij

f ) Labels(
i

b ) 

Word 1 Features 
ij

f  where j=1,…,M n 

Word 2 Features 
ij

f  where j=1,…,M s 

…
 

…
 

…
 

Word n Features 
ij

f  where j=1,…,M s 

 

Table 7.3 Labeled Features Table 

After the labeled feature table is performed, first column which includes the word’s 

information is removed and also only interested feature’s rows are selected   for 

preparing the next step.  

Than this decomposed new data is divided into three such as; training set, 

development set and test set finally sets are divided into subset which is mentioned 
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before. Training set named as “trial.data”, development set named as “trial.test” and 

test set named as ‘’tiral.test’’ which shown below. 

 

Selected Features (
ij

f ) 

Columns 1 to M 
Labels(

i
b ) Data Sets 

Features 
ij

f  

Where j=1,…,M and i=1,…,q 

s or n 

Training Set 

Size=(q,M+1) 

(trial.data) 

Features 
ij

f  

Where j=1,…,M and i=1,…,q+p 

s or n 

Development Set 

Size=(p,M+1) 

(trial.dev) 

Features 

Where j=1,…,M and i=1,…,q+p+r 
s or n 

Test Set 

Size=(r,M+1) 

(trial.test) 

 

Table 7.4 Contents 

7.3.2 Feature Addressing 

As we mention at begin, there is four input files for start the training. Three of them 

is now ready which of these are training set, development set and test set. Names file 

which shows the system, addresses and names of the feature still needs for starting to 

train. There are three types of feature which we are extracted, we worked with two of 

them such as continues valued features, label valued features. Continues valued 

features are gave exactly real numbers and label valued features are gave options i.e. 

is it verb, adjective or noun?  This information is included in names file which is 

named as “trial.names”. At the first line of the file shows the label information (
i

b ) 

and it defines to trainer which label is trained i.e. for sentence boundary (s) and not a 

sentence boundary (n).  Following lines are for listing the features in order with 

respect to data sets. Continues valued features are defined as ‘’continues’’ and label 

valued features are defined with all possible outcomes.  

 

 



53 
 

s,n.                                                                                                                           

Feature1: ,continuous.                                                                                             

Feature2: ,continuous.                                                                                                   

Feature3: f,r. 

                                                                                                                                              

Table 7.5 Names File  

7.3.3 Training The Model 

Four input files are ready and now we can start to train the model with icsiboost. 

Before the start we should be sure of all input files are in the same directory. Model 

training starts with the code;                                                                                                              

icsiboost –S trial –n 100 > parameters.txt 

Where “trial” is the input file, “100” is the iteration number and “parameters.txt” is 

the output file. Output file includes five types of parameters. First column denotes 

weighted error, second column denotes theoretical error, third column denotes 

development error, fourth column denotes test error and fifth column denotes 

training error for each round according chosen iteration number. When model is 

trained with high iteration number, weight error will increase and either theoretical 

error or training error will decrease but in oppositely after a certain number of 

iteration, model become too complex and development-test error decrease until the 

reach optimum number of operation. After that errors will start to increase. 

rnd 1: wh-err= 0.274495 th-err= 0.274495 dev= 0.032311 test= 0.041042 train= 0.034448 

rnd 2: wh-err= 0.767378 th-err= 0.210641 dev= 0.031609 test= 0.030899 train= 0.024963 

rnd 3: wh-err= 0.820982 th-err= 0.172933 dev= 0.031609 test= 0.030899 train= 0.024963 

rnd 4: wh-err= 0.883527 th-err= 0.152791 dev= 0.041676 test= 0.033084 train= 0.024963 

rnd 5: wh-err= 0.923448 th-err= 0.141094 dev= 0.030906 test= 0.029806 train= 0.020469 

rnd 6: wh-err= 0.930887 th-err= 0.131343 dev= 0.030204 test= 0.029338 train= 0.020469 

rnd 7: wh-err= 0.947551 th-err= 0.124454 dev= 0.030204 test= 0.029338 train= 0.020469 

rnd 8: wh-err= 0.942822 th-err= 0.117338 dev= 0.029267 test= 0.029806 train= 0.020469 

rnd 9: wh-err= 0.959168 th-err= 0.112547 dev= 0.033013 test= 0.029806 train= 0.018472 

rnd 10: wh-err= 0.960902 th-err= 0.108146 dev= 0.033013 test= 0.029963 train= 

0.017973  

 

Table 7.6 Training Model and Errors 

 

 

…
.. 

 

…
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7.3.4 Testing Performance 

After the model is trained, results of development set and test set appear with the 

command such as; 

    icsiboost –S trial –C < trial.dev > resultsdev.txt 

icsiboost –S trial –C < trial.test > resultstest.txt 

The first code generates ‘’resultsdev.txt’’ file which includes results for development 

set and the second code generates ‘’resulttest.txt’’ file which includes results for test 

set. There are four columns in this file. First and second columns are specified 

manually labels (
i

b ) such as sentence boundary (s) and not a sentence boundary (n). 

The sequence {0 1} represents not a sentence boundary (n) and the sequence {1 0} 

represents sentence boundary (s). Icsiboost is preferred represent labels with [0, 1] 

instead of [-1,1]. Third and fourth columns are specified results of the binary 

classifier. Signs are importance to make decision between the class (s or n) and 

magnitude of the parameters specified confidence measure scores. The sequence {-

,+} represents not a sentence boundary (n) and the sequence {+,-} represents 

sentence boundary (s). 

 

0 1 -0.601237747037 0.601237747037 

0 1 -0.505622123388 0.505622123388 

0 1 -0.505622123388 0.505622123388 

0 1 -0.283534787175 0.283534787175 

0 1 -0.899572923912 0.899572923912 

0 1 -0.280858442462 0.280858442462 

0 1 -0.505622123388 0.505622123388 

0 1 -0.516929451725 0.516929451725 

0 1 -0.601237747037 0.601237747037 

0 1 -0.505622123388 0.505622123388 

 

 Table 7.7 Results  

 

…
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7.3.5 Evaluation Matrix and Methods 

All of these four columns which inside of “resultdev.txt / resulttest.txt”, should 

compared for see the agreement of results (trained model) and manually labels. 

Either trained model and manually labels could agree that the word is sentence 

boundary and not a sentence boundary or disagree. All of the four possibilities 

represented such as True Positive (TP), True Negative (TN), False Positive (FP), and 

False Negative (FN) which four possibility explained detail in table 7.8. 

True Positive (TP): Correctly labeled sentence boundary.                                              

True Negative (TN): Correctly labeled not a sentence boundary.                                 

False Positive (FP): Incorrectly labeled sentence boundary, not a sentence boundary 

in fact.                                                                                                                                

False Negative (FN): Incorrectly labeled not a sentence boundary, sentence 

boundary fact. 

Decision Table {1 0} {0 1} 

{+,-} TP FP 

{-,+} FN TN 

 

 Table 7.8 Decision Table 

Also performance analyzing is done by F-Measure score and Nist Error rate. These 

two scores are measured with respect count number of TN, TP, FN and FP. In 

addition Precision and Recall should be evaluated too for performed the F-Measure 

score and Nist Error rate. 

7.3.5.1 Precision 

Precision which implies repeatability of system, is the ratio between correctly labeled 

sentence boundary (TP) and all sentence boundary decisions (TP+FP). Precision is 

zero when there is no correct decision and it gets the maximum value when there 

isn’t any incorrect decision. 

Precision measured as; 
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Pr  
TP

ecision
TP FP




              (7.9) 

7.3.5.2 Recall 

Recall is the ratio between correctly labeled sentence boundary (TP) and all sentence 

boundaries in fact (TP+FN). Recall is zero in the case absence of correctly labeled 

sentence boundary and it gets one when there isn’t any incorrect sentence boundary. 

Recall measured as; 

 

                 (7.10) 

7.3.5.3 True Negative Rate 

True negative rate measured the performance of detect not a sentence boundary 

(TN). True negative rate is zero in the case absence of correctly labeled not a 

sentence boundary and it gets one when there isn’t any incorrect labeled sentence 

boundary. True negative rate measured as; 

   
TN

True Negative Rate
TN FP




           (7.11) 

7.3.5.4 Accuracy 

Accuracy is the ratio between all correct labeled decisions (TP+TN) over all 

decisions (TN+TP+FN+FP). Accuracy is zero when there isn’t any correctly labeled 

decision and accuracy is one when all decisions are correctly labeled. Accuracy 

measured as; 

 

                                 (7.12) 

 

 

 

R e  
TP

call
TP FN




 
TP TN

Accuracy
TN TP FN FP
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7.3.5.5 F-measure Score 

F-measure is the one of score which we are used for analyzing performance on the 

graphics. F-measure score tests accuracy in terms of harmonic mean of precision and 

recall. F-measure score goes to zero when the limit of sum of precision and recall 

goes to zero from to positive. F-measure score is one when with precision or recall is 

one too. F-measure score measured as; 

 

 (7.13) 

7.3.5.6  Nist Error Rate 

Nist error rate is the other score which we are used for analyzing performance on the 

graphics. Nist error rate known as National Institute of Standards and Technology 

error rate and it aims to get minimize score for take a meaning with good 

performance. Nist error rate is a ratio between all wrong decisions (FN+FP) over all 

of sentence boundary in fact (TP+FN). Nist error rate is zero when there is no 

incorrect decision and nist error rate gets maximum value when all manually labels 

are wrong. 

  
FN FP

Nist Error
TP FN





                                           (7.14) 
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Chapter 8 

 

Experiments and Conclusion 

 

8.1 Overview 

We work with fifteen different experiment groups for getting the best result. Prosodic 

features which extracted from Praat, morphological features which extracted from 

TRmorph and Kemal Oflazer’s tool, lexical features which extracted with perl scripts 

and M1 features [29] which includes in prosodic feature set is used in the 

experiments. Performance analyzing is done considering based on F-measure score 

and Nist error rate which values are described detail in previous chapter. 

Experiments are applied based on both multi-speaker and single-speaker. Both 10-

fold cross validation and 5-fold cross validation methods are used. 

Voice of America Turkish (VOA) [33] broadcast news records are chosen an input 

audio file for the experiments. Segment time marks (STM) files are used which 

extract in previous works [9] from BUSIM [34] speech group in Bogazici University. 

Original STM files are contained punctuation which used as a reference too. Each 

broadcast news record contains multi-speaker, takes duration 30 minutes, 16 kHz and 

16 bit sampled ‘’wav’’ audio file. Table 1 and Table 2 show us the detail of input 

whole broadcast news data together. 

Type Of 

Word 

Foreign 

Nouns 

Foreign Proper 

Name 

Turkish Proper 

Name 

All types of 

Word 

Quantity 49 762 607 11572 

 

Table 8.1 Data Analysis (Types) 
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Speakers Gender Quantity of Words 
Quantity of 

Sentences 

Speaker 1 Male 20K 1361 

Speaker 2 Female 20K 1448 

Speaker 3 Male 1365 91 

Speaker 4 Male 4561 248 

Speaker 5 Male 1321 76 

Speaker 6 Female 2482 183 

All Speakers Male + Female 49729 3407 

 

Table 8.2 Data Analysis (Quantities) 

The other important point which we care about is using open-source tools and 

software. Ubuntu is used as operation system which based on UNIX and whole tools 

are compatible with this operation system. 

System builds start with re-organizing STM files with several Perl scripts and 

dividing data with respect to each speaker. Secondly HCopy tool which is inside in 

HTK, is used for extract MFCC vectors. With using MFCC vectors, the word and 

phoneme based CTM file are obtained by helping HVite tool which is inside in HTK 

tool too. Then prosodic features are extracted using Mary Harper’s plugin based on 

Praat tool afterwards sentence boundaries are labeled manually.  

Like all this steps, morphological features and lexical features are extracted. Table 3 

shows us the all types of feature details and their quantities. 

Feature Set Type Quantity 

LEX Lexical Feature Set 6 

DUR+M1 Duration+M1 Prosodic Feature Set 94 

DUR+F0 Duration+Pitch Prosodic Feature Set 142 

M1 M1 Prosodic Feature Set 33 

MORP Morphological Feature Set 10 

 

Table 8.3 Feature Sets, Contents and Quantities 
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Now we are ready to second main step of the system which mostly progressed on 

icsiboost. The data is divided into three sets such as training set, development set and 

test. Training is done by icsiboost based on self-training method and performance 

evaluation is measured with respect to f-measure score and nist error rate.  

Speakers are grouped into three such as Speaker 1 only, Speaker 2 only and all 

speakers (Speaker1+Speker2+Speaker3+Speaker4+Speaker5+Speaker 6). Data size 

is restricted with 6000 because minimum size of a group is 20K and data should 

divide into three identically. 

Performance of the system is criticized with table view and graphical view. Both of 

the view is based on f-measure score and nist error rate. Graphics shows us f-

measure and nist error rate with percentage for data size 1000 words, data size 3000 

words and data size 6000 words. Self-training and baseline plots are showed in same 

graphic and all this information extracted for both respect to maximum f-measure 

score and minimum nist error rate. Self-training’s f-measure scores are greater than 

the baseline is expected and also baseline’s nist error rates are greater than the 

baseline is expected too. Again table shows us f-measure and nist error rate values 

with percentage for data size 1000 words, data size 3000 words and data size 6000 

words. All this information extracted for both respect to maximum f-measure score 

and minimum nist error rate. Self-training’s f-measure scores are greater than the 

baseline is expected and also baseline’s nist error rates are greater than the baseline is 

expected too. Self-labeled (words) row is explained us to how many sample is added 

from test data to training data with decided labels from previous model to reach 

maximized model. I.e if we have 1000 word data size and if we reach the maximized 

model in 3500 word, initially there is 1000 word in training set and 2500 word is 

adding which is decided in previous model. 
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8.2 Experiments 

15 different experiments are done by several ways, as shown below. 

 

8.2.1 Experimental Group 1 

Speaker 1 data, lexical feature set and 10-fold cross validation method is used. In 

self-training, first 100 samples which gets the maximum confidence score is adding 

into training data set with decided labels from previous model,  for each iteration and 

this samples are took out from the test set. 

Respect to maximum f-measure score 

  
Respect to minimum nist error rate 

  
 

Figure 8.1 Graphical view of experiment 1 (Speaker 1 with Lexical Features) 
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 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=1000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 68.1200 52.1680 68.1200  52.1680 

Self-Training 70.9630 50.7970 70.9630 50.7970 

Self-Labeled 
(words) 

13400 13400 13400 13400 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=3000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 76.1730 42.8690 76.1730 42.8690 

Self-Training 74.0030 45.6770 74.0030 45.6770 

Self-Labeled 
(words) 

11400 11400 11400 11400 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=6000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 80.1420 35.3780 80.1420 35.3780 

Self-Training 79.8600 36.0970 79.8600 36.0970 

Self-Labeled 
(words) 

8400 8400 8400 8400 

 

Table 8.4 Table view of experiment 1 (Speaker 1 with Lexical Features) 
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8.2.2 Experimental Group 2 

Speaker 2 data, lexical feature set and 10-fold cross validation method is used. In 

self-training, first 100 samples which gets the maximum confidence score is adding 

into training data set with decided labels from previous model,  for each iteration and 

this samples are took out from the test set. 

Respect to maximum f-measure score 

  
Respect to minimum nist error rate 

  
 

Figure 8.2 Graphical view of experiment 2 (Speaker 2 with Lexical Features) 
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 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=1000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 76.6400 44.9550 76.6400 44.9550 

Self-Training 77.6520 42.3190 77.6520 42.3190 

Self-Labeled 
(words) 

13900 13900 13900 13900 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=3000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 78.1640 40.3050 78.1640 40.3050 

Self-Training 78.7980 39.8630 78.7980 39.8630 

Self-Labeled 
(words) 

11900 11900 11900 11900 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=6000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 81.1410 34.9320 80.8950 35.2730 

Self-Training 80.9950 35.1460 80.9340 35.1410 

Self-Labeled 
(words) 

8900 8900 8900 8900 

 

Table 8.5 Table view of experiment 2 (Speaker 2 with Lexical Features) 
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8.2.3 Experimental Group 3 

All speaker data, lexical feature set and 10-fold cross validation method is used. In 

self-training, first 100 samples which gets the maximum confidence score is adding 

into training data set with decided labels from previous model,  for each iteration and 

this samples are took out from the test set. 

Respect to maximum f-measure score 

  
Respect to minimum nist error rate 

  
 

Figure 8.3 Graphical view of experiment 3 (All speakers with Lexical Features) 
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 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=1000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 68.5360 60.3830 68.9110 58.9310 

Self-Training 65.6040 61.8470 61.7600 58.0510 

Self-Labeled 
(words) 

43100 43100 42700 42700 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=3000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 65.7170 57.6620 65.7170 57.6620 

Self-Training 68.3330 54.6520 68.3330 54.6520 

Self-Labeled 
(words) 

39800 39800 39800 39800 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=6000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 73.1760 46.8280 73.1760 46.8280 

Self-Training 75.0330 45.1650 75.0330 45.1650 

Self-Labeled 
(words) 

36500 36500 36500 36500 

 

Table 8.6 Table view of experiment 3 (All speakers with Lexical Features) 
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8.2.4 Experimental Group 4 

Speaker 1 data, DUR+M1 prosodic feature set and 10-fold cross validation method is 

used. In self-training, first 100 samples which gets the maximum confidence score is 

adding into training data set with decided labels from previous model,  for each 

iteration and this samples are took out from the test set. 

Respect to f-measure score 

  
Respect to mimumum nist error rate 

  
 

Figure 8.4 Graphical view of experiment 4 (Speaker 1 with DUR+M1 Prosodic 

Feature Set) 
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 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=1000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 88.7800 21.7370 88.7800 21.7370 

Self-Training 89.3570 20.6210 89.3570 20.6210 

Self-Labeled 
(words) 

3300 3300 3300 3300 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=3000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 90.3350 18.9490 90.3350 18.9490 

Self-Training 90.7460 18.1140 90.7460 18.1140 

Self-Labeled 
(words) 

1600 1600 1600 1600 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=6000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 91.5480 16.6520 91.5480 16.6520 

Self-Training 91.8460 16.0420 91.8460 16.0420 

Self-Labeled 
(words) 

1100 1100 1100 1100 

 

Table 8.7 Table view of experiment 4 (Speaker 1 with DUR+M1 Prosodic Feature 

Set) 
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8.2.5 Experimental Group 5 

Speaker 2 data, DUR+M1 prosodic feature set and 10-fold cross validation method is 

used. In self-training, first 100 samples which gets the maximum confidence score is 

adding into training data set with decided labels from previous model,  for each 

iteration and this samples are took out from the test set. 

Respect to maximum f-measure score 

  
Respect to minimum nist error rate 

  
 

Figure 8.5 Graphical view of experiment 5 (Speaker 2 with DUR+M1 Prosodic 

Feature Set) 
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 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=1000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 88.9300 21.3150 88.9300 21.3150 

Self-Training 89.5710 19.9500 89.5710 19.9500 

Self-Labeled 
(words) 

1900 1900 1900 1900 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=3000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 92.5170 14.5460 92.5170 14.5460 

Self-Training 92.9050 13.8580 92.9050 13.8580 

Self-Labeled 
(words) 

4100 4100 4100 4100 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=6000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 93.7510 12.2820 93.7510 12.2820 

Self-Training 94.1240 11.5330 94.1240 11.5330 

Self-Labeled 
(words) 

1800 1800 1800 1800 

 

Table 8.8 Table view of experiment 5 (Speaker 2 with DUR+M1 Prosodic Feature 

Set) 
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8.2.6 Experimental Group 6 

All speaker data, DUR+M1 prosodic feature set and 5-fold cross validation method is 

used. In self-training, first 100 samples which gets the maximum confidence score is 

adding into training data set with decided labels from previous model,  for each 

iteration and this samples are took out from the test set. 

Respect to maximum f-measure score 

  
Respect to minimum nist error rate 

  
 

Figure 8.6 Graphical view of experiment 6 (All speakers with DUR+M1 Prosodic 

Feature Set) 
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 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=1000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 84.6940 28.9860 84.6940 28.9860 

Self-Training 85.0860 28.1480 85.0860 28.1480 

Self-Labeled 
(words) 

1200 1200 1200 1200 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=3000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 85.8060 30.9540 85.8060 30.9540 

Self-Training 87.0100 27.9000 87.0100 27.9000 

Self-Labeled 
(words) 

11000 11000 11000 11000 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=6000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 86.4360 27.1320 86.4360 27.1320 

Self-Training 86.9820 26.2860 86.9820 26.2860 

Self-Labeled 
(words) 

100 100 100 100 

 

Table 8.9 Table view of experiment 6 (All speakers with DUR+M1 Prosodic Feature 

Set) 
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8.2.7 Experimental Group 7 

Speaker 1 data, DUR+F0 prosodic feature set and 10-fold cross validation method is 

used. In self-training, first 100 samples which gets the maximum confidence score is 

adding into training data set with decided labels from previous model,  for each 

iteration and this samples are took out from the test set. 

Respect to maximum f-measure score 

  
Respect to minimum nist error rate 

  

 

Figure 8.7 Graphical view of experiment 7 (Speaker 1 with DUR+F0 Prosodic 

Feature Set) 
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 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=1000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 86.4720 25.1710 86.4530 25.1990 

Self-Training 87.2620 23.8320 87.2180 23.7910 

Self-Labeled 
(words) 

4300 4300 3600 3600 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=3000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 90.7830 18.2080 90.7830 18.2080 

Self-Training 91.2600 17.0790 91.2600 17.0790 

Self-Labeled 
(words) 

5800 5800 5800 5800 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=6000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 92.0390 15.6570 92.0390 15.6570 

Self-Training 92.1260 15.3670 92.1260 15.3670 

Self-Labeled 
(words) 

1700 1700 1700 1700 

 

Table 8.10 Table view of experiment 7 (Speaker 1 with DUR+F0 Prosodic Feature 

Set) 
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8.2.8 Experimental Group 8 

Speaker 2 data, DUR+F0 prosodic feature set and 10-fold cross validation method is 

used. In self-training, first 100 samples which gets the maximum confidence score is 

adding into training data set with decided labels from previous model,  for each 

iteration and this samples are took out from the test set. 

Respect to maximum f-measure score 

  
Respect to minimum nist error rate 

  
 

Figure 8.8 Graphical view of experiment 8 (Speaker 2 with DUR+F0) Prosodic 

Feature Set) 
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 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=1000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 91.7840 15.9650 91.7840 15.9650 

Self-Training 91.9240 15.6990 91.9240 15.6990 

Self-Labeled 
(words) 

4000 4000 4000 4000 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=3000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 93.6150 12.5500 93.6150 12.5500 

Self-Training 94.2590 11.2670 94.2590 11.2670 

Self-Labeled 
(words) 

2000 2000 2000 2000 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=6000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 94.6360 10.5590 94.6360 10.5590 

Self-Training 94.8600 10.1300 94.8600 10.1300 

Self-Labeled 
(words) 

1400 1400 1400 1400 

 

Table 8.11 Table view of experiment 8 (Speaker 2 with DUR+F0 Prosodic Feature 

Set) 

 

 

 

 

 

 

 

 

 

 



 

77 
 

8.2.9 Experimental Group 9 

All speaker data, DUR+F0 prosodic feature set and 5-fold cross validation method is 

used. In self-training, first 100 samples which gets the maximum confidence score is 

adding into training data set with decided labels from previous model,  for each 

iteration and this samples are took out from the test set. 

Respect to maximum f-measure score 

  
Respect to minimum f-measure score 

  
 

Figure 8.9 Graphical view of experiment 9 (All speakers with DUR+F0) Prosodic 

Feature Set) 
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 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=1000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 74.5440 41.3540 74.5280 41.3740 

Self-Training 78.4260 36.4480 78.3740 36.4300 

Self-Labeled 
(words) 

5800 5800 4700 4700 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=3000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 83.4840 31.3220 83.4660 31.3720 

Self-Training 84.7040 28.8920 84.6400 28.8200 

Self-Labeled 
(words) 

5100 5100 7200 7200 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=6000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 79.7540 46.2820 79.7540 46.2820 

Self-Training 85.5020 26.8520 85.5020 26.8520 

Self-Labeled 
(words) 

1700 1700 1700 1700 

 

Table 8.12 Table view of experiment 9 (All speakers with DUR+F0 Prosodic Feature 

Set) 
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8.2.10 Experimental Group 10 

Speaker 1 data, M1 prosodic feature set and 10-fold cross validation method is used. 

In self-training, first 100 samples which gets the maximum confidence score is 

adding into training data set with decided labels from previous model,  for each 

iteration and this samples are took out from the test set. 

Maksimum f-measure skorlarına göre 

  
Minimum NIST hatalarına göre 

  
 

Figure 8.10 Graphical view of experiment 10 (Speaker 1 with M1 Prosodic Feature 

Set) 
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 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=1000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 88.0620 23.3650 88.0620 23.3650 

Self-Training 88.5860 22.2980 88.5860 22.2980 

Self-Labeled 
(words) 

2600 2600 2600 2600 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=3000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 89.1390 21.4630 89.1390 21.4630 

Self-Training 89.3010 21.0440 89.3010 21.0440 

Self-Labeled 
(words) 

1300 1300 1300 1300 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=6000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 90.0810 19.6230 90.0810 19.6230 

Self-Training 90.3460 19.1040 90.3460 19.1040 

Self-Labeled 
(words) 

700 700 700 700 

 

Table 8.13 Table view of experiment 10 (Speaker 1 with M1 Prosodic Feature Set) 
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8.2.11 Experimental Group 11 

Speaker 2 data, M1 prosodic feature set and 10-fold cross validation method is used. 

In self-training, first 100 samples which gets the maximum confidence score is 

adding into training data set with decided labels from previous model,  for each 

iteration and this samples are took out from the test set. 

Respect to maximum f-measure score 

  
Respect to minimum nist error rate 

  
 

Figure 8.11 Graphical view of experiment 11 (Speaker 2 with M1 Prosodic Feature 

Set) 
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 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=1000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 88.4160 22.5800 88.4160 22.5800 

Self-Training 88.5880 22.1580 88.5880 22.1580 

Self-Labeled 
(words) 

1900 1900 1900 1900 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=3000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 91.1740 17.3200 91.1740 17.3200 

Self-Training 91.4890 16.6940 91.4890 16.6940 

Self-Labeled 
(words) 

300 300 300 300 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=6000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 92.2510 15.2320 92.2510 15.2320 

Self-Training 92.5230 14.6770 92.5230 14.6770 

Self-Labeled 
(words) 

300 300 300 300 

 

Table 8.14 Table view of experiment 11 (Speaker 2 with M1 Prosodic Feature Set) 
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8.2.12 Experimental Group 12 

All speaker data, M1 prosodic feature set and 5-fold cross validation method is used. 

In self-training, first 100 samples which gets the maximum confidence score is 

adding into training data set with decided labels from previous model,  for each 

iteration and this samples are took out from the test set. 

Respect to maximum f-measure score 

  
Respect to minimum nist error rate 

  
 

Figure 8.12 Graphical view of experiment 12 (All speakers with M1 Prosodic 

Feature Set) 
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 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=1000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 83.0020 33.4800 83.0020 33.4800 

Self-Training 83.8600 31.3080 83.8600 31.3080 

Self-Labeled 
(words) 

7600 7600 7600 7600 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=3000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 83.7140 32.2460 83.7140 32.2460 

Self-Training 85.1300 29.2800 85.1300 29.2800 

Self-Labeled 
(words) 

2500 2500 2500 2500 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=6000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 85.6500 27.8680 85.6500 27.8680 

Self-Training 85.6500 27.8680 85.6500 27.8680 

Self-Labeled 
(words) 

0 0 0 0 

 

Table 8.15 Table view of experiment 12 (All speakers with M1 Prosodic Feature Set) 
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8.2.13 Experimental Group 13 

Speaker 1 data, morphological feature set and 5-fold cross validation method is used. 

In self-training, first 100 samples which gets the maximum confidence score is 

adding into training data set with decided labels from previous model,  for each 

iteration and this samples are took out from the test set. 

Respect to maximum f-measure score 

  
Respect to minimum nist error rate 

  
 

Figure 8.13 Graphical view of experiment 13 (Speaker 1 with Morphological Feature 

Set) 
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 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=1000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 88.3100 22.7120 88.3100 22.7120 

Self-Training 88.8740 21.9280 88.8740 21.9280 

Self-Labeled 
(words) 

7300 7300 7300 7300 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=3000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 88.4920 22.3100 88.4840 22.3120 

Self-Training 88.8980 21.6240 88.8840 21.6220 

Self-Labeled 
(words) 

1000 1000 400 400 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=6000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 88.9360 21.8260 88.9360   21.8260 

Self-Training 89.4080 20.6580 89.4080 20.6580 

Self-Labeled 
(words) 

4500 4500 4500 4500 

 

Table 8.16 Table view of experiment 13 (Speaker 1 with Morphological Feature Set) 
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8.2.14 Experimental Group 14 

Speaker 2 data, morphological feature set and 10-fold cross validation method is 

used. In self-training, first 100 samples which gets the maximum confidence score is 

adding into training data set with decided labels from previous model,  for each 

iteration and this samples are took out from the test set. 

Respect to maximum f-measure score 

  
Respect to minimum nist error rate 

  
 

Figure 8.14 Graphical view of experiment 14 (Speaker 2 with Morphological Feature 

Set) 
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 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=1000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 90.5380 18.2580 90.4330 18.2680 

Self-Training 90.4650 18.4100 90.4330 18.2680 

Self-Labeled 
(words) 

5400 5400 0 0 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=3000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 91.7590 16.0140 91.7590 16.0140   

Self-Training 91.8380 15.8480 91.8380 15.8480 

Self-Labeled 
(words) 

100 100 100 100 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=6000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 92.6950 14.3010 92.6950 14.3010 

Self-Training 92.7520 14.2450 92.7520 14.2450 

Self-Labeled 
(words) 

100 100 100 100 

 

Table 8.17 Table view of experiment 14 (Speaker 2 with Morphological Feature Set) 
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8.2.15 Experimental Group 15 

All speaker data, morphological feature set and 5-fold cross validation method is 

used. In self-training, first 100 samples which gets the maximum confidence score is 

adding into training data set with decided labels from previous model,  for each 

iteration and this samples are took out from the test set. 

Respect to maximum f-measure scpre 

  
Respect to minimum nist error rate 

  
 

Figure 15 Graphical view of experiment 15 (All speakers with Morphological 

Feature Set) 
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 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=1000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 86.6860 25.4120 86.8500 25.1920 

Self-Training 87.1720 24.6580 87.1200 24.6540 

Self-Labeled 
(words) 

100 100 7500 7500 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=3000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 87.3240 24.1300 87.3240 24.1300 

Self-Training 87.6120 23.7660 87.6120 23.7660 

Self-Labeled 
(words) 

800 800 800 800 

 

 Maximum F-measure Minimum Nist 

Man. Labeled 
Data=6000 

F-measure 
(%) 

NIST (%) F-measure 
(%) 

NIST (%) 

Baseline 87.8180 23.3600 87.8240 23.3500 

Self-Training 88.2020 22.8400 88.1440 22.8360 

Self-Labeled 
(words) 

1500 1500 100 100 

 

Table 8.18 Table view of experiment 15 (All speakers with Morphological Feature 

Set) 
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8.3 Conclusion 

To conclude, we have to try increase feature types to solve sentence segmentation 

problem. In addition boosting algorithm is used to get a strong learner with respect to 

prosodic features, morphological features and lexical features; we worked for 

increase the scores according to previous works. For receiving much more scores, 

co-training algorithm can be used which is multi view learning algorithm against to 

single view self-training algorithm. All of the system tools which we used, are open 

source and we modified all these tools in to Turkish Spoken language. It is also mean 

that these tools could be used for all the other language with small effort.  We have 

observed that morphological feature set, M1 prosodic feature set and DUR+F0 

prosodic feature set are performed maximum performance and system is given 

similar response both single speaker and multi speaker. This work could be 

considered as the first step of further ASR applications such as topic segmentation, 

sentence translation and summarization. 
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Appendix A Prosodic Feature List 

 

A.1 Basic Features 

A.1.1 Base Features 

 WAV : Location information of current audio file. 

 SPK_ID: Identification information of speaker. 

 SPK_GEN: Gender information of speaker. 

A.1.2 Duration Features 

 WORD: Recent word boundary. 

 WORD_START: Starting time of the recent word boundary. 

 WORD_END: Ending time of the recent word boundary. 

 FWORD:  Next word boundary. 

 FWORD_START: Starting of the next word boundary. 

 FWORD_END: Ending time of the next word boundary. 

 PAUSE_START: Starting time of the pause boundary. 

 PAUSE_END: Ending time of the pause. 

 PAUSE_DUR: Duration time of the pause. 

 WORD_PHONES: Phone and durations in the word(phone1:duration1…) 

 FLAG: Specify reliable phone duration according to threshold. 

(SUSP=Suspicious word,  ?=Error or not include phones, 0=otherwise) 

 LAST_VOWEL: Last vowel in recent word boundary. 

 LAST_VOWEL_START: Starting time of the last vowel in the recent word 

boundary. 
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 LAST_VOWEL_END: Ending time of the last vowel in the recent word 

boundary. 

 LAST_VOWEL_DUR: Duration of the last vowel in the previous word 

boundary. 

 LAST_RHYME START: Starting time of  the last rhyme in the recent word 

boundary. 

 LAST_RHYME_END: Ending time of the last rhyme in the recent word 

boundary. 

 NORM_LAST_RHYME_DUR: 

_ _ _

( ) ( )

_ ( )
every phone in word

dur phone mean phone

std dev phone


  

 PHONES_IN_LAST_RHYME: Whole number of phones in the last rhyme. 

A.1.3 F0 Features 

 MIN_F0: The minimum raw F0 value of current word.  

 MAX_F0: The maximum raw F0 value of current word. 

 MEAN_F0: The mean raw F0 value of current word. 

 MIN_F0_NEXT: The minimum raw F0 value of the word after boundary. 

 MAX_F0_NEXT: The maximum raw F0 value of the word after boundary. 

 MEAN_F0_NEXT: The mean raw F0 value of the word after boundary. 

 MIN_F0_WIN: The minimum raw F0 value of the word N frames before a 

boundary. (If there isn’t enough data, maximum number of frames are used.) 

 MAX_F0_WIN: The maximum raw F0 value of the word N frames before a 

boundary. (If there isn’t enough data, maximum number of frames are used.) 

 MEAN_F0_WIN: The mean raw F0 value of the word N frames before a 

boundary. (If there isn’t enough data, maximum number of frames are used.) 

 MIN_F0_NEXT_WIN: The minimum raw F0 value of the word N frames 

before from after boundary. (If there isn’t enough data, maximum number of 

frames are used.) 

 MAX_F0_NEXT_WIN: The maximum raw F0 value of the word N frames 

before from after boundary. (If there isn’t enough data, maximum number of 

frames are used.) 
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 MEAN_F0_NEXT_WIN: The mean raw F0 value of the word N frames 

before from after boundary. (If there isn’t enough data, maximum number of 

frames are used.) 

 MIN_STYLIFT_F0: The minimum stylized F0 value of current word. 

 MAX_STYLIFT_F0: The maximum stylized F0 value of current word. 

 MEAN_STYLIFT_F0: The mean stylized F0 value of current word. 

 FIRST_STYLIFT_F0: The first stylized F0 value of current word. 

 LAST_STYLIFT_F0: The last stylized F0 value of current word. 

 MIN_STYLIFT_F0_NEXT: The minimum stylized F0 value of  the word 

after a boundary. 

 MAX_STYLIFT_F0_NEXT: The maximum stylized F0 value of  the word 

after a boundary. 

 MEAN_STYLIFT_F0_NEXT: The mean stylized F0 value of  the word after 

a boundary. 

 FIRST_STYLIFT_F0_NEXT: The first stylized F0 value of  the word after a 

boundary. 

 LAST_STYLIFT_F0_NEXT: The last stylized F0 value of  the word after a 

boundary. 

 MIN_STYLIFT_F0_WIN: The minimum stylized F0 value of the word N 

frames before a boundary. (If there isn’t enough data, maximum number of 

frames are used.) 

 MAX_STYLIFT_F0_WIN: The maximum stylized F0 value of the word N 

frames before a boundary. (If there isn’t enough data, maximum number of 

frames are used.) 

 MEAN_STYLIFT_F0_WIN: The mean stylized F0 value of the word N 

frames before a boundary. (If there isn’t enough data, maximum number of 

frames are used.) 

 FIRST_STYLIFT_F0_WIN: The first stylized F0 value of the word N frames 

before a boundary. (If there isn’t enough data, maximum number of frames 

are used.) 

 LAST_STYLIFT_F0_WIN: The last stylized F0 value of the word N frames 

before a boundary. (If there isn’t enough data, maximum number of frames 

are used.) 
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 MIN_STYLIFT_F0_NEXT_WIN: The minimum stylized F0 value of the 

word N frames before from after boundary. (If there isn’t enough data, 

maximum number of frames are used.) 

 MAX_STYLIFT_F0_NEXT_WIN: The maximum stylized F0 value of the 

word N frames before from after boundary. (If there isn’t enough data, 

maximum number of frames are used.) 

 MEAN_STYLIFT_F0_NEXT_WIN: The mean stylized F0 value of the word 

N frames before from after boundary. (If there isn’t enough data, maximum 

number of frames are used.) 

 FIRST_STYLIFT_F0_NEXT_WIN: The first stylized F0 value of the word N 

frames before from after boundary. (If there isn’t enough data, maximum 

number of frames are used.) 

 LAST_STYLIFT_F0_NEXT_WIN: The last stylized F0 value of the word N 

frames before from after boundary. (If there isn’t enough data, maximum 

number of frames are used.) 

 PATTERN_WORD: Detects falling slope, unvoiced section and rising slope 

which represent by  ‘’ f ’’, ‘’ u ’’ and ‘’ r ’’. 

 PATTERN_WORD_CALLAPSED: Similar with PATTERN_WORD; 

sequence are represented by one symbol(‘’ f ’’, ‘’ u ’’ and ‘’ r ’’). 

 PATTERN_SLOPE: Similar with PATTERN_WORD;  values are listed. 

 PATTERN_WORD_NEXT: Detects falling slope, unvoiced section and 

rising slope which represent by  ‘’ f ’’, ‘’ u ’’ and ‘’ r ’’ of the word after a 

boundary. 

 PATTERN_WORD_CALLAPSED_NEXT: Similar with 

PATTERN_WORD_NEXT; sequence are represented by one symbol(‘’ f ’’, 

‘’ u ’’ and ‘’ r ’’) . 

 PATTERN_SLOPE_NEXT: Similar with PATTERN_WORD_NEXT;  

values are listed. 

 PATTERN_WORD_WIN: Detects falling slope, unvoiced section and rising 

slope which represent by  ‘’ f ’’, ‘’ u ’’ and ‘’ r ’’ of the word N frames 

before a boundary. (If there isn’t enough data, maximum number of frames 

are used.) 
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 PATTERN_WORD_CALLAPSED_WIN: Similar with 

PATTERN_WORD_WIN; sequence are represented by one symbol(‘’ f ’’, 

‘’ u ’’ and ‘’ r ’’). (If there isn’t enough data, maximum number of frames 

are used.) 

 PATTERN_SLOPE_WIN: Similar with PATTERN_WIN;  values are listed. 

(If there isn’t enough data, maximum number of frames are used.) 

 PATTERN_WORD_NEXT_WIN: Detects falling slope, unvoiced section 

and rising slope which represent by  ‘’ f ’’, ‘’ u ’’ and ‘’ r ’’ of the word N 

frames before from after a boundary. (If there isn’t enough data, maximum 

number of frames are used.) 

 PATTERN_WORD_CALLAPSED_NEXT_WIN: Similar with 

PATTERN_WORD_NEXT_WIN; sequence are represented by one 

symbol(‘’ f ’’, ‘’ u ’’ and ‘’ r ’’) . (If there isn’t enough data, maximum 

number of frames are used.) 

 PATTERN_SLOPE_NEXT_WIN: Similar with 

PATTERN_WORD_NEXT_WIN;  values are listed. (If there isn’t enough 

data, maximum number of frames are used.) 

 NO_PREVIOUS_SSF: Number of sequentially frames with in the word 

which have same slope as last voiced frame in previous word. 

 NO_PREVIOUS_VF: Number of sequentially voiced frames with in the 

word from last voiced frame in the word backwards. 

 NO_FRAMES_I_S_WE: Number of sequentially frames between the last 

voiced frame which have a proper to a sequence of voiced frames larger than 

min_frame_length in the current word and at the end of that word. 

 NO_SUCESSOR_SSF: Number of successor sequentially frames with in the 

word which have same slope as the first voiced frame in current word. 

 NO_SUCCESSOR_VF: Number of sequentially voiced frames with in the 

word from the first voiced frame in the following word. 

 NO_FRAMES_WS_FS: Number of  sequentially frames between the first 

frame of the current word and the first voiced frame in that word which have 

a proper to a sequence of voiced frames larger than min_frame_length.  
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 NO_PREVIOUS_SSF_NEXT: Number of sequentially frames with in the 

word which have same slope as last voiced frame in previous word for the 

word after a boundary. 

 NO_PREVIOUS_VF_NEXT: Number of sequentially voiced frames with in 

the word from last voiced frame in the word backwards for the word after a 

boundary. 

 NO_FRAMES_I_S_WE_NEXT: Number of sequentially frames between the 

last voiced frame which have a proper to a sequence of voiced frames larger 

than min_frame_length in the current word and at the end of that word for the 

word after a boundary. 

 NO_SUCESSOR_SSF_NEXT: Number of successor sequentially frames 

with in the word which have same slope as the first voiced frame in current 

word for the word after a boundary. 

 NO_SUCCESSOR_VF_NEXT: Number of sequentially voiced frames with 

in the word from the first voiced frame in the following word for the word 

after a boundary. 

 NO_FRAMES_WS_FS_NEXT: Number of  sequentially frames between the 

first frame of the current word and the first voiced frame in that word which 

have a proper to a sequence of voiced frames larger than min_frame_length 

for the word after a boundary.  

 NO_PREVIOUS_SSF_WIN: Number of sequentially frames with in the 

word which have same slope as last voiced frame in previous word for the 

word N frames before a boundary . (If there isn’t enough data, maximum 

number of frames are used.) 

 NO_PREVIOUS_VF_WIN: Number of sequentially voiced frames with in 

the word from last voiced frame in the word backwards for the word N 

frames before a boundary. (If there isn’t enough data, maximum number of 

frames are used.) 

 NO_FRAMES_I_S_WE_WIN: Number of sequentially frames between the 

last voiced frame which have a proper to a sequence of voiced frames larger 

than min_frame_length in the current word and at the end of that word for the 

word N frames before a boundary. (If there isn’t enough data, maximum 

number of frames are used.) 
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 NO_SUCESSOR_SSF_WIN: Number of successor sequentially frames with 

in the word which have same slope as the first voiced frame in current word 

for the word N frames before a boundary. (If there isn’t enough data, 

maximum number of frames are used.) 

 NO_SUCCESSOR_VF_WIN: Number of sequentially voiced frames with in 

the word from the first voiced frame in the following word for the word N 

frames before a boundary. (If there isn’t enough data, maximum number of 

frames are used.) 

 NO_FRAMES_WS_FS_WIN: Number of  sequentially frames between the 

first frame of the current word and the first voiced frame in that word which 

have a proper to a sequence of voiced frames larger than min_frame_length 

for the word N frames before a boundary. (If there isn’t enough data, 

maximum number of frames are used.) 

 NO_PREVIOUS_SSF_NEXT_WIN: Number of sequentially frames with in 

the word which have same slope as last voiced frame in previous word for the 

word N frames before from after a boundary. (If there isn’t enough data, 

maximum number of frames are used.) 

 NO_PREVIOUS_VF_NEXT_WIN: Number of sequentially voiced frames 

with in the word from last voiced frame in the word backwards for the word 

N frames before from after a boundary. (If there isn’t enough data, maximum 

number of frames are used.) 

 NO_FRAMES_I_S_WE_NEXT_WIN: Number of sequentially frames 

between the last voiced frame which have a proper to a sequence of voiced 

frames larger than min_frame_length in the current word and at the end of 

that word N frames before from after a boundary. (If there isn’t enough data, 

maximum number of frames are used.) 

 NO_SUCESSOR_SSF_NEXT_WIN: Number of successor sequentially 

frames with in the word which have same slope as the first voiced frame in 

current word N frames before from after a boundary. (If there isn’t enough 

data, maximum number of frames are used.) 

 NO_SUCCESSOR_VF_NEXT_WIN: Number of sequentially voiced frames 

with in the word from the first voiced frame in the following word for the 
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word N frames before from after a boundary. (If there isn’t enough data, 

maximum number of frames are used.) 

 NO_FRAMES_WS_FS_NEXT_WIN: Number of  sequentially frames 

between the first frame of the current word and the first voiced frame in that 

word which have a proper to a sequence of voiced frames larger than 

min_frame_length for the word N frames before from after a boundary. (If 

there isn’t enough data, maximum number of frames are used.) 

 PATTERN_BOUNDARY: Combine of PATTERN_WORD and 

PATTERN_NEXT_WORD. 

 SLOPE_DIFF: The difference between the last non-zero slope of the word 

and the first non-zero slope of the following word. ‘’?’ is default value for not 

found features. 

A.1.4 Energy Features 

Energy features are formeed similar with F0 features as listed below, 

 MIN_ENERGY 

 MAX_ENERGY 

 MEAN_ENERGY 

 MIN_ENERGY_NEXT 

 MAX_ENERGY_NEXT 

 MEAN_ENERGY_NEXT 

 MIN_ENERGY_WIN 

 MAX_ENERGY_WIN 

 MEAN_ENERGY_WIN 

 MIN_ENERGY_NEXT_WIN 

 MAX_ENERGY_NEXT_WIN 

 MEAN_ENERGY_NEXT_WIN 

 MIN_STYLIFT_ENERGY 

 MAX_STYLIFT_ENERGY 

 MEAN_STYLIFT_ENERGY 

 FIRST_STYLIFT_ENERGY 

 LAST_STYLIFT_ENERGY 
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 MIN_STYLIFT_ENERGY_NEXT 

 MAX_STYLIFT_ENERGY_NEXT 

 MEAN_STYLIFT_ENERGY_NEXT 

 FIRST_STYLIFT_ENERGY_NEXT 

 LAST_STYLIFT_ENERGY_NEXT 

 MIN_STYLIFT_ENERGY_WIN 

 MAX_STYLIFT_ENERGY_WIN 

 MEAN_STYLIFT_ENERGY_WIN 

 FIRST_STYLIFT_ENERGY_WIN 

 LAST_STYLIFT_ENERGY_WIN 

 MIN_STYLIFT_ENERGY_NEXT_WIN 

 MAX_STYLIFT_ENERGY_NEXT_WIN 

 MEAN_STYLIFT_ENERGY_NEXT_WIN 

 FIRST_STYLIFT_ENERGY_NEXT_WIN 

 LAST_STYLIFT_ENERGY_NEXT_WIN 

 ENERGY_PATTERN_WORD 

 ENERGY_PATTERN_WOD_CALLAPSED 

 ENERGY_PATTERN_SLOPE 

 ENERGY_PATTERN_WORD_NEXT 

 ENERGY_PATTERN_WOD_CALLAPSED_NEXT 

 ENERGY_PATTERN_SLOPE_NEXT 

 ENERGY_PATTERN_WORD_WIN 

 ENERGY_PATTERN_WOD_CALLAPSED_WIN 

 ENERGY_PATTERN_SLOPE_WIN 

 ENERGY_PATTERN_WORD_NEXT_WIN 

 ENERGY_PATTERN_WOD_CALLAPSED_NEXT_WIN 

 ENERGY_PATTERN_SLOPE_NEXT_WIN 

 ENERGY_PATTERN_BOUNDARY 

 ENERGY_SLOPE_DIFF 
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A.2 Statistical Tables 

 Phone_dur_stats: Table includes the mean phone duration, the standard 

deviation of the phone duration, the number of occurrences of that phone in 

the training database and the phone duration threshold for each phone. 

Computation as shown in Equation XX. 

( ) ( ) 10 _ ( )threshold phone mean phone std dev phone              (A.1) 

 Pause_dur.stats: Table includes mean and standard deviation of the pauses in 

the training database for each audio. 

 Spkr_feat.stats: Table has rows as number of speakers. Each row includes 

voiced and unvoiced frames, F0 and F0 slope, energy and energy slope. 

Detailed features as listed below, 

o MEAN_VOICED: The average length of voiced frames. 

o STDEV_VOICED: The standard deviation of voiced frames. 

o COUNT_VOICED: The number of voiced frames. 

o MEAN_UNVOICED: The average length of unvoiced frames. 

o STDEV_UNVOICED: The standard deviation of unvoiced frames. 

o COUNT_UNVOICED: The number of unvoiced frames. 

o MEAN_PITCH: The average F0 value. 

o STDEV_PITCH: The standard deviation F0 value. 

o COUNT_PITCH: The number of F0 value. 

o MEAN_SLOPE: The mean pitch slope. 

o STDEV_SLOPE: The standard deviation of  pitch slope. 

o COUNT_SLOPE: The number of pitch slope. 

o MEAN_ENERGY: The average energy value. 

o STDEV_ENERGY: The standard deviation of energy value. 

o COUNT_ENERGY: The number of energy value. 

o MEAN_ENERGY_SLOPE: The mean slope. 

o STDEV_ENERGY_SLOPE: The standard deviation of the slope. 

o COUNT_ENERGY_SLOPE: The number of energy slope. 

 Spkr_phone_dur.stats: Feature has tables as number of speakers. Similar with 

phone_dur_stats, it considers all of the speakers. 
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 Last_rhyme_dur.stats: Table includes mean phone duration for the phones in 

the last rhyme, the standard deviation of the phone duration for the ohones in 

the last rhyme, and the number of last rhymes used for each audio. 

 Pause_dur.stats: Table has rows as number of speakers. Detailed features as 

listed below, 

o MEAN: The mean duration of the pauses. 

o STDEV: The standard deviation of the duration of the pauses. 

o MEAN_LOG: The mean of the log duration of the pauses. 

o STDEV_LOG: The standard deviation  of the log duration of the 

pauses. 

o COUNT_PAUSE: The number of the pauses. 

A.3 Derived Features 

Derive features are formed from basic features and statistics. 

A.3.1 Normalized Word Duration 

 WORD_DUR = WORD_END – WORD_START            (A.2) 

 WORD_AV_DUR = 
_ _ _

( )
every phone in word

mean phone             (A.3)   

 NORM_WORD_DUR = WORD_DUR / WORD_AV_DUR          (A.4) 

A.3.2 Normalized Pause 

 PAU_DUR_N = PAU_DUR / PAUSE_MEAN            (A.5) 

A.3.3 Normalized Vowel Duration 

 LAST_VOWEL_DUR_Z = (LAST_VOWEL_DUR – 

ALL_PHONE_DUR_MEAN) / ALL_PHONE_DUR_STDEV          (A.6) 

 LAST_VOWEL_DUR_N = LAST_VOWEL_DUR / 

ALL_PHONE_DUR_MEAN              (A.7) 

 LAST_VOWEL_DUR_ZSP = (LAST_VOWEL_DUR – 

SPKR_PHONE_DUR_MEAN) / SPKR_PHONE_DUR_STDEV          (A.8) 

 LAST_VOWEL_DUR_NSP = LAST_VOW_DUR / 

SPKR_PHONE_DUR_MEAN              (A.9) 
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A.3.4 Normalized Rhyme Duration 

 LAST_RHYME_DUR_PH = LAST_RHYME_DUR / 

PHONES_IN_LAST_RHYME            (A.10) 

 LAST_RHYME_DUR_PH_ND = (LAST_RHYME_DUR / 

PHONES_IN_LAST_RHYME) – 

LAST_RHYME_PHONE_DUR_MEAN                                          (A.11) 

 LAST_RHYME_DUR_PH_NR = (Last_RHYME_DUR / 

PHONES_IN_LAST_RHYME) / 

LAST_RHYME_PHONE_DUR_MEAN                                          (A.12) 

 LAST_RHYME_NORM_DUR_PH = NORM_LAST_RHYME_DUR / 

PHONES_IN_LAST_RHYME            (A.13) 

 LAST_RHYME_NORM_DUR_PH_ND = 

(NORM_LAST_RHYME_DUR / PHONES_IN_LAST_RHYME) – 

NORM_LAST_RHYME_PHONE_DUR_MEAN                    (A.14) 

 LAST_RHYME_NORM_DUR_PH_NR= 

(NORM_LAST_RHYME_DUR / PHONES_IN_LAST_RHYME) / 

NORM_LAST_RHYME_PHONE_DUR_MEAN         (A.15) 

 LAST_RHYME_DUR_WHOLE_ND= LAST_RHYME_DUR – 

LAST_RHYME_WHOLE_DUR_MEAN          (A.16) 

 LAST_RHYME_WHOLE_DUR_NR = LAST_RHYME_DUR / 

LAST_RHYME_WHOLE_DUR_MEAN          (A.17) 

 LAST_RHYME_WHOLE_DUR_Z = (LAST_RHYME_DUR – 

LAST_RHYME_WHOLE_DUR_MEAN) / 

LAST_RHYME_WHOLE_DUR_STDEV          (A.18) 

A.3.5 F0 Derived Features 

F0 derived features are formed from F0 features. 

 SPKR_FEAT_F0_MODE = exp(SPKR_F0_MEAN)         (A.19) 

 SPKR_FEAT_F0_TOPLN = 0.75x(exp(SPKR_F0_MEAN)        (A.20) 

 SPKR_FEAT_F0_BASELN = 1.5x(exp(SPKR_F0_MEAN)        (A.21) 

 SPKR_FEAT_F0_STDLN = exp(SPKR_F0_STDEV)         (A.22) 
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 SPKR_FEAT_F0_RANGE = SPKR_FEAT_F0_TOPLN – 

SPKR_FEAT_F0_BASELN             (A.23) 

 F0K_WORD_DIFF_HIHI_N = log(MAX_STYLFIT_F0 / 

MAX_STYLIFT_F0_NEXT)            (A.24) 

 F0K_WORD_DIFF_HILO_N = log(MAX_STYLFIT_F0 / 

MIN_STYLFIT_F0_NEXT)             (A.25) 

 F0K_WORD_DIFF_LOLO_N = log(MIN_STYLFIT_F0 / 

MIN_STYLFIT_F0_NEXT)             (A.26) 

 F0K_WORD_DIFF_LOHI_N = log(MIN_STYLFIT_F0 / 

MAX_STYLFIT_F0_NEXT)            (A.27) 

 F0K_WORD_DIFF_NNMN_N = log(MEAN_STYLFIT_F0 / 

MEAN_STYLFIT_F0_NEXT)            (A.28) 

 F0K_WORD_DIFF_HIHI_NG = (log (MAX_STYLFIT_F0) / log 

(MAX_STYLFIT_F0_NEXT)) / SPKR_FEAT_F0_RANGE        (A.29) 

 F0K_WORD_DIFF_HILO_NG = (log (MAX_STYLFIT_F0) / log 

(MIN_STYLFIT_F0_NEXT))/ SPKR_FEAT_F0_RANGE         (A.30) 

 F0K_WORD_DIFF_LOLO_NG = (log (MIN_STYLFIT_F0) / log 

(MIN_STYLFIT_F0_NEXT))/ SPKR_FEAT_F0_RANGE         (A.31) 

 F0K_WORD_DIFF_LOHI_NG = (log (MIN_STYLFIT_F0) / log 

(MAX_STYLFIT_F0_NEXT))/ SPKR_FEAT_F0_RANGE        (A.32) 

 F0K_WORD_DIFF_MNMN_NG = (log (MEAN_STYLFIT_F0) / log 

(MEAN_STYLFIT_F0_NEXT))/ SPKR_FEAT_F0_RANGE        (A.33) 

 F0K_WIN_DIFF_HIHI_N = log (MAX_STYLFIT_F0_WIN / 

MAX_STYLFIT F0_WIN_NEXT)            (A.34) 

 F0K_WIN_DIFF_HILO_N = log (MAX_STYLFIT_F0_WIN / 

MIN_STYLFIT_F0_WIN_NEXT)            (A.35) 

  F0K_WIN_DIFF_LOLO_N = log (MIN_STYLFIT_F0_WIN / 

MIN_STYLFIT_F0_WIN_NEXT)            (A.36) 

 F0K_WIN_DIFF_LOHI_N = log (MIN_STYLFIT_F0_WIN / 

MAX_STYLFIT_F0_WIN_NEXT)            (A.37) 

 F0K_WIN_DIFF_MNMN_NG = log (MEAN_STYLFIT_F0_WIN / 

MEAN_STYLFIT_F0_WIN_NEXT)           (A.38) 
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 F0K_WIN_DIFF_HIHI_NG = (log (MAX_STYLFIT_F0_WIN) / log 

(MAX_STYLFIT_F0_WIN_NEXT)) / SPKR_FEAT_F0_RANGE       (A.39) 

 F0K_WIN_DIFF_HILO_NG = (log (MAX_STYLFIT_F0_WIN) / log 

(MIN_STYLFIT_F0_WIN_NEXT)) / SPKR_FEAT_F0_RANGE        (A.40) 

 F0K_WIN_DIFF_LOLO_NG = (log (MIN_STYLFIT_F0_WIN) / log 

(MIN_STYLFIT_F0_WIN_NEXT)) / SPKR_FEAT_F0_RANGE       (A.41) 

 F0K_WIN_DIFF_LOHI_NG = (log (MIN_STYLFIT_F0_WIN) / log 

(MAX_STYLFIT_F0_WIN_NEXT)) / SPKR_FEAT_F0_RANGE       (A.42) 

 F0K_WIN_DIFF_MNMN_NG = (log (MEAN STYLFIT F0 WIN) / log 

(MEAN STYLFIT F0 WIN NEXT)) / SPKR FEAT F0 RANGE        (A.43) 

 F0K_DIFF_LAST_KBASELN = LAST_STYLFIT_F0 – 

SPKR_FEAT_F0_BASELN             (A.44) 

 F0K DIFF MEAN KBASELN = MEAN STYLFIT F0 - SPKR FEAT F0 

BASELN               (A.45) 

 F0K_DIFF_WINMIN_KBASELN = MIN_STYLFIT_F0_WIN – 

SPKR_FEAT_F0_ BASELN             (A.46) 

  F0K_LR_LAST_KBASELN = log (LAST_STYLFIT_F0 / 

SPKR_FEAT_F0_BASELN)            (A.47) 

 F0K_LR_MEAN_KBASELN = log (MEAN_STYLFIT_F0 / 

SPKR_FEAT_F0_BASELN)            (A.48) 

 F0K_LR_WINMIN_KBASELN = log (MIN_STYLFIT_F0_WIN / 

SPKR_FEAT_F0_BASELN)            (A.49) 

 F0K_ZRANGE_MEAN_KBASELN = (MEAN_STYLFIT_F0 – 

SPKR_FEAT_F0_BASELN) / SPKR_FEAT_F0_RANGE         (A.50) 

  F0K ZRANGE_MEAN_KTOPLN = (SPKR_FEAT_F0_TOPLN – 

MEAN_STYLFIT_F0) / SPKR_FEAT_F0_RANGE                    (A.51) 

 F0K_ZRANGE_MEANNEXT_KBASELN = (MEAN_STYLFIT_F0_NEXT 

–SPKR_FEAT_F0_BASELN) / SPKR_FEAT_F0_RANGE        (A.52) 

 F0K_ZRANGE_MEANNEXT_KTOPLN = (SPKR_FEAT_F0_TOPLN – 

MEAN_FEAT_F0_NEXT) / SPKR_FEAT_F0_RANGE         (A.53) 

 F0K_DIFF_MEANNEXT_KTOPLN = MEAN_STYLFIT_F0_NEXT – 

SPKR_FEAT_F0_TOPLN             (A.54) 
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 F0K_DIFF_MAXNEXT_KTOPLN = MAX_STYLFIT_F0_NEXT – 

SPKR_FEAT_F0_TOPLN             (A.55) 

 F0K_DIFF_WINMAXNEXT_KTOPLN = MAX STYLFIT_F0_NEXT_WIN 

– SPKR_FEAT_F0_TOPLN             (A.56) 

 F0K_LR_MEANNEXT_KTOPLN = log (MEAN_STYLFIT_F0_NEXT / 

SPKR_FEAT_F0_TOPLN)             (A.57) 

 F0K_LR_MAXNEXT_KTOPLN = log (MAX_STYLFIT_F0_NEXT / 

SPKR_FEAT_F0_TOPLN)                                   (A.58) 

 F0K_LR_WINMAXNEXT_KTOPLN = log 

(MAX_STYLFIT_F0_NEXT_WIN / SPKR_FEAT_F0_TOPLN)        (A.59) 

 F0K_MAXK_MODE_N = log (MAX_STYLFIT_F0 / 

SPKR_FEAT_F0_MODE)                        (A.60) 

 F0K_MAXK_NEXT_MODE_N = log (MAX_STYLFIT_F0_NEXT / 

SPKR_FEAT_F0_MODE)                        (A.61) 

 F0K_MAXK_MODE_Z = (MAX_STYLFIT_F0 – 

SPKR_FEAT_F0_MODE) / SPKR_FEAT_F0_RANGE         (A.62) 

  F0K_MAXK_NEXT_MODE_Z = (MAX_STYLFIT_F0_NEXT – 

SPKR_FEAT_F0_MODE) / SPKR_FEAT_F0_RANGE                        (A.63) 

 F0K_WORD_DIFF_BEGBEG = log (FIRST_STYLFIT_F0 / 

FIRST_STYLFIT_F0_NEXT)            (A.64) 

  F0K_WORD_DIFF_ENDBEG = log (LAST_STYLFIT_F0 / 

FIRST_STYLFIT_F0_NEXT)            (A.65) 

 F0K_INWRD_DIFF = log (FIRST_STYLFIT_F0 / LAST_STYLFIT_F0) 

                     (A.66) 

 LAST_SLOPE: The last ‘’f’’ or’’ r’’ slope in PATTERN_SLOPE. 

 FIRST SLOPE NEXT: The first ’’ f’’ or ‘’ r’’ slope in 

PATTERN_SLOPE_NEXT. 

 SLOPE_DIFF_N = SLOPE_DIFF / SKPR_FEAT_F0_SD_SLOPE      (A.67) 

 LAST_SLOPE_N = LAST_SLOPE/ LAST_STYLFIT_F0         (A.68) 
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A.3.6 Energy Derived Features 

Energy derived features are formed from energy features. They are computed 

similarly as the derived F features as listed below. 

 ENERGY_WORD_DIFF_HIHI_N 

 ENERGY_WORD_DIFF_HILO_N 

 ENERGY_WORD_DIFF_LOLO_N 

 ENERGY_WORD_DIFF_LOHI_N 

 ENERGY_WORD_DIFF_MNMN_N 

 ENERGY_WORD_DIFF_HIHI_NG 

 ENERGY_WORD_DIFF_HILO_NG 

 ENERGY_WORD_DIFF_LOLO_NG 

 ENERGY_WORD_DIFF_LOHI_NG 

 ENERGY_WORD_DIFF_MNMN_NG 

 ENERGY_WIN_DIFF_HIHI_N 

 ENERGY_WIN_DIFF_HILO_N 

 ENERGY_WIN_DIFF_LOLO_N 

 ENERGY_WIN_DIFF_LOHI_N 

 ENERGY_WIN_DIFF_MNMN_NG 

 ENERGY_WIN_DIFF_HIHI_NG 

 ENERGY_WIN_DIFF_HILO_NG 

 ENERGY_WIN_DIFF_LOLO_NG 

 ENERGY_WIN_DIFF_LOHI_NG 

 ENERGY_WIN_DIFF_MNMN_NG 

 ENERGY_DIFF_LAST_KBASELN 

 ENERGY_DIFF_MEAN_KBASELN 

 ENERGY_DIFF_WINMIN_KBASELN 

 ENERGY_LR_LAST_KBASELN 

 ENERGY_LR_MEAN_KBASELN 

 ENERGY_LR_WINMIN_KBASELN 

 ENERGY_ZRANGE_MEAN_KBASELN 

 ENERGY_ZRANGE_MEAN_KTOPLN 

 ENERGY_ZRANGE_MEANNEXT_KBASELN 
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 ENERGY_ZRANGE_MEANNEXT_KTOPLN 

 ENERGY_DIFF_MEANNEXT_KTOPLN 

 ENERGY_DIFF_MAXNEXT_KTOPLN 

 ENERGY_DIFF_WINMAXNEXT_KTOPLN 

 ENERGY_LR_MEANNEXT_KTOPLN 

 ENERGY_LR_MAXNEXT_KTOPLN 

 ENERGY_LR_WINMAXNEXT_KTOPLN 

 ENERGY_MAXK_MODE_N 

 ENERGY_MAXK_NEXT_MODE_N 

 ENERGY_MAXK_MODE_Z 

 ENERGY_MAXK_NEXT_MODE_Z 

 ENERGY_WORD_DIFF_BEGBEG 

 ENERGY_WORD_DIFF_ENDBEG 

 ENERGY_INWRD_DIFF 

 ENERGY_LAST_SLOPE 

 ENERGY_SLOPE_DIFF_N 

 ENERGY_LAST_SLOPE_N 

A.3.7 Average Phone Duration 

 AVG_PHONE_DUR_Z = 
_ _ _

_ ( ) /#
every phone in word

phone z phone phones  

                (A.69) 

 MAX_PHONE_DUR_Z = 
_ _ _

m ax _ ( )
every phone in word

phone z phone   

                       (A.70) 

 AVG_PHONE_DUR_N = 
_ _ _

_ [ ] /#
every phone in w ord

phone n phone phones  

 (A.71) 

A.3.8 Speaker Specific Normalization 

 AVG_PHONE_DUR_ZSP = 

_ _ _
_ [ ] /#

every phone in word
phone zsp phone phones           (A.72) 

 MAX_PHONE_DUR_ZSP = 
_ _ _ _ [ ]

m ax
every phone in word phone zsp phone

          (A.73) 

 AVG_PHONE_DUR_NSP = 

_ _ _
_ [ ] /#

every phone in w ord
phone nsp phone phones           (A.74) 
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 MAX_PHONE_DUR_NSP = 
_ _ _

max _ [ ]
every phone in word

phone nsp phone  (A.75) 

To be performed features with over only the vowels listed below (similar to 

_PHONE_DUR_ ) ; 

 AVG_VOWEL_DUR_Z 

 MAX_VOWEL_DUR_Z 

 AVG_VOWEL_DUR_N 

  MAX_VOWEL_DUR_N 

 AVG_VOWEL_DUR_ZSP 

 MAX_VOWEL_DUR_ZSP 

 AVG_VOWEL_DUR_NSP 

 MAX_VOWEL_DUR_NSP 
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Appendix B Praat Scripts 

 

B.1 Scripts For Computing Global Statistics (‘’code/stats’’) 

 stats_batch_praat: The interface for accepts inputs and controls the statistics. 

 operations.praat: Highest level of the operation flow. 

 io.praat: Controller for input and output files. 

 table.praat: Controller for table operations. 

 stats.praat: Routines for computing statistics. 

 routine.praat: Routines for obtaining various basic elements. 

 utils.praat: Routines for some miscellaneous utility. 

 config.praat: Configuration of the pre-defined parameter values, such as 

frame and window size, default file names, etc. 

B.2 Scripts for Extracting Prosodic Features (‘’code/’’) 

 main_batch.praat: The interface for accepts inputs and controls the statistics. 

 operations.praat: Highest level of operation flow. 

 io.praat: Controller for input and output files. 

 table.praat: Controller for table operations. 

 fetch.praat: Higher level routines for extracting basic prosodic features. 

  routine.praat: Routines for obtaining various basic elements, and lower 

level routines that implement feature extraction. 

 derive.praat: Routines for computing derived features. 

 utils.praat: Routines for some miscellaneous utility. 

 config.praat: Configuration of the pre-defined parameter values, such 

as frame and window size, default file names, etc. 

 pf_list_files/feature_name_table.Tab: Contains a list of feature names.  
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Appendix C Morphological Feature List 

 

 Alpha: Symbols of the alphabet 

 Adj: Adjective 

 Adv: Adverb 

 Cnj: Conjunction 

 Det: Determiner 

 Exist: The word var and yok 

 Ij: Interjection 

 N: Noun 

 Not: The word değil 

 Num: Number 

 Onom: Onomatopoeia 

 Postp: Postposition 

 Prn: Pronoun 

 Punc: Punctuation 

 Q: Question particle mI 

 V: Verb 

 1s: First person single 

 2s: Second person single 

 3s: Third person single 

 1p: First person plural 

 2p: Second person plural 

 3p: Third person plural 
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