• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • MF - Makale Koleksiyonu | Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • View Item
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • MF - Makale Koleksiyonu | Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Maximum likelihood blind channel estimation for space-time coding systems

Thumbnail

View/Open

Publisher's Version (831.2Kb)

Date

2002-05

Author

Çırpan, Hakan Ali
Panayırcı, Erdal
Çekli, Erdinç

Metadata

Show full item record

Citation

Çırpan, H. A., Panayırcı, E. & Çekli, E. (2002). Maximum likelihood blind channel estimation for space-time coding systems. Eurasip Journal on Applied Signal Processing, 2002(5), 497-506. doi:10.1155/S1110865702000847

Abstract

Sophisticated signal processing techniques have to be developed for capacity enhancement of future wireless communication systems, In recent years, space-time coding is proposed to provide significant capacity gains over the traditional communication systems in fading wireless channels. Space-time codes are obtained by combining channel coding, modulation, transmit diversity, and optional receive diversity in order to provide diversity at the receiver and coding gain without sacrificing the bandwidth. In this paper, we consider the problem of blind estimation of space-time coded signals along with the channel parameters. Both conditional and unconditional maximum likelihood approaches are developed and iterative solutions are proposed. The conditional maximum likelihood algorithm is based on iterative least squares with projection whereas the unconditional maximum likelihood approach is developed by means of finite state Markov process modelling. The performance analysis issues of the proposed methods are studied. Finally, some simulation results are presented.

Source

EURASIP Journal on Advances in Signal Processing

Volume

2002

Issue

5

URI

https://hdl.handle.net/11729/113
http://dx.doi.org/10.1155/S1110865702000847

Collections

  • MF - Makale Koleksiyonu | Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering [181]
  • Scopus İndeksli Makale Koleksiyonu [915]
  • WoS İndeksli Makale Koleksiyonu [929]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Işık

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitationThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitation

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || Işık University || OAI-PMH ||

Işık University Library, Şile, İstanbul, Turkey
If you find any errors in content please report us

Creative Commons License
Işık University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Işık:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.