• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • MF - Bildiri Koleksiyonu | Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • View Item
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • MF - Bildiri Koleksiyonu | Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Real time electrocardiogram identification with multi-modal machine learning algorithms

Thumbnail

View/Open

Publisher's Version (607.6Kb)

Date

2018

Author

Waili, Tuerxun
Nor, Rizal Mohd
Sidek, Khairul Azami
Rahman, Abdul Wahab Bin Abdul
Güven, Gökhan

Metadata

Show full item record

Citation

Waili, T., Nor, R. M., Sidek, K. A., Rahman, A. W. B.A. & Güven, G. (2018). Real time electrocardiogram identification with multi-modal machine learning algorithms. 2nd International Conference of Reliable Information and Communication Technology (IRICT), 5, 459-466. doi:10.1007/978-3-319-59427-9_48

Abstract

Weaknesses in conventional identification technologies such as identification cards, badges and RFID tags prompts attention to biometric form of identification. Biometrics like voice, brain signal and finger print are unique human traits that can be used for identification. In this paper we present an identification system based on Electrocardiogram (heart signal). There is a considerable number of research in the past with high accuracy for identification , however, most ignore the practical time required to identify an individual. In this study, we explored a more practical approach in identification by reducing the number of time required for identification. We explore ways to identity a person within 3-4 s using just 5 heart beats. We extracted few reliable features from each QRS complexes, combined effort of three algorithms to achieve 96% accuracy. This approach is more suitable and practical in real time applications where time for identification is important.

Source

2nd International Conference of Reliable Information and Communication Technology (IRICT)

Volume

5

URI

https://hdl.handle.net/11729/1468
http://dx.doi.org/10.1007/978-3-319-59427-9_48

Collections

  • MF - Bildiri Koleksiyonu | Elektrik-Elektronik Mühendisliği Bölümü / Department of Electrical-Electronics Engineering [222]
  • Scopus İndeksli Bildiri Koleksiyonu [456]
  • WoS İndeksli Bildiri Koleksiyonu [355]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Işık

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitationThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitation

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || Işık University || OAI-PMH ||

Işık University Library, Şile, İstanbul, Turkey
If you find any errors in content please report us

Creative Commons License
Işık University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Işık:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.