• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • MF - Bildiri Koleksiyonu | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • View Item
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • MF - Bildiri Koleksiyonu | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A new approach for named entity recognition

Thumbnail

View/Open

Publisher's Version (165.8Kb)

Date

2017

Author

Ertopçu, Burak
Kanburoğlu, Ali Buğra
Topsakal, Ozan
Açıkgöz, Onur
Gürkan, Ali Tunca
Özenç, Berke
Avar, Begüm
Ercan, Gökhan
Yıldız, Olcay Taner
Çam, İlker

Metadata

Show full item record

Citation

Ertopçu, B., Kanburoğlu, A. B., Topsakal, O., Açıkgöz, O., Gürkan, A. T., Özenç, B., Avar, B., Ercan, G., Çam, İ. & Yıldız, O. T. (2017). A new approach for named entity recognition. Paper presented at the 2nd International Conference on Computer Science and Engineering, UBMK 2017, 474-479. doi:10.1109/UBMK.2017.8093439

Abstract

Many sentences create certain impressions on people. These impressions help the reader to have an insight about the sentence via some entities. In NLP, this process corresponds to Named Entity Recognition (NER). NLP algorithms can trace a lot of entities in the sentence like person, location, date, time or money. One of the major problems in these operations are confusions about whether the word denotes the name of a person, a location or an organisation, or whether an integer stands for a date, time or money. In this study, we design a new model for NER algorithms. We train this model in our predefined dataset and compare the results with other models. In the end we get considerable outcomes in a dataset containing 1400 sentences.

Source

2nd International Conference on Computer Science and Engineering, UBMK 2017

URI

https://hdl.handle.net/11729/1513
http://dx.doi.org/10.1109/UBMK.2017.8093439

Collections

  • MF - Bildiri Koleksiyonu | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering [112]
  • Scopus İndeksli Bildiri Koleksiyonu [460]
  • WoS İndeksli Bildiri Koleksiyonu [370]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Işık

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitationThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitation

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || Işık University || OAI-PMH ||

Işık University Library, Şile, İstanbul, Turkey
If you find any errors in content please report us

Creative Commons License
Işık University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Işık:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.