Basit öğe kaydını göster

dc.contributor.authorDimitrov, Ventzislav Ivanoven_US
dc.date.accessioned2015-01-15T23:00:19Z
dc.date.available2015-01-15T23:00:19Z
dc.date.issued2005-09-01
dc.identifier.citationDimitrov, V. I. (2005). The liquid-glass transition - is it a fourth order phase transition? Journal of Non-Crystalline Solids, 351(30-32), 2394-2402. doi:10.1016/j.jnoncrysol.2005.06.024en_US
dc.identifier.issn0022-3093
dc.identifier.issn1873-4812
dc.identifier.urihttps://hdl.handle.net/11729/171
dc.identifier.urihttp://dx.doi.org/10.1016/j.jnoncrysol.2005.06.024
dc.description.abstractThe liquid-glass transition is analyzed using a theory of Brownian motion in liquids recently developed by the author. It is shown that if a liquid could be cooled in quasi-static process and still avoids crystallization it would transform into a stable non-crystalline solid, which would be a normal thermodynamic phase. This hypothetical phase transition is neither first nor second order. At equilibrium transition temperature the free energy of the system and its first, second and third derivatives are all continuous functions, but its fourth derivative with respect to temperature is discontinuous. Therefore, the equilibrium liquid to non-crystalline solid transition may be considered a fourth order phase transition. The temperature of this phase transition, T-K, which coincides approximately with the Kauzmann temperature, is below the standard glass transition temperature T, (When the temperature decreases below T-g, the viscosity increases above 10(13) dPa s.) When the temperature decreases below T-K, the system becomes an ideal solid because the molecular mobility becomes zero and the viscosity becomes infinite if we neglect vacancy-like mechanisms of mobility. This hypothetical quasi-static transition is physically unobservable because the real liquid-glass transition must be done at a cooling rate high enough to suppress the growth of nanocrystals, which makes the liquid-glass transformation a non-equilibrium complicated phenomenon. Understanding this ideal phase transition is a first step towards describing the real liquid-glass transition from first principles.en_US
dc.language.isoengen_US
dc.publisherElsevier Scienceen_US
dc.relation.isversionof10.1016/j.jnoncrysol.2005.06.024
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectComputer-simulationen_US
dc.subjectDynamicsen_US
dc.subjectPolymersen_US
dc.subjectRelaxationen_US
dc.subjectScatteringen_US
dc.subjectStateen_US
dc.subjectCrystallizationen_US
dc.subjectFree energyen_US
dc.subjectMolecular dynamicsen_US
dc.subjectNanostructured materialsen_US
dc.subjectPhase transitionsen_US
dc.subjectViscosityen_US
dc.subjectKauzmann temperatureen_US
dc.subjectLiquid-glass transitionen_US
dc.subjectMolecular mobilityen_US
dc.subjectQuasi-static processen_US
dc.subjectGlass transitionen_US
dc.titleThe liquid–glass transition – is it a fourth order phase transition?en_US
dc.typearticleen_US
dc.description.versionPublisher's Versionen_US
dc.relation.journalJournal of Non-Crystalline Solidsen_US
dc.contributor.departmentIşık Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümüen_US
dc.contributor.departmentIşık University, Faculty of Arts and Sciences, Department of Physicsen_US
dc.identifier.volume351
dc.identifier.issue30-32
dc.identifier.startpage2394
dc.identifier.endpage2402
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorDimitrov, Ventzislav Ivanoven_US
dc.relation.indexWOSen_US
dc.relation.indexScopusen_US
dc.relation.indexScience Citation Index Expanded (SCI-EXPANDED)en_US
dc.description.qualityQ1
dc.description.wosidWOS:000231930800006


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster