• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • MF - Makale Koleksiyonu | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • Öğe Göster
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • MF - Makale Koleksiyonu | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hybrid high dimensional model representation (HHDMR) on the partitioned data

Thumbnail

Göster/Aç

Publisher's Version (289.9Kb)

Tarih

2006-01-01

Yazar

Tunga, Mehmet Alper
Demiralp, Metin

Üst veri

Tüm öğe kaydını göster

Künye

Tunga, M. A. & Demiralp, M. (2006). Hybrid high dimensional model representation (HHDMR) on the partitioned data. Journal of Computational and Applied Mathematics, 185(1), 107-132. doi:10.1016/j.cam.2005.01.030

Özet

A multivariate interpolation problem is generally constructed for appropriate determination of a multivariate function whose values are given at a finite number of nodes of a multivariate grid. One way to construct the solution of this problem is to partition the given multivariate data into low-variate data. High dimensional model representation (HDMR) and generalized high dimensional model representation (GHDMR) methods are used to make this partitioning. Using the components of the HDMR or the GHDMR expansions the multivariate data can be partitioned. When a cartesian product set in the space of the independent variables is given, the HDMR expansion is used. On the other band, if the nodes are the elements of a random discrete data the GHDMR expansion is used instead of HDMR. These two expansions work well for the multivariate data that have the additive nature. If the data have multiplicative nature then factorized high dimensional model representation (FHDMR) is used. But in most cases the nature of the given multivariate data and the sought multivariate function have neither additive nor multiplicative nature. They have a hybrid nature. So, a new method is developed to obtain better results and it is called hybrid high dimensional model representation (HHDMR). This new expansion includes both the HDMR (or GHDMR) and the FHDMR expansions through a hybridity parameter. In this work, the general structure of this hybrid expansion is given. It has tried to obtain the best value for the hybridity parameter. According to this value the analytical structure of the sought multivariate function can be determined via HHDMR.

Kaynak

Journal of Computational and Applied Mathematics

Cilt

185

Sayı

1

Bağlantı

https://hdl.handle.net/11729/237
http://dx.doi.org/10.1016/j.cam.2005.01.030

Koleksiyonlar

  • MF - Makale Koleksiyonu | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering [67]
  • Scopus İndeksli Makale Koleksiyonu [916]
  • WoS İndeksli Makale Koleksiyonu [933]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Işık

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliIşık Yazarına GöreKünyeye GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliIşık Yazarına GöreKünyeye Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber || Kütüphane || Işık Üniversitesi || OAI-PMH ||

Işık Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Şile, İstanbul, Türkiye
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Creative Commons License
Işık Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Işık:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.