Show simple item record

dc.contributor.authorEsen, Oğulen_US
dc.contributor.authorSütlü, Serkanen_US
dc.date.accessioned2021-07-27T09:21:55Z
dc.date.available2021-07-27T09:21:55Z
dc.date.issued2021-06
dc.identifier.citationEsen, O. & Sütlü, S. (2021). Matched pair analysis of the Vlasov plasma. Journal Of Geometric Mechanics, 13(2), 209-246. doi:10.3934/jgm.2021011en_US
dc.identifier.issn1941-4889
dc.identifier.issn1941-4897
dc.identifier.otherWOS:000667634900003
dc.identifier.urihttps://hdl.handle.net/11729/3188
dc.identifier.urihttp://dx.doi.org/10.3934/jgm.2021011
dc.description.abstractWe present the Hamiltonian (Lie-Poisson) analysis of the Vlasov plasma, and the dynamics of its kinetic moments, from the matched pair decomposition point of view. We express these (Lie-Poisson) systems as couplings of mutually interacting (Lie-Poisson) subdynamics. The mutual interaction is beyond the well-known semi-direct product theory. Accordingly, as the geometric framework of the present discussion, we address the matched pair Lie-Poisson formulation allowing mutual interactions. Moreover, both for the kinetic moments and the Vlasov plasma cases, we observe that one of the constitutive subdynamics is the compressible isentropic fluid flow, and the other is the dynamics of the kinetic moments of order >= 2. In this regard, the algebraic/geometric (matched pair) decomposition that we offer, is in perfect harmony with the physical intuition. To complete the discussion, we present a momentum formulation of the Vlasov plasma, along with its matched pair decomposition.en_US
dc.description.sponsorshipThe first named author would like to thank Hasan Gumral for the enlightening discussions on the Vlasov plasma, especially on the momentumVlasov dynamics. OE would also like to express his gratitute to Miroslav Grmela, Michal Pavelka, and Petr Vagner for the illuminating discussions on the (ir)reversible plasma dynamics. Both authors present their hearthy thanks to Mansur Ismailov for the clarifying discussions on the functional analytical details. The authors acknowledge the support by TUBITAK (the Scientific and Technological Research Council of Turkey) under the project "Matched pairs of Lagrangian and Hamiltonian Systems" with the project number 117F426.en_US
dc.language.isoengen_US
dc.publisherAmerican Institute of Mathematical Sciences-AIMSen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectBracketsen_US
dc.subjectDynamicsen_US
dc.subjectEquationsen_US
dc.subjectGeometryen_US
dc.subjectHopf-Algebrasen_US
dc.subjectLiftsen_US
dc.subjectLie-poisson equationen_US
dc.subjectMatched pairs of Lie Algebrasen_US
dc.subjectMatched pairs of Lie groupsen_US
dc.subjectMomentsen_US
dc.subjectPoisson-Lie-groupsen_US
dc.subjectProductsen_US
dc.subjectTulczyjews tripleten_US
dc.subjectVlasov plasmaen_US
dc.titleMatched pair analysis of the Vlasov plasmaen_US
dc.typearticleen_US
dc.description.versionPublisher's Versionen_US
dc.relation.journalJournal Of Geometric Mechanicsen_US
dc.contributor.departmentIşık Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümüen_US
dc.contributor.departmentIşık University, Faculty of Arts and Sciences, Department of Mathematicsen_US
dc.contributor.authorID0000-0003-0925-8668
dc.identifier.volume13
dc.identifier.issue2
dc.identifier.startpage209
dc.identifier.endpage246
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorSütlü, Serkanen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/closedAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/closedAccess