Show simple item record

dc.contributor.authorGüz, Ümiten_US
dc.contributor.authorFavre, Benoiten_US
dc.contributor.authorHakkani Tür, Dileken_US
dc.contributor.authorTür, Gökhanen_US
dc.date.accessioned2015-01-15T23:01:18Z
dc.date.available2015-01-15T23:01:18Z
dc.date.issued2009-07
dc.identifier.citationGüz, Ü., Favre, B., Hakkani Tür, D. & Tür, G. (2009). Generative and discriminative methods using morphological information for sentence segmentation of turkish. IEEE Transactions on Audio, Speech, and Language Processing, 17(5), 895-903. doi:10.1109/TASL.2009.2016393en_US
dc.identifier.issn1558-7916
dc.identifier.issn1558-7924
dc.identifier.urihttps://hdl.handle.net/11729/326
dc.identifier.urihttp://dx.doi.org/10.1109/TASL.2009.2016393
dc.descriptionThis material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) CALO (NBCHD-030010) program, the DARPA GALE (HR0011-06-C-0023) program, the Scientific and Technological Research Council of Turkey (TUBITAK) fundings at SRI and ICSI, (TUBITAK CAREER Project 107E182, Extracting and Using Prosodic Information for Turkish Spoken Language), and the Isik University Research Fund (Project 05B304).en_US
dc.description.abstractThis paper presents novel methods for generative, discriminative, and hybrid sequence classification for segmentation of Turkish word sequences into sentences. In the literature, this task is generally solved using statistical models that take advantage of lexical information among others. However, Turkish has a productive morphology that generates a very large vocabulary, making the task much harder. In this paper, we introduce a new set of morphological features, extracted from words and their morphological analyses. We also extend the established method of hidden event language modeling (HELM) to factored hidden event language modeling (fHELM) to handle morphological information. In order to capture non-lexical information, we extract a set of prosodic features, which are mainly motivated from our previous work for other languages. We then employ discriminative classification techniques, boosting and conditional random fields (CRFs), combined with fHELM, for the task of Turkish sentence segmentation.en_US
dc.description.sponsorshipCALOen_US
dc.description.sponsorshipDARPA GALEen_US
dc.description.sponsorshipICSIen_US
dc.description.sponsorshipIsik Universityen_US
dc.description.sponsorshipTUBITAKen_US
dc.language.isoengen_US
dc.publisherIEEE-INST Electrical Electronics Engineers Incen_US
dc.relation.isversionof10.1109/TASL.2009.2016393
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectProsodic and lexical informationen_US
dc.subjectSentence segmentationen_US
dc.subjectTurkish morphologyen_US
dc.subjectAutomatic speech recognitionen_US
dc.subjectBoostingen_US
dc.subjectComputer scienceen_US
dc.subjectData miningen_US
dc.subjectFeature extractionen_US
dc.subjectHidden Markov modelsen_US
dc.subjectHybrid power systemsen_US
dc.subjectMorphologyen_US
dc.subjectNatural languagesen_US
dc.subjectVocabularyen_US
dc.subjectSpeech processingen_US
dc.subjectWord processingen_US
dc.subjectTurkish word sequencesen_US
dc.subjectConditional random fieldsen_US
dc.subjectDiscriminative classification techniquesen_US
dc.subjectDiscriminative methodsen_US
dc.subjectGenerative methodsen_US
dc.subjectHidden event language modelingen_US
dc.subjectMorphological informationen_US
dc.titleGenerative and discriminative methods using morphological information for sentence segmentation of Turkishen_US
dc.typearticleen_US
dc.description.versionPublisher's Versionen_US
dc.relation.journalIEEE Transactions on Audio Speech and Language Processingen_US
dc.contributor.departmentIşık Üniversitesi, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.contributor.departmentIşık University, Faculty of Engineering, Department of Electrical-Electronics Engineeringen_US
dc.contributor.authorID0000-0002-4597-0954
dc.identifier.volume17
dc.identifier.issue5
dc.identifier.startpage895
dc.identifier.endpage903
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorGüz, Ümiten_US
dc.relation.indexWOSen_US
dc.relation.indexScopusen_US
dc.relation.indexScience Citation Index Expanded (SCI-EXPANDED)en_US
dc.description.qualityQ2
dc.description.wosidWOS:000267434300005


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record