Show simple item record

dc.contributor.authorMiramirkhani, Farshaden_US
dc.contributor.authorKarbalayghareh, Mehdien_US
dc.contributor.authorUysal, Muraten_US
dc.date.accessioned2021-11-09T16:19:25Z
dc.date.available2021-11-09T16:19:25Z
dc.date.issued2021-10
dc.identifier.citationMiramirkhani, F., Karbalayghareh, M. & Uysal, M. (2021). Effect of scattering phase function on underwater visible light communication channel models. Physical Communication, 48, 1-8. doi:10.1016/j.phycom.2021.101410en_US
dc.identifier.issn1874-4907
dc.identifier.otherWOS:000697461500003
dc.identifier.urihttps://hdl.handle.net/11729/3282
dc.identifier.urihttp://dx.doi.org/10.1016/j.phycom.2021.101410
dc.description.abstractNon-sequential ray tracing simulations are commonly employed to model underwater visible light communication (VLC) channels. The accuracy of such simulations highly depends on how well the optical properties of water (i.e., absorption and scattering) as well as scattering phase function (SPF) are modeled in the simulation. Existing empirical models are only a function of chlorophyll concentration and particle composition and are independent of refractive index, size and concentration of particles. In this paper, we carry out an underwater VLC channel modeling study using the Mie SPF which provides a full description of the scattering from phytoplankton particles which dominate the optical properties of most oceanic waters. We obtain the channel impulse response (CIR) based on an extensive non-sequential ray tracing study and calculate the fundamental channel parameters such as channel gain and delay spread. Comparison of CIRs reveals out that deployment of simplified SPF models results in the overestimation of path loss with respect to Mie SPF. Our results clearly demonstrate the importance of selecting realistic SPF models for an accurate underwater VLC channel modeling. While highlighting the channel models, we discuss adaptive modulation technique to maximize the data rate under the constraint of a targeted bit error rate. Besides, the maximum achievable distance is also determined both in terms of analytical guarantees and computer simulations. The results reveal that larger transmission distances can be achieved through Mie SPF channel model.en_US
dc.language.isoengen_US
dc.publisherElsevier Ltden_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectAdaptive transmissionen_US
dc.subjectChannel modelingen_US
dc.subjectMie scatteringen_US
dc.subjectScattering phase function (SPF)en_US
dc.subjectUnderwater visible light communications (UVLC)en_US
dc.titleEffect of scattering phase function on underwater visible light communication channel modelsen_US
dc.typearticleen_US
dc.description.versionPublisher's Versionen_US
dc.relation.journalPhysical Communicationen_US
dc.contributor.departmentIşık Üniversitesi, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.contributor.departmentIşık University, Faculty of Engineering, Department of Electrical-Electronics Engineeringen_US
dc.contributor.authorID0000-0002-6691-9779
dc.identifier.volume48
dc.identifier.startpage1
dc.identifier.endpage8
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorMiramirkhani, Farshaden_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/closedAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/closedAccess