• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • MF - Makale Koleksiyonu | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • View Item
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • MF - Makale Koleksiyonu | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Incremental construction of classifier and discriminant ensembles

Thumbnail

View/Open

Publisher's Version (580.9Kb)
Author Pre-Print (277.2Kb)

Date

2009-04-15

Author

Ulaş, Aydın
Semerci, Murat
Yıldız, Olcay Taner
Alpaydın, Ahmet İbrahim Ethem

Metadata

Show full item record

Citation

Ulaş, A., Semerci, M., Yıldız, O. T. & Alpaydın, E. (2009). Incremental construction of classifier and discriminant ensembles. Information Sciences, 179(9), 1298-1318. doi:10.1016/j.ins.2008.12.024

Abstract

We discuss approaches to incrementally construct an ensemble. The first constructs an ensemble of classifiers choosing a subset from a larger set, and the second constructs an ensemble of discriminants, where a classifier is used for some classes only. We investigate criteria including accuracy, significant improvement, diversity, correlation, and the role of search direction. For discriminant ensembles, we test subset selection and trees. Fusion is by voting or by a linear model. Using 14 classifiers on 38 data sets. incremental search finds small, accurate ensembles in polynomial time. The discriminant ensemble uses a subset of discriminants and is simpler, interpretable, and accurate. We see that an incremental ensemble has higher accuracy than bagging and random subspace method; and it has a comparable accuracy to AdaBoost. but fewer classifiers.

Source

Information Sciences

Volume

179

Issue

9

URI

https://hdl.handle.net/11729/332
http://dx.doi.org/10.1016/j.ins.2008.12.024

Collections

  • MF - Makale Koleksiyonu | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering [63]
  • Scopus İndeksli Makale Koleksiyonu [885]
  • WoS İndeksli Makale Koleksiyonu [893]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Işık

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitationThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitation

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || Işık University || OAI-PMH ||

Işık University Library, Şile, İstanbul, Turkey
If you find any errors in content please report us

Creative Commons License
Işık University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Işık:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.