• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • İktisadi, İdari ve Sosyal Bilimler Fakültesi / Faculty of Economics, Administrative and Social Sciences
  • Enformasyon Teknolojileri Bölümü / Department of Information Technologies
  • Bildiri Koleksiyonu | Enformasyon Teknolojileri Bölümü / Department of Information Technologies
  • View Item
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • İktisadi, İdari ve Sosyal Bilimler Fakültesi / Faculty of Economics, Administrative and Social Sciences
  • Enformasyon Teknolojileri Bölümü / Department of Information Technologies
  • Bildiri Koleksiyonu | Enformasyon Teknolojileri Bölümü / Department of Information Technologies
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reviewing the effects of spatial features on price prediction for real estate market: Istanbul case

Thumbnail

View/Open

Publisher's Version (716.0Kb)

Date

2022-09-16

Author

Ecevit, Mert İlhan
Erdem, Zeki
Dağ, Hasan

Metadata

Show full item record

Citation

Ecevit, M. İ., Erdem, Z. & Dağ, H. (2022). Reviewing the effects of spatial features on price prediction for real estate market: Istanbul case. Paper presented at the 2022 7th International Conference on Computer Science and Engineering (UBMK), 490-495. doi:10.1109/UBMK55850.2022.9919540

Abstract

In the real estate market, spatial features play a crucial role in determining property appraisals and prices. When spatial features are considered, classification techniques have been rarely studied compared to regression, which is commonly used for price prediction. This study reviews spatial features' effects on predicting the house price ranges for real estate in Istanbul, Turkey, in the classification context. Spatial features are generated and extracted by geocoding the address information from the original data set. This geocoding and feature extraction is another challenge in this research. The experiments compare the performance of Decision Trees (DT), Random Forests (RF), and Logistic Regression (LR) classifier models on the data set with and without spatial features. The prediction models are evaluated based on classification metrics such as accuracy, precision, recall, and F1-Score. We additionally examine the ROC curve of each classifier. The test results show that the RF model outperforms the DT and LR models. It is observed that spatial features, when incorporated with non-spatial features, significantly improve the prediction performance of the models for the house price ranges. It is considered that the results can contribute to making decisions more accurately for the appraisal in the real estate industry.

Source

2022 7th International Conference on Computer Science and Engineering (UBMK)

URI

https://hdl.handle.net/11729/5362
http://dx.doi.org/10.1109/UBMK55850.2022.9919540

Collections

  • Bildiri Koleksiyonu | Enformasyon Teknolojileri Bölümü / Department of Information Technologies [2]
  • Scopus İndeksli Bildiri Koleksiyonu [469]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Işık

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitationThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitation

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || Işık University || OAI-PMH ||

Işık University Library, Şile, İstanbul, Turkey
If you find any errors in content please report us

Creative Commons License
Işık University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Işık:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.