Now showing items 28-47 of 216

      xmlui.ArtifactBrowser.ConfigurableBrowse.citation.column_heading
      Barlow, Martin T. & Karlı, D. (2021). Some boundary Harnack principles with uniform constants. Potential Analysis, 1-14. doi:10.1007/s11118-021-09922-3 [1]
      Bektas, B., & Dursun, U. (2016). On spherical submanifolds with finite type spherical gauss map. Advances in Geometry, 16(2), 243-251. doi:10.1515/advgeom-2016-0005 [1]
      Bektaş, B. & Dursun, U. (2015). Timelike rotational surfaces of elliptic, hyperbolic and parabolic types in minkowski space E-1(4) with pointwise 1-type gauss map. Filomat, 29(3), 381-392. doi:10.2298/FIL1503381B [1]
      Bektaş, B., Canfes, E. Ö. & Dursun, U. (2016). Pseudo-spherical submanifolds with 1-type pseudo-spherical gauss map. Results in Mathematics, 71(3-4), 867-887. doi:10.1007/s00025-016-0560-9 [1]
      Bektaş, B., Canfes, E. Ö. & Dursun, U. (2017). Classification of surfaces in a pseudo-sphere with 2-type pseudo-spherical gauss map. Mathematische Nachrichten, 290(16), 2512-2523. doi:10.1002/mana.201600498 [1]
      Borluk, H. & Erbay, S. (2011). Stability of solitary waves for three-coupled long wave-short wave interaction equations. IMA Journal of Applied Mathematics, 76(4), 582-598. doi:10.1093/imamat/hxq044 [1]
      Borluk, H. & Kalisch, H. (2012). Particle dynamics in the KdV approximation. Wave Motion, 49(8), 691-709. doi:10.1016/j.wavemoti.2012.04.007 [1]
      Borluk, H., Erbay, H. A. & Erbay, S. (2010). Non-existence and existence of localized solitary waves for the two-dimensional long-wave–short-wave interaction equations. Applied Mathematics Letters, 23(4), 356-360. doi:10.1016/j.aml.2009.10.010 [1]
      Borluk, H., Muslu, G. M. & Erbay, H. A. (2007). A numerical study of the long wave–short wave interaction equations. Mathematics and Computers in Simulation, 74(2), 113-125. doi:10.1016/j.matcom.2006.10.016 [1]
      Bıyıkoğlu, T. & Civan, Y. (2012). Four-cycled graphs with topological applications. Annals of Combinatorics, 16(1), 37-56. doi:10.1007/s00026-011-0120-7 [1]
      Bıyıkoğlu, T. & Leydold, J. (2010). Semiregular trees with minimal laplacian spectral radius. Linear Algebra and its Applications, 432(9), 2335-2341. doi:10.1016/j.laa.2009.06.014 [1]
      Bıyıkoğlu, T. & Leydold, J. (2012). Dendrimers are the unique chemical trees with maximum spectral radius. MATCH-Communications in Mathematical and in Computer Chemistry, 68(3), 851-854. [1]
      Bıyıkoğlu, T. & Leydold, J. (2012). Graphs of given order and size and minimum algebraic connectivity. Linear Algebra and its Applications, 436(7), 2067-2077. doi:10.1016/j.laa.2011.09.026 [1]
      Bıyıkoğlu, T. & Özkahya, L. (2015). Geometric representations and symmetries of graphs, maps and other discrete structures and applications in science. Tübitak, 1-54. [1]
      Bıyıkoğlu, T., & Leydold, J. (2009). Algebraic connectivity and degree sequences of trees. Linear Algebra and its Applications, 430(2), 811-817. doi:10.1016/j.laa.2008.09.030 [1]
      Bıyıkoğlu, T., Simic, S. K. & Stanic, Z. (2011). Some notes on spectra of cographs. Ars Combinatoria, 100, 421-434. [1]
      Bıyıkoǧlu, T. & Leydold, J. (2008). Graphs with given degree sequence and maximal spectral radius. Electronic Journal of Combinatorics, 15(1), 1-9. [1]
      Bıyıkoǧlu, T., Hellmuth, M. & Leydold, J. (2009). Largest eigenvalues of the discrete p-laplacian of trees with degree sequences. Electronic Journal of Linear Algebra, 18, 202-210. [1]
      Bıyıkoǧlu, T., Leydold, J. & Stadler, P. F. (2007). Laplacian eigenvectors of graphs. Lecture Notes in Mathematics, 1915 1-115. doi:10.1007/978-3-540-73510-6 [1]
      Çağatay Uçgun, F., Esen, O. & Gümral, H. (2018). Reductions of topologically massive gravity I: Hamiltonian analysis of the second order degenerate lagrangians. Journal of Mathematical Physics, 59(1), 1-26. doi:10.1063/1.5021948 [1]