Now showing items 48-67 of 216

      xmlui.ArtifactBrowser.ConfigurableBrowse.citation.column_heading
      Demiray, H. & Abdikian, A. (2019). Modulational instability of acoustic waves in a dusty plasma with nonthermal electrons and trapped ions. Chaos, Solitons and Fractals: The Interdisciplinary Journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena, 121, 50-58. doi:10.1016/j.chaos.2019.02.005 [1]
      Demiray, H. & Abdikian, A. (2020). Analysis of periodic and solitary waves in a magnetosonic quantum dusty plasma. Indian Journal of Physics, 95(6), 1255 - 1261. doi:10.1007/s12648-020-01752-0 [1]
      Demiray, H. & Bayındır, C. (2015). A note on the cylindrical solitary waves in an electron-acoustic plasma with vortex electron distribution. Physics of Plasmas, 22(9), 1-5. doi:10.1063/1.4929863 [1]
      Demiray, H. & El-Zahar, E. R. (2018). Cylindrical and spherical solitary waves in an electron-acoustic plasma with vortex electron distribution. Physics Of Plasmas, 25(4), 1-8. doi:10.1063/1.5021729 [1]
      Demiray, H. (1999). A modified reductive perturbation method as applied to nonlinear ion-acoustic waves. Journal of the Physical Society of Japan, 68(6), 1833-1837. doi:10.1143/JPSJ.68.1833 [1]
      Demiray, H. (1999). Modulation of nonlinear waves in a thin elastic tube filled with a viscous fluid. International Journal of Engineering Science, 37(14), 1877-1891. doi:10.1016/S0020-7225(98)00149-9 [1]
      Demiray, H. (1999). Propagation of weakly nonlinear waves in fluid-filled thick viscoelastic tubes. Applied Mathematical Modelling, 23(10), 779-798. doi:10.1016/S0307-904X(99)00012-8 [1]
      Demiray, H. (2000). A method for higher-order expansion in non-linear ion-acoustic waves. International Journal of Non-Linear Mechanics, 35(2), 347-353. doi:10.1016/S0020-7462(99)00023-2 [1]
      Demiray, H. (2000). On the contribution of higher order terms to solitary waves in fluid filled elastic tubes. Zeitschrift Für Angewandte Mathematik Und Physik, 51(1), 75-91. doi:10.1007/PL00001508 [1]
      Demiray, H. (2001). Localized travelling waves in a prestressed thick elastic tube. International Journal of Non-Linear Mechanics, 36(7), 1085-1095. doi:10.1016/S0020-7462(00)00073-1 [1]
      Demiray, H. (2001). Modulation of non-linear waves in a viscous fluid contained in an elastic tube. International Journal of Non-Linear Mechanics, 36(4), 649-661. doi:10.1016/S0020-7462(00)00029-9 [1]
      Demiray, H. (2001). Nonlinear waves in a viscous fluid contained in a viscoelastic tube. Zeitschrift Für Angewandte Mathematik Und Physik, 52(6), 899-912. doi:10.1007/PL00001586 [1]
      Demiray, H. (2001). Solitary waves in elastic tubes filled with a layered fluid. International Journal of Engineering Science, 39(6), 629-639. doi:10.1016/S0020-7225(00)00069-0 [1]
      Demiray, H. (2001). Solitary waves in fluid-filled elastic tubes: Weakly dispersive case. International Journal of Engineering Science, 39(4), 439-451. doi:10.1016/S0020-7225(00)00048-3 [1]
      Demiray, H. (2002). A note on the solution of perturbed Korteweg–de vries equation. Applied Mathematics and Computation, 132(2-3), 643-647. doi:10.1016/S0096-3003(01)00222-3 [1]
      Demiray, H. (2002). A note on the travelling wave solution to the perturbed burgers' equation. Applied Mathematical Modelling, 26(1), 37-40. doi:10.1016/S0307-904X(01)00037-3 [1]
      Demiray, H. (2002). Contribution of higher order terms in nonlinear ion-acoustic waves: Strongly dispersive case. Journal of the Physical Society of Japan, 71(8), 1921-1930. doi:10.1143/JPSJ.71.1921 [1]
      Demiray, H. (2002). Modulation of nonlinear waves in a viscous fluid contained in a tapered elastic tube. International Journal of Engineering Science, 40(17), 1897-1918. doi:10.1016/S0020-7225(02)00113-1 [1]
      Demiray, H. (2002). Nonlinear waves in a prestressed elastic tube filled with a layered fluid. International Journal of Engineering Science, 40(7), 713-726. doi:10.1016/S0020-7225(01)00100-8 [1]
      Demiray, H. (2002). Propagation of weakly nonlinear waves in fluid-filled thin elastic tubes. Applied Mathematics and Computation, 133(1), 29-41. doi:10.1016/S0096-3003(01)00223-5 [1]