• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
Search 
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Fen Edebiyat Fakültesi / Faculty of Arts and Sciences
  • Matematik Bölümü / Department of Mathematics
  • FEF - Makale Koleksiyonu | Matematik Bölümü / Department of Mathematics
  • Search
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Fen Edebiyat Fakültesi / Faculty of Arts and Sciences
  • Matematik Bölümü / Department of Mathematics
  • FEF - Makale Koleksiyonu | Matematik Bölümü / Department of Mathematics
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

Now showing items 1-10 of 12

  • Sort Options:
  • Relevance
  • Title Asc
  • Title Desc
  • Issue Date Asc
  • Issue Date Desc
  • Results Per Page:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Thumbnail

Hopf-dihedral (co)homology and L-theory 

Kaygun, Atabey; Sütlü, Serkan Selçuk (European Mathematical Soc, 2018-03-23)
We develop an appropriate dihedral extension of the Connes-Moscovici characteristic map for Hopf *-algebras. We then observe that one can use this extension together with the dihedral Chern character to detect non-trivial ...
Thumbnail

Characteristic classes of foliations via SAYD-twisted cocycles 

Rangipour, Bahram; Sütlü, Serkan Selçuk (European Mathematical Society, 2015)
We find the first non trivial “SAYD-twisted” cyclic cocycle over the groupoid action algebra under the symmetry of the affine linear transformations of the Euclidian space. We apply the cocycle to construct a characteristic ...
Thumbnail

Hopf-cyclic cohomology of the Connes-Moscovici Hopf algebras with infinite dimensional coefficients 

Rangipour, Bahram; Sütlü, Serkan Selçuk; Aliabadi, F. Yazdani (Springer Heidelberg, 2018-12-01)
We discuss a new strategy for the computation of the Hopf-cyclic cohomology of the Connes-Moscovici Hopf algebra Hn. More precisely, we introduce a multiplicative structure on the Hopf-cyclic complex of Hn, and we show ...
Thumbnail

Hochschild cohomology of reduced incidence algebras 

Sütlü, Serkan Selçuk; Kaygun, Atabey; Kanuni Er, Müge (World Scientific Publishing Co Pte Ltd, 2016-10-19)
We compute the continuous Hochschild cohomology of four reduced incidence algebras: the algebra of formal power series, the algebra of exponential power series, the algebra of Eulerian power series, and the algebra of ...
Thumbnail

Lagrangian dynamics on matched pairs 

Sütlü, Serkan Selçuk; Esen, Oğul (Elsevier Science BV, 2017-01)
Given a matched pair of Lie groups, we show that the tangent bundle of the matched pair group is isomorphic to the matched pair of the tangent groups. We thus obtain the Euler–Lagrange equations on the trivialized matched ...
Thumbnail

A characteristic map for compact quantum groups 

Kaygun, Atabey; Sütlü, Serkan Selçuk (Springer Heidelberg, 2017-09)
We show that if G is a compact Lie group and g is its Lie algebra, then there is a map from the Hopf-cyclic cohomology of the quantum enveloping algebra U-q(g) to the twisted cyclic cohomology of quantum group algebra ...
Thumbnail

Hom-Lie-Hopf algebras 

Halıcı, Serpil; Karataş, Adnan; Sütlü, Serkan Selçuk (Academic Press Inc., 2020-07-01)
We studied both the double cross product and the bicrossproduct constructions for the Hom-Hopf algebras of general (α,β)-type. This allows us to consider the universal enveloping Hom-Hopf algebras of Hom-Lie algebras, which ...
Thumbnail

Matched pairs of m-invertible hopf quasigroups 

Hassanzadeh, Mohammad; Sütlü, Serkan Selçuk (Institute of Mathematics, Academy of Sciences Moldova, 2020)
The matched pair theory (of groups) is studied for a class of quasigroups; namely, the m-inverse property loops. The theory is upgraded to the Hopf level, and the m-invertible Hopf quasigroups are introduced.
Thumbnail

Topological Hopf algebras and their Hopf-cyclic cohomology 

Rangipour, Bahram; Sütlü, Serkan Selçuk (Taylor and Francis, 2019-01-29)
A natural extension of the Hopf-cyclic cohomology, with coefficients, is introduced to encompass topological Hopf algebras. The topological theory allows to work with infinite dimensional Lie algebras. Furthermore, the ...
Thumbnail

Second order Lagrangian dynamics on double cross product groups 

Oğul, Esen; Kudeyt, Mahmut; Sütlü, Serkan Selçuk (Elsevier B.V., 2021-02)
We observe that the iterated tangent group of a Lie group may be realized as a double cross product of the 2nd order tangent group, with the Lie algebra of the base Lie group. Based on this observation, we derive the 2nd ...
  • 1
  • 2



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitationThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitation

My Account

LoginRegister

Discover

Author
Sütlü, Serkan Selçuk (12)
Kaygun, Atabey (5)Rangipour, Bahram (3)Aliabadi, F. Yazdani (1)Esen, Oğul (1)... View MoreSubjectHomology (5)Hopf-cyclic cohomology (5)Cyclic cohomology (4)Algebra (3)Algebras (3)... View MorePublication Typearticle (12)Languageeng (12)Publication CategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı (12)Access Typeinfo:eu-repo/semantics/closedAccess (12)Attribution-NonCommercial-NoDerivs 3.0 United States (4)Date Issued2016 (2)2017 (2)2018 (2)2020 (2)2021 (2)2015 (1)2019 (1)Full Text StatusWith Full Text (12)

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || Işık University || OAI-PMH ||

Işık University Library, Şile, İstanbul, Turkey
If you find any errors in content please report us

Creative Commons License
Işık University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Işık:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.