Toplam kayıt 68, listelenen: 32-51

      Künye Göre
      Rhouma, R., Solak, E. & Belghith, S. (2010). Cryptanalysis of a new substitution–diffusion based image cipher. Communications in Nonlinear Science and Numerical Simulation, 15(7), 1887-1892. doi:10.1016/j.cnsns.2009.07.007 [1]
      Rhouma, R., Solak, E., Arroyo, D., Li, S., Alvarez, G. & Belghith, S. (2009). Comment on “Modified baptista type chaotic cryptosystem via matrix secret key” [phys. lett. A 372 (2008) 5427]. Physics Letters A, 373(37), 3398-3400. doi:10.1016/j.physleta.2009.07.035 [1]
      Solak, E. & Çokal, C. (2008). Comment on "encryption and decryption of images with chaotic map lattices" [ chaos 16 , 033118 ( 2006 ) ]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 18(3), 1-4. doi:10.1063/1.2966114 [1]
      Solak, E. & Çokal, C. (2008). Cryptanalysis of a cryptosystem based on discretized two-dimensional chaotic maps. Physics Letters A, 372(46), 6922-6924. doi:10.1016/j.physleta.2008.10.022 [1]
      Solak, E. & Çokal, C. (2009). Algebraic break of a cryptosystem based on discretized two-dimensional chaotic maps. Physics Letters A, 373(15), 1352-1356. doi:10.1016/j.physleta.2009.02.024 [1]
      Solak, E. & Çokal, C. (2011). Algebraic break of image ciphers based on discretized chaotic map lattices. Information Sciences, 181(1), 227-233. doi:10.1016/j.ins.2010.09.009 [1]
      Solak, E., Çokal, C., Yıldız, O. T. & Bıyıkoğlu, T. (2010). Cryptanalysis of Fridrich's chaotic image encryption. International Journal of Bifurcation and Chaos, 20(5), 1405-1413. doi:10.1142/S0218127410026563 [1]
      Solak, E., Rhouma, R. & Belghith, S. (2010). Cryptanalysis of a multi-chaotic systems based image cryptosystem. Optics Communications, 283(2), 232-236. doi:10.1016/j.optcom.2009.09.070 [1]
      Solak, E., Rhouma, R. & Belghith, S. (2011). Breaking an orbit-based symmetric cryptosystem. Mathematical and Computer Modelling, 54(5-6), 1413-1419. doi:10.1016/j.mcm.2011.04.012 [1]
      Tek, F. B. (2013). Mitosis detection using generic features and an ensemble of cascade adaboosts. Journal of Pathology Informatics, 4(1), 1-6. doi:10.4103/2153-3539.112697 [1]
      Tek, F. B. (2019). Uyarlanır Yerel Bağlı Nöron Modelinin İncelemesi. Bilişim Teknolojileri Dergisi, 12(4), 307-317. doi:10.17671/gazibtd.569827 [1]
      Tek, F. B. (2021). An adaptive locally connected neuron model: Focusing neuron. Neurocomputing, 419, 306-321. doi:10.1016/j.neucom.2020.08.008 [1]
      Tek, F. B., Benli, K. S. & Deveci, E. (2018). Implicit theories and self-efficacy in an introductory programming course. IEEE Transactions on Education, 61(3), 218-225. doi:10.1109/TE.2017.2789183 [1]
      Tek, F. B., Cannavo, F., Nunnari, G. & Kale, İ. (2014). Robust localization and identification of african clawed frogs in digital images. Ecological Informatics, 23, 3-12. doi:10.1016/j.ecoinf.2013.09.005 [1]
      Tek, F. B., Çam, İ. & Karlı, D. (2021). Adaptive convolution kernel for artificial neural networks. Journal of Visual Communication and Image Representation, 75, 1-11.doi:10.1016/j.jvcir.2020.103015 [1]
      Tuna, Ö. F., Çatak, F. Ö. & Eskil, M. T. (2022). Closeness and uncertainty aware adversarial examples detection in adversarial machine learning. Computers and Electrical Engineering, 101, 1-12. doi:10.1016/j.compeleceng.2022.107986 [1]
      Tuna, Ö. F., Çatak, F. Ö. & Eskil, M. T. (2022). Exploiting epistemic uncertainty of the deep learning models to generate adversarial samples. Multimedia Tools and Applications, 81(8) 11479-11500. doi:10.1007/s11042-022-12132-7 [1]
      Tuna, Ö. F., Çatak, F. Ö. & Eskil, M. T. (2022). Uncertainty as a Swiss army knife: new adversarial attack and defense ideas based on epistemic uncertainty. Complex & Intelligent System, 1-19. doi:10.1007/s40747-022-00701-0 [1]
      Tunga, M. A. & Demiralp, M. (2006). Hybrid high dimensional model representation (HHDMR) on the partitioned data. Journal of Computational and Applied Mathematics, 185(1), 107-132. doi:10.1016/j.cam.2005.01.030 [1]
      Tunga, M. A., & Demiralp, M. (2005). A factorized high dimensional model representation on the nodes of a finite hyperprismatic regular grid. Applied Mathematics and Computation, 164(3), 865-883. doi:10.1016/j.amc.2004.06.056 [1]