• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • MF - Bildiri Koleksiyonu | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • View Item
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • MF - Bildiri Koleksiyonu | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Error propagation through generalized high dimensional model representation for data partitioning

Date

2004

Author

Tunga, Mehmet Alper
Demiralp, Metin

Metadata

Show full item record

Citation

Tunga, M. A. & Demiralp, M. (2004). Error propagation through generalized high dimensional model representation for data partitioning, Presented at the International Conference on Numerical Analysis and Applied Mathematics, 406-409.

Abstract

In many circumstances the explicit form of a multivariate function is not known; rather a finite number of data is listed from some physical experiments. In such cases a function can be constructed only by imposing some analytical structures containing a finite number of adjustable parameters to fit the function with the given values at some specified points. This means interpolation. The given data is collected or produced by some devices or means which may cause unavoidable errors. This results in an uncertainty band for each datum. The propagation of these errors through the interpolation is the focus of this work. It uses a new form of a partitioning technique called Generalized High Dimensional Model Representation (GHDMR). GHDMR is a divide-and-conquer approach starting from a constant component and proceeding upto high variate terms, univariate, bivariate and so on in the representation. The representation is truncated by keeping only constant and univariate terms for approximation. In other words just a single N variate problem is approximated by N univariate problem.

Source

International Conference of Numerical Analysis and Applied Mathematics

URI

https://hdl.handle.net/11729/664

Collections

  • MF - Bildiri Koleksiyonu | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering [110]
  • WoS İndeksli Bildiri Koleksiyonu [345]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Işık

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitationThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitation

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || Işık University || OAI-PMH ||

Işık University Library, Şile, İstanbul, Turkey
If you find any errors in content please report us

Creative Commons License
Işık University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Işık:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.