• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Fen Edebiyat Fakültesi / Faculty of Arts and Sciences
  • Matematik Bölümü / Department of Mathematics
  • FEF - Makale Koleksiyonu | Matematik Bölümü / Department of Mathematics
  • View Item
  •   DSpace@Işık
  • 1- Fakülteler | Faculties
  • Fen Edebiyat Fakültesi / Faculty of Arts and Sciences
  • Matematik Bölümü / Department of Mathematics
  • FEF - Makale Koleksiyonu | Matematik Bölümü / Department of Mathematics
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the class of harmonic mappings which is related to the class of bounded boundary rotation

Thumbnail

View/Open

Publisher's Version (265.4Kb)

Date

2015-09-15

Author

Aydoğan, Seher Melike
Polatoğlu, Yaşar
Kahramaner, Yasemin

Metadata

Show full item record

Citation

Polatoğlu, Y., Aydoğan, S. M. & Kahramaner, Y. (2015). On the class of harmonic mappings which is related to the class of bounded boundary rotation. Applied Mathematics and Computation, 267, 790-794. doi:10.1016/j.amc.2014.10.055

Abstract

The class of bounded radius of rotation is generalization of the convex functions. The concept of functions bounded boundary rotation originated from Loewner (1917). But he did not use the present terminology. It was Paatero (1931, 1933) who systematically developed their properties and made an exhaustive study of the class Vk. In the present paper we will investigate the class of harmonic mappings which is related to the class of bounded boundary rotation.

Source

Applied Mathematics and Computation

Volume

267

URI

https://hdl.handle.net/11729/698
http://dx.doi.org/10.1016/j.amc.2014.10.055

Collections

  • FEF - Makale Koleksiyonu | Matematik Bölümü / Department of Mathematics [217]
  • Scopus İndeksli Makale Koleksiyonu [916]
  • WoS İndeksli Makale Koleksiyonu [933]

Related items

Showing items related by title, author, creator and subject.

  • Minimal rotational surfaces in the product space Q(?)(2) X S-1 

    Arsan Gürpınar, Güler; Dursun, Uğur (World Scientific Publ Co Pte Ltd, 2018-07-01)
    In this work, we study minimal rotational surfaces in the product space Q(2)epsilon x S-1, where Q(2)epsilon denotes either the unit 2-sphere S-2 or the 2-dimensional hyperbolic space H-2 of constant curvature 1, according ...
  • Damariçi yanal kesit görüntüleme için farklı prob yapılarının incelenmesi 

    Şişman, Alper; Karaman, Mustafa (IEEE, 2009-06-26)
    Bu çalışmada dönen bir şaftın yanal yüzeyine yerleştirilmiş 8 adet içiçe halka elemanlardan oluşan yana bakan görüntüleme için yeni bir kateter yapısı incelenmiştir. Bu Katater mimarisi basit bir dizi önü alıcı verici ...
  • Spacelike rotational surfaces of elliptic, hyperbolic and parabolic types in Minkowski Space E-1(4) with pointwise 1-Type Gauss map 

    Dursun, Uğur; Bektaş, Burcu (Springer, 2014-06)
    In this paper, we consider a class of spacelike rotational surfaces in Minkowski space E-1(4) with 2-dimensional axis. There are three types of rotational surfaces with 2-dimensional axis, called rotational surfaces of ...



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Işık

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitationThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeIşık AuthorCitation

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || Işık University || OAI-PMH ||

Işık University Library, Şile, İstanbul, Turkey
If you find any errors in content please report us

Creative Commons License
Işık University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Işık:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.