
AUTHOR IDENTIFICATION OF NEWSPAPER COLUMNS

USING STYLE AND SEMANTIC FEATURES

Ergin Doğan Yıldız

B.S., Mathematics and Computer, İSTANBUL KÜLTÜR UNIVERSITY, 2011

Submitted to the Graduate School of Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

IŞIK UNIVERSITY

2016

IŞIK UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

AUTHOR IDENTIFICATION OF NEWSPAPER COLUMNS USING STYLE

AND SEMANTIC FEATURES

Ergin Doğan Yıldız

APPROVED BY:

Prof. Dr. Ercan Solak Işık University

(Thesis Supervisor)

Doç. Dr. Taner Eskil Işık University

Yrd. Doç. Dr. Mehmet Önal Işık University

APPROVAL DATE:/..../....

AUTHOR IDENTIFICATION OF NEWSPAPER

COLUMNS USING STYLE AND SEMANTIC

FEATURES

Abstract

This study has two major purposes : to implement and compare the author clas-

sification results of different Naive Bayes Classifiers, and to investigate whether

merging individual methods will increase classification success or not.

The subjects of this study were newspaper columnists. Data was collected from

well known public newspapers. This study first investigates Numeric, Nominal,

Multinominal NBC, and their various merged versions. We then address each

method using cross-validation.

The results of the experiments show that merging multiple classification methods

can increase classification success. Additionally, it depends on how well individ-

ual classification models are constructed.

ii

KÖŞE YAZILARININ YAZARLARINI STİL VE

ANLAMSAL ÖZELLİKLER KULLANARAK TANIMA

Özet

Bu çalışmanın iki amacı vardır : farklı Naive Bayes Sınıflandırma metodlarını

uygulamak, karşılaştırmak ve farklı sınıflandırma metodlarının birleştirilmesinin

sınıflandırma performansına olan etkisini ölçmek.

Bu çalışma gazete köşe yazarlarını konu almaktadır. Çalışma ilk olarak Sayısal,

Nominal, Multinominal NBC ve olası birleşik sınıflandırma metodlarını incele-

mektedir. Sonrasında her bir metod, çapraz doğrulama yöntemi ile test edilmek-

tedir.

Deney sonuçları sınıflandırma metodlarının birleştirilmesinin sınıflandırma başarı-

sını arttırdığını göstermektedir. Bunun ile birlikte bu başarı, birleşimin parçası

olan sınıflandırma metodlarının tekil başarılarına bağlıdır.

iii

Acknowledgements

I would first like to thank my thesis advisor Prof. Dr. Ercan Solak who gave me

the freedom to research on my own, and guidance to recover when I need help. I

also want to thank to my older brother Doç. Dr. Olcay Taner Yıldız for always

being there whenever I ran into trouble or had a question about my research or

writing. I would also like to acknowledge Anya Gallardo as the second reader of

this thesis, and I am thankful for her corrections of my grammatical and semantic

mistakes.

Most importantly, none of this would have been possible without the support and

patience of my family. I feel lucky to be a part of a well educated family. I want

to thank my parents for always teaching me to ask questions and improve myself.

Finally, I want to thank Işık university for their financial support through my

Master’s degree.

iv

To my Family. . .

Table of Contents

Abstract ii

Özet iii

Acknowledgements iv

List of Tables viii

List of Figures ix

List of Abbreviations x

1 Introduction 1

1.1 Literature Review . 2

1.2 Organization . 2

2 Solution Methodology 4

2.1 Our approach to the problem . 4

2.1.1 Corpus Construction Methodology 5

2.1.1.1 Collecting Data 5

2.1.1.2 Data Cleanup . 8

2.1.1.3 Linguistic Processing 9

2.1.2 Classification Methodology 9

2.1.2.1 Classification Concept 10

2.1.2.2 Training the Classification Model 11

2.1.2.3 Testing the Classification Model 13

3 Linguistic Features 15

3.1 Numeric, Nominal and Semantic Features 15

3.1.1 Numeric Features . 16

3.1.1.1 Features Used . 16

3.1.2 Nominal Features . 18

3.1.3 Semantic Features . 19

4 Machine Learning Techniques 22

4.1 Naive Bayes Classifier . 22

4.1.1 Gaussian Naive Bayes . 23

4.1.2 Multinominal Naive Bayes 24

5 Experiments 26

5.1 Experiments about data selection 27

5.2 Experiments with Gaussian NBC 29

5.2.1 Experiments with NBC . 29

5.2.2 Experiments with Nominal NBC 33

5.2.2.1 Experiments with word window-padding 33

5.2.3 Experiments with Merged Gaussian NBC 36

5.3 Experiments with Multinominal NBC 37

5.3.1 Experiments with Synonym NBC 38

5.3.2 Experiment with all NBC Merged together 39

6 Conclusion and Future Work 40

References 42

List of Tables

2.1 Corpus throughput . 6

5.1 Percentage needed for a feature to be meaningful 28

5.2 Feature referrals . 30

5.3 Isolated performances of each feature 30

5.4 AverageWordLengthFeature performance with root-version param-
eter . 31

5.5 Performance of each feature when paired with feature F6 31

5.6 Numeric NBC vs Nominal NBC 35

5.7 Numeric NBC and nominal NBC merged success rate 36

viii

List of Figures

3.1 Structure of synonym set record in BalkaNet file 20

5.1 Passage count relative to authors. 27

5.2 Forward feature selection success results 32

5.3 Window size relative to success rate 34

5.4 Padding size relative to success rate 35

5.5 Changes on success rate with author size using merged classifier . 37

5.6 Success rate relative to author size using Synonym NBC 38

5.7 Success rate relative to author size using all classifiers merged to-
gether . 39

ix

List of Abbreviations

NLP Natural Language Processing

NBC Naive Bayes Classifier

URL Uniform Resource Locator

HTML HyperText Markup Language

API Application Programming Interface

x

Chapter 1

Introduction

There is a vast amount of data on the Internet and it is growing rapidly everyday.

Such a high rate of growth also brings some problems with it. We can encounter

fraudulent, stolen or unidentified data online on a daily basis. These problems

can be dangerous and serious in places like the government, schools or public

websites. Because of these threats, and in pursuit of truth, it is important to

know the author of a text.

History gives us a fascinating example in The Federalist Papers. The Federalist

Papers [1] is a collection of 85 articles and essays written by Alexander Hamilton,

James Madison and John Jay promoting the creation of the United States Con-

stitution. At first authorship of the articles was a secret. After Hamilton’s death

two-thirds of the articles became public. The remaining one-third was identified

by Douglass Adair in 1944. After 20 years, Douglass Adair’s claims were corrob-

orated by a computer analysis in 1964. Even years after, the authorship of the

articles was controversial, drawing more statistical analysis.

The author identification of The Federalist Papers can be considered the most

iconic example of the author identification problem. More than 2 centuries have

passed since the papers were written but the problem of authorship still exists.

For our work, we want to focus on textual data, specifically newspaper passages.

We want to use Turkish newspapers as a data source. We want to use familiar

1

methodologies and algorithms to compare individual methods, as well as we want

to add something new to existing solutions. We test on interesting predictors and

synonyms to identify authors.

In this thesis, we attempt to create three different classifiers. Each of them use

a different methodology to classify authors. We merge two of them together and

later merge them all to increase the classification success. We expect that merging

classifiers will increase the total performance.

1.1 Literature Review

The problem of author identification problem is an old topic in the Natural Lan-

guage Processing field. Many researchers and scientists have worked on the prob-

lem before. Essays, emails and other sources have all received attention. Some of

the methods used are unigrams, bigrams and Naive Bayes Classifier.

There are many researchers who have worked on the subject in the last fifty years.

Brinegar [2] used world lengths to analyze documents, Morton [3] took a look at

sentence lengths, Brainerd [4] counted syllables per word, Holmes [5] looked at

the connection between word frequency and text length. Stamatatos-Fakotakis-

Kokkinakis [6] used Multiple Regression and Discriminant Analysis to identify

authors.

There have also been studies in author identification in Turkish texts. Taş and

Görür [7] used 35 different features on 20 different authors. They used many clas-

sification methods such as NBC, NBC Multinominal and compared their success

rates. Diri and Amasyalı [8] used 18 different authors with 20 text each. They

used 22 style markers and a new proposed method to identify authors.

1.2 Organization

The rest of the thesis is organized as follows :

2

In chapter 2, discuss our Solution Methodology. We talk about Corpus Construc-

tion, and our Classification Methodology. We give details about how we collect

our data, and what we do for data cleaning. We also explore our classification

methods and its training and testing phases in detail.

In chapter 3, we review the Linguistic Features we used. We talk about Numeric,

Nominal and Semantic features. We discuss each Numeric Features we use and

provide each of their benefits and their extraction details. We explain what

Nominal features are and their differences from Numeric Features. And finally,

we describe the Semantic Feature that we use and explain their similarities and

differences with Nominal Features.

In chapter 4, we discuss theoretical information about Machine Learning Tech-

niques. We examine the Naive Bayes Classifier, as well as the Gaussian Naive

Bayes and Multinominal Naive Bayes, which are different implementations of the

same classification methodology.

In chapter 5, we delve into our experiments. We state our experiment parameters,

expectations and results. We list our experiments on Naive Bayes Classifier,

Nominal Naive Bayes Classifier and Multinominal Naive Bayes Classifier. Finally,

we give results of NBC merged with Nominal NBC, and all three methods merged

together.

In chapter 6, we give our results a general evaluation. We explore what we can

do to expand our work and achieve better results. We conclude the chapter with

a list of tasks to do in the future.

3

Chapter 2

Solution Methodology

In this chapter we explain our approach to the problem. We talk about corpus

construction and classification methodologies in detail. We give coding level de-

tail about data collecting, data clean-up and extra data processing. We explain

classification concepts briefly and give detailed information about its training and

testing phases, including the code references and formulas that we used.

2.1 Our approach to the problem

Author identification is a complex problem and we want to use machine learning

techniques. We use a few probabilistic classifiers to predict the author of a given

passage.

In order to implement our solution we first need to construct a corpus. In order

to do this, we need to collect data from various sources. For our work, we choose

to analyze newspaper columns. Newspapers usually are good source for reliable,

grammatically correct data. Then we clean up our data. After completing the

clean-up, we develop several probabilistic classifiers that are specialized for author

identification.

We used 10 fold cross-validation to validate our classifiers. Finally we experiment

on and compare our classifiers with various parameters and arguments.

4

2.1.1 Corpus Construction Methodology

Corpus construction contains two stages. One is collecting the data and the

second is to do a clean-up on the data. Each of these stages play a huge role on

the classification. Collecting data involves downloading the resources we want to

classify. We want to collect diverse and meaningful data to test our classifiers.

With the original data, we also create a root version of the same data, and further

on we cleaned the data we collected. This helps us remove incorrectly formatted

data and finally remove the classification noise.

2.1.1.1 Collecting Data

Data collection was an important part of our work. In order to test our clas-

sifiers thoroughly, we needed a big corpus. We decided that we should choose

newspapers that have online data on their websites. This allows us to fetch their

data easier. For each newspaper, we fetch data into a local file with a pre-defined

format. Then later in the project, we create alternative and modified versions of

the same data for our future needs.

We work on newspapers because they are good resource which we have easy and

public access. Because we want a big corpus, we have to choose many newspapers.

We select 10 the top best selling newspapers in Turkey as our data source. We are

careful to choose our newspapers from different political, economical and cultural

perspectives.

We prefer not to discard any writer of a newspaper for our research. With that

said, in certain circumstances, we have to discard writers who have only a few

passages or writers who write in areas such as sports, magazine and such.

After we choose our newspapers and writers, we need to download their passages

to a local text file. Before doing any type of coding or work, we decide to take a

look at the pattern of the work we will do.

5

Newspaper Author Size Passage Size
Cumhuriyet 31 3409
Hürriyet 25 1622
Milliyet 163 8218
Posta 25 4146
Radikal 42 8229
Sabah 36 8112
Sözcü 23 9271
Takvim 76 8973
YeniŞafak 65 12332
Zaman 50 8430

Table 2.1: Corpus throughput

In order to download a writer’s passages, we need to reach to the newspaper’s

website first. This was a trivial problem due to the fact that all of the newspapers

we chose had public websites. We then have to find the writers of the newspaper.

Every newspaper has some kind of section or part of their website where they list

their writers. With this list, we had our writers. This list contains writer’s names

and some sort of identification of these writers. The next step is to reach all or a

portion of those writers passages through these identifiers.

With the ID of an author, we can construct the URL of an author’s passages. For

this, we need to solve the author-URL format of each newspaper. URL format

usually has data, pagination and the identification of an author. After we solve

the URL format, we can retrieve all passages of any author at any publishing

time for that newspaper.

The final step is to get the title, date, and actual passage from the web page.

This is common among all newspapers since all of them have it under “content”

tag. Fetching the data from a web page is the easier part of our work. We use

jsoup to download the actual content.

Jsoup [9] is a Java library for working with HTML. Jsoup parses HTML to simpli-

fied java objects. With jsoup, we can parse HTML pages of authors and eventually

extract the elements of a passage. It makes our work a lot easier since we do not

6

need to write the code to extract the data from a web page, remove, and validate

tags and unwanted elements. Jsoup is very easy to use. For example, the below

code can fetch the headlines in the news section.

Document doc = Jsoup.connect("http ://en.wikipedia.org/").get();

Elements newsHeadlines = doc.select("#mp-itn b a");

Applications that index and fetch data from websites are called crawlers. Their

purpose is to accelerate the search processes and allow real time searches. For our

project, we develop a crawler-like application for each newspaper. Each applica-

tion is different and unique, because they are modified for a specific newspaper.

There are many differences between a traditional crawler and our application. A

traditional crawler has a seed (a starting point) to start crawling and it jumps

from link to link and indexes each web page it loads. Our crawler is only respon-

sible for one newspaper and its writers, nothing more.

Each of our crawler applications has the same project structure. All of our

crawlers are dependent on a base crawler project that contains required base

classes. We have a fetcher class and it extends from thread class. Since the

fetcher class is a thread, we can create many fetchers and fetch different writers

in separate threads. This approach helps us increase the speed of the crawler and

make the code easier to develop. Each fetcher fetches the data of an author that

they are responsible for.

Crawling starts in the main function of the main class. The main classes are

named after the newspaper. For example, for the hypothetical newspaper Tiger

Daily, the main class would be TIGER.class. In the main function, we get the

list of the writers then we start the fetchers. After the fetchers start, their run

function is called. In the run function of the fetchers, we fetch the passages of the

author that the fetcher is responsible for. Since each newspaper has a different

URL formatting, we have to write a different URL generator for each crawler.

URL generators will generate a URL that usually contains multiple passage links.

7

With every generated URL, we get passage links and then loop around these links

to fetch the passage. Usually after we get the link to the passage page, the actual

passage string is under a content tag. We store authors, and their passages in

respective lists and eventually write their data to a text file.

We have respective classes for an author and a passage. In the author class, we

have an identifier, author name, all passages link and other variables. In the

passage class, we have title, passage, publish date, passage link and paragraph

list variables. After creating the file, we use log4j java library to write passages

and their meta data. We separate each passage with a “-” separator.

2.1.1.2 Data Cleanup

Data clean-up is a necessary part for our work. Even though most of the clean-up

is done by our jsoup library, we still need to do some further work. We mainly

do two types of cleaning : one is removing HTML tags from the data and the

second is to remove data that failed to download.

Data clean-up is important because it helps filter the data and even discards

faulty data. In the end, this helps to clear the data and helps us to test our

methods more accurately.

We did tag removing clean-up by using jsoup. In jsoup we translate a web page

into a list of elements. In these elements, we filter out the unnecessary data and

only retrieve the type we want to process. This is done by using tags. Thanks to

jsoup’s API, we managed to remove tags effortlessly.

We also remove passages that fail to download. While downloading the passages,

we might encounter with some exceptions. The most frequent exceptions we

encounter are : run-time exceptions and connection reset by server. For these

records, we write the type of the exception in the file and move to the next

passage. We have to remove these passages after we complete the respective

newspaper’s crawling.

8

2.1.1.3 Linguistic Processing

During our classification process and various tests, we come up with features and

methods that need a data that is stripped to its roots. Because of this reason, we

have to process the data and create a new version of the data. We could do this

processing on the fly, but that would be repetitive work and would lengthen the

time we need to classify.

To further process the data, we need to load the data we have already downloaded.

For this purpose, we wrote a function which loads the data. This function has

several parameters ; top passage count, min passage count and author count.

These parameters allow us to control the loading process.

We used Zemberek [10] to find the roots of the words. Zemberek is an open source

NLP library. Zemberek has many modules including morphology, tokenization,

and others. We used Zemberek because it is very fast and has a high success rate

at finding roots of the words.

In order to use Zemberek to find the roots, we had to write a disambiguator

package in our project. First we load all of the original data. For each newspaper,

we loop through their authors and then loop through each author’s passages. We

split each passage into sentences. Then we send them to Zemberek’s “parser”

function which will return the root version of each word in the sentence. By

adding each sentence to each other, we reconstructed the passage and re-wrote

the stemmed version passages to a new file.

2.1.2 Classification Methodology

In this section we give a brief definition of classification and its phases. We provide

a list of classifiers as well as detailed information about the classifier we used. We

talk about the phases of a classifier; testing and training. For each phase, we

give information regarding our models to finding results and finally returning the

success result of a classifier.

9

2.1.2.1 Classification Concept

Classification is a problem of identifying which category a new input belongs in.

An algorithm that implements a classification is called a classifier. There are

many algorithms that can be used for classification. Some of them are : Linear

Classification Algorithms, Support Vector Machines, Quadric Classifiers, Kernel

Estimation, Decision Trees, Neural Networks [11]. For our work we implemented

a Linear Classification Algorithm, Naive Bayes Classifier.

Classifiers usually have three main parts : an algorithm that will create a model

for the data which can be called as modeling, a training part which entails training

our model with training data, and finally a testing part. In testing part, we test

our model with the data that we already has a known category or group. Success

of the classifier depends on the type of the data to be classified. Thus it is very

important to examine the characteristics of the data and understand the details

of it. Classifiers usually need to be modified and specialized according to data.

We used a k-fold cross-validation testing method to test our classifier. K-fold

cross-validation is widely used for classifiers. K-fold cross-validation has k it-

erations. On each iteration one random unit datum is selected for testing and

the remaining k-1 are used for training. This process is repeated k times while

each randomly selected unit is used exactly once. With this method, we ensure

that all data is used for both training and testing. For our work we use 10-fold

cross-validation.

Identification of authors is a complex problem. We want to use machine learning

practices when approach this problem. We choose to implement a classifier be-

cause of these reasons and specifically NBC because it has high scalability due to

number of features/predictors it can have. When we need to try new model we

can do it easily.

As mentioned above, for our classification method we used various features to

predict the authors. First we had to come up with features. Features can be

10

numeric or nominal. We search for features that will differentiate authors from

one another. When we decide that we found a feature we would add it to our

feature list. The feature list serves as an outline for a passage. For numeric

features we wrote a FeatureExtractable interface that every concrete feature

class we create will extend from. The FeatureExtractable interface has only one

function : extractFeatureResult. ExtractFeatureResult takes passage as an

input and returns a double value. For nominal features we had to use respective

classifier’s feature representation. This usually is a map of string-double.

At the beginning of each classifier we experimented, we transformed passages

into feature vectors. We only need to do this transformation/extraction once.

After we extract the features from passages, we add these features to a feature

vector. Transforming the list of features to a vector makes future calculations

easier. As we discussed above, we use 10-fold cross-validation. For each fold

of the validation, we construct the training vectors and test vectors. We pass

the training vectors to Trainer class. Trainer class will iterate over all of the

training vectors and the classifier will create a model. This classifier model will

be an input to the tester as well as testing vectors. The tester class will test the

testing vector with the model and print a success result. The average of all folds

will be the final success of our classification methodology.

2.1.2.2 Training the Classification Model

The training phase of a classifier is responsible for creating the training model.

Training model loop through the training data and calculates necessary proba-

bilities to create the model. We use a training model to classify testing data in

the testing phase.

Training classes have two input arguments : features and training data. For

numeric features, we have a feature list; for nominal features we have a map of

string-double pairs. After we loop through all training data, we have a list of

11

string(author name)-double vector. This list is the output of the training

phase and re-calculated in every fold. Calculation details are as follows :

• Numeric Feature’s training calculation : For this type of training we

are going to calculate mean and standard deviation vectors for each author.

For each element xi of the feature vector, we can calculate the µ of the

feature with:

µ =
x1 + x2 + · · ·+ xn

n
(2.1)

For xi and µi we can calculate the σ with:

σ =

√√√√ 1

N − 1

N∑
i=1

(xi − µi)2 (2.2)

To calculate these vectors we have to loop through authors. On each author

we retrieve training data of that author and set it to a list. Now we can loop

through each feature vector’s values and calculate their mean and standard

deviation.

• Nominal Feature’s training calculation : For this type of training we

have to calculate the probability of each author. For Tct is the counter for

word t in passage c, we can calculate the conditional probability of t given

c with:

condprob[t][c] =
Tct + 1∑
t′(Tct′ + 1)

(2.3)

To calculate the conditional probabilities, we have to loop through authors.

On each author we retrieve training data of that author and set it to a list.

Now we can loop through each vector and calculate the probability.

12

2.1.2.3 Testing the Classification Model

The testing phase of a classifier is responsible for testing the training model and

finding the success rate of it. The tester class loops through testing data and

predicts an author for each of them. Adding each prediction result to each other

will give us the final result for a classification method.

Our testing class has two arguments : testing data and training model. We

calculate the probability of all authors for every testing data, and we return the

author who has the highest probability as a decision. The probability calculation

details are as follows :

• Numeric Feature’s testing calculation : For this type of testing we are

calculate likelihood of each author using training model. We can calculate

the probability of passage x authored by Cj with:

P (x|Cj) =
1√

2πσ2
j

e

−(x−µj)
2

2σ2
j (2.4)

To calculate the probability of an author for given passage, we have to use

the training model. At this point we already have the mean and standard

deviation of a given author, and we can use these vectors with the formula

2.4 to calculate the probability.

• Nominal Feature’s testing calculation : For this type of testing we

have to calculate the probability of each author. T begin the passage, for

every word t in passage T , we can calculate passage T authored by author

c with:

T∑
t

log condprob[t][c] (2.5)

To calculate the probability of an author for any given passage, we have to

use the training model. We loop through the passage vector and for every

13

value greater than zero, we fetch the related vector value from our training

model with the parameter of the author. Adding these values will give us

the final probability of an author.

After iterating over all of the testing data, we have a map of successful and failed

guesses. Successful guesses divided by all guesses gives us the success rate of the

fold.

14

Chapter 3

Linguistic Features

In this chapter we explain the types of features we use. We discuss numeric, nom-

inal and semantic features in detail. We talk about differences between the three.

We give detailed information about their data structure and how to extract their

feature values. We explain the benefit of using them in our research, including

code references to class structure.

3.1 Numeric, Nominal and Semantic Features

A feature is an attribute of an object that can characterize it. Most objects

and entities have more than one feature. In machine learning, we represent such

objects as a vector of features. Features help us differentiate objects from one

another and help us describe them. It is essential to select useful and distinctive

features in order to achieve high classification scores. Features can be numeric,

nominal and semantic. We will explain each of them in detail below.

Representing passages can be challenging. To achieve a sufficient representation,

we try to find various types of features. We add different features together to

achieve better representation and better classification scores. We also experiment

on each type of feature in isolation as well as experimenting by merging them

together gradually.

15

3.1.1 Numeric Features

A numeric feature is a measurement. Numeric features represent a feature of a

passage with numbers. We might say word count in a passage is a numeric feature

and that is true, but whether it helps to identify one passage from another is a

question we will answer later.

Numeric features were the starting point for our research. This is fitting because

numeric features are simpler and easier to implement. They are also good at

identifying passages. With the outcome of a number, it is easier to find new

useful features. Numeric features help us roughly shape our model.

We choose our numeric features carefully. We want to select features that are

distinctive and easy to calculate. We must find features that are neither common

nor rare. We came up with six feature that are suitable with our criteria. We

want to use more than one feature because, passages and authors have multiple

features and styles.

All of the features we use, their extracted result is a double value. For the

ease of use and design, we define an abstract Feature class and a Feature

Extractable interface. The Abstract Feature class contains variables and func-

tions that all features will share. Abstract Feature class implements Feature

Extractable interface. Feature Extractable interface has a function called

extractFeatureResult. When we want to create a new feature, we extend the

new feature from the abstract class and implement extractFeatureResult func-

tion. With this design we can create new features and add them to the feature

list easier.

3.1.1.1 Features Used

We wanted to use length and quantity as features. We used Average Word Length

as length feature. For countable features we used Punctuation Count, Sentence

16

Length as Word count, Vocabulary Extend, Average Paragraph Length, and Word

Count. We explain these features more in detail below.

• Average Word Length : Average word length is a simple but effective

feature. While selecting the features, we think about how we can represent

an author’s writing style. Some authors like to use longer and more com-

plicated words, while some do not. We think this can be a good feature to

identify an author.

• Punctuation Count : Punctuation count is an interesting feature. We

want to create features with different aspects of writing, and punctuation is

definitely one of them. We suspect some authors use commas or semicolons

more extensively. This can indicate that they like to present information in

list format.

The punctuation we are working with are : “.,:;”

• Average Sentence Length as Word count : Average sentence length

is one of the first features we first selected. It is very clear for us that some

authors uses considerably longer and complicated sentences, while some

uses shorter and more easily understood sentences. Both of them are style

choices and we believe it will help us identify authors.

• Vocabulary Extend : The vocabulary extend feature is used to measure

the vocabulary of an author. We think the vocabulary size of an author

can be a good identifier. Some authors might like to use the same words

repeatedly, while some authors might want to use different words.

We calculate vocabulary feature by dividing the distinct word count by the

total word count.

• Average Paragraph Length : The average paragraph length feature is

used to measure the paragraph length of authors. We separate paragraphs

by special characters in the data. While we are loading the data, we are

loading the passage as a list of paragraphs. Each paragraph is a separate

17

string. We think of paragraphs as sections or parts of the passage. Para-

graph length is a good feature because a length of a paragraph indicates an

author’s style to form his/her passage.

We calculate average paragraph length by dividing total words in the pas-

sage by paragraph count.

• Word Count : The word count feature measures the size of the passage.

We think passage size can be a good identifier. Some authors might prefer

to write longer sentences, some are more succinct. We think it is a good

predictor for us.

We calculate word count by splitting sentences into words and counting

them.

3.1.2 Nominal Features

In linguistics, “nominal” refers to the group nouns and adjectives. The nominal

feature we use can also be called as “word feature”. In numeric features, we use

numerical measurements to represent a passage. For nominal features, this is done

by word frequencies. In numeric features we calculate, for example, average word

length. Now with nominal features, we create a histogram with the frequencies

of the words.

We want to use Nominal Features because, we want a non-numeric feature to

represent passages. We want to compare the classification scores using nominal

features compared to numeric features. The benefit of using nominal features is

to use word frequencies as a representation, thus create a bag of words for each

author. This helps us to represent an author with a set of words.

We think that word frequencies can help identify passages. Most authors have

different backgrounds, education, and culture. We think that since they have

different backgrounds, they should have a different word set that they use often.

18

If we can represent their habits of using these words, this might help us identify

them. Nominal features are really helpful to create these word sets.

To construct our word set, we want to create a word-frequency file that contains

all words of data and their frequencies in descending order of their frequencies.

Using all of this file would be unnecessary since there will be words that are used

so rarely that will have no value on the identification process. Similarly, we need

to avoid top used words because these words are usually stop-words and they

also have no value on the identification. We solve this problem by using two

arguments : padding and window size.

We think of our nominal feature list as a window on the file. We have to find the

optimal padding from the beginning of the file (avoiding most frequent words)

and also the window size (avoiding least used words). We start to experiment

with window size. Since if we don’t know the optimal window size we can not set

the padding. We fix the padding to 0 and experiment on the value of window size.

We find that a 500 word window size gives us the highest score. After finding the

optimal window size, we fix the window size to 500 and experiment on padding.

We find that 125 gives us the highest score. With these test, we find that we need

to discard first 125 words and use the 500 after the first 125 words.

In order to find the word frequencies, we have to load all of the data and create

data that is stripped to its roots. This is necessary because we want to use

the core of the words to represent the passages. After we construct the root

version of data, we use this data to create a word-frequency file. We simply go

through the new data and count the frequency of each word. Then we write the

word-frequency map to the output file.

3.1.3 Semantic Features

A numeric feature was representing features with numbers and a nominal feature

was representing features with words. Semantic features represent features with

19

sets of meanings. We use synonym sets as semantic features. We want to use

semantic features because all the features we use were not directly tied to the

meaning of word. We want to use the meaning of the words in our features. We

want to create a wordNET of synonym set for each author as a model which can

represent an author’s writing topic.

To use synonyms for semantic features, we needed a wordNET. We found open

source project BalkaNet [12] for our synonym set source. BalkaNet is a multi-

lingual lexical database containing individual wordNETs for Balkan languages.

BalkaNet data is an XML formatted file. Every line of the file defines a synset.

The structure of each line is as follows :

<?xml version="1.0" encoding="UTF-8"?>

<SYNSET>

<ID>ENG20-09434163-n</ID>

<POS>n</POS>

<SYNONYM>

<LITERAL>

baba

<SENSE>1</SENSE>

</LITERAL>

<LITERAL>

peder

<SENSE>1</SENSE>

</LITERAL>

</SYNONYM>

<ILR>

ENG20-09725018-n

<TYPE>hypernym</TYPE>

</ILR>

<ILR>

ENG20-09663987-n

<TYPE>near_antonym</TYPE>

</ILR>

<DEF>Bir cocuga gore kendisinin dunyaya gelmesinde

etken olan erkek</DEF>

<BCS>1</BCS>

</SYNSET>

Figure 3.1: Structure of synonym set record in BalkaNet file

20

We first need to process the BalkaNet data to transform it to a synset map. For

this we have to go through every line of the file and find the synonym relations.

We discard everything but nouns. Every line in the BalkaNet file has a unique

synset id. We have to define a map with the synset id and add each new synonym

we found to the value of this id. Every synset has a list of words (synonyms) that

belongs to that list. For instance, in figure 3.1, ENG20-09434163-n is the id of

the synset and literals baba and peder belong to this synset. We calculate the

synset value by looking into this list and increasing the value by one when we see

the word in the list.

While running the classification, we have to have a reverse dictionary for synsets.

Because BalkaNet contains 10K synsets, finding which synset a new word belongs

to would take too much time. To make this search faster we create a new map,

mapping each word with the synset they belong to.

21

Chapter 4

Machine Learning Techniques

In this chapter we review the machine learning techniques that we use. We explain

why we use certain methods and classifiers. We explore each method with their

formulas and their classification phases.

Machine learning, is to use previous experiences to increase its future predictions

and decisions. It can be applied to areas such as data mining, pattern recognition,

classification and such. For our problem, we have to use machine learning prac-

tices because there was no simple or straightforward way to identify the authors.

Since we can not know certainly whether a passage belongs to a given author, we

can only calculate the probability with that author’s previous passages.

In our solution, we want to use the Naive Bayes Classifier. The Naive Bayes

Classifier is a suitable method for our problem for two reasons : one, is that it

uses a statistical decision logic based on the collected data, and second, it is easy

to implement and extend with new features and predictors.

4.1 Naive Bayes Classifier

The Naive Bayes Classifier is a probabilistic classifier that applies the Bayes theo-

rem while presuming the features are independent. NBC has two parts : training

and testing. In the training part, NBC creates a model with the training data

using features/predictors. In the testing part, NBC tests the classification model

22

using testing data. Some of the NBCs are Gaussian NBC, Multinominal NBC

and Bernoulli NBC.

In order to classify an instance of data, NBC creates a probabilistic model. Let’s

say our instance is X = [x1, x2, ..., xn]. With given class C, probability of instance

X belonging to class C is :

P (C|x) =
P (C)P (x|C)

P (x)
(4.1)

We can also rephrase the formula like :

posterior =
prior × likelihood

evidence
(4.2)

With an assumption of independent features, the probability of X belonging to

class Ci with K being the number of total classes is :

P (Ci|x) =
P (Ci)P (x|Ci)

P (x)
=

P (Ci)P (x|Ci)∑K
j=1 P (x|Cj)P (Cj)

(4.3)

And NBC picks the class that has the highest posterior probability :

Cmax = max
i
P (Ci|x) (4.4)

Depending on the type of the data we are going to classify, we can use different

types of NBC. For continuous data, we use Gaussian NBC and for discrete data,

we use Multinominal NBC.

4.1.1 Gaussian Naive Bayes

Gaussian NBC assumes that the data of class Cj is a Gaussian distribution.

With Gaussian NBC, for every Xi feature and Cj class, we calculate the mean

23

and variance. Then we can calculate the probability of X given with class Cj

with

P (x|Cj) =
1√

2πσ2
j

e

−(x−µj)
2

2σ2
j (4.5)

In the training phase of Gaussian NBC we calculate the µi and σi of the training

data. Then in the testing phase, we use µ and σ vectors and formula 4.5 to

calculate the probability of an instance X belonging to a class Cj.

4.1.2 Multinominal Naive Bayes

Multinominal NBC [13] is widely used in text classification. With Multinominal

NBC we can represent passages as a histogram of words. We can transfer a

passage d to a word frequency list, d = [t1, t2, ..., tn] where nd is the number of

tokens in passage d. The probability of passage d authored by author c is :

P (c|d) ∝ P (c)

nd∏
k=1

P (tk|c) (4.6)

where P (tk|c) is the conditional probability of word tk used by author c. We use

P (c) (prior probability) in case the passage’s words do not provide clear evidence.

In equation 4.6 for each tk in nd probabilities are multiplied. To avoid floating

point underflow we will transform the equation into logarithmic form.

P (c|d) ∝ logP (c) +

nd∑
k=1

logP (tk|c) (4.7)

We can calculate the conditional probability P (t|c) for t being the word that

author c uses :

24

P (t|c) =
Tct∑

t∈V (Tct)
(4.8)

where V is the vocabulary, Tct is the frequency of word t in training set of author

c. To avoid zeros, we use Laplace smoothing, which adds one to each frequency.

P (t|c) =
Tct + 1∑

t∈V (Tct + 1)
(4.9)

In the training phase of Multinominal NBC, we calculate the probability of each

word t written by author c with equation 4.9. In the testing phase we calculate

the probability of passage d authored by c by getting the maximum value of :

cmax = arg max
c∈C

[logP (c) +

nd∑
k=1

logP (tk|c)] (4.10)

where C is all authors.

25

Chapter 5

Experiments

This chapter contains the experiments we perform on our different classifiers. In

the first section we talk about how we select the data from the corpus and with

which rules. We explain and detail the parameters we use. In the second section

we discuss experiments on Gaussian NBC. We give information about numeric,

and nominal feature testing as well as methodology. Then we experiment on the

merged classifier of numeric features and nominal features. In the third section we

talk about experimenting on synonym NBC. We perform an isolated experiment

on Synonym NBC and also the merged version with all other classifiers.

In our experiments we want to fix the input of our tests to compare each method.

These parameters are : min passage count, max passage count, word window

size, and padding size. In the first section we do experiments to find the optimal

(min passage count, max passage count) pairs that makes features meaningful.

In the second section we experiment on word window size and padding size to

achieve better scores with Nominal NBC. In all of our experiments we do 10 fold

cross-over validation.

26

5.1 Experiments about data selection

Loading data to our classifiers is a routine task that we do at the beginning of

our classification process. The loading function has parameters such as minPas-

sageCount, maxPassageCount, authorCount and more. I want to talk about min-

PassageCount and maxPassageCount parameters because they are the ones that

determine the data we load. AuthorCount is also a parameter that determines

how many authors we will load but for our test we do not want to use this

parameter to restrict the data.

Every author in the loading data has to have minPassageCount number of pas-

sages. Similarly, every author in the loading data can have maxPassageCount

number of passages. Deciding minPassageCount and maxPassageCount was an

experiment case for us.

In order to find these numbers, we create a histogram of the corpus. We find that

in average every author has 157 passages with a standard deviation of 153. The

reason we have such an high standard deviation is that some authors write more

frequently than others. Some authors might write once a month and some might

write everyday.

0 200 400 600 800 1,000

0

20

40

60

#passages

#
au

th
or

s

Figure 5.1: Passage count relative to authors.

27

We need to test the minimum passage parameter further. We choose a feature

like the AverageParagraphLength feature. We create a histogram of this feature

for every author. We calculate the respective mean and standard deviation values

for each. Then we select the data between µ - σ and µ + σ. With this method,

we discover how many passages are needed to make this feature meaningful.

Proportioning this number with how many passages an author has written gives

us the percentage of the passages needed for a meaningful feature. Since we

calculate this percentage among authors, we make this value author independent

by getting the mean of all percentages. The result was 74%. 74% of an author’s

passages was needed to make AverageParagraphLength feature meaningful.

To further extend our experiment we perform the same test with all the features

we have. The results are quite illuminating.

Feature Percentage Needed
AverageParagraphLengthFeature 74.45
AverageWordLengthFeature 70.52
PunctuationCountFeature 73.69
SentenceLengthAsWordCountFeature 84.48
VocublaryExtendFeature 72.67
WordCountFeature 75.28

Table 5.1: Percentage needed for a feature to be meaningful

As we can see above, almost all features are in a range between 70% and 85%. This

shows us that the feature type does not have an effect on the minimum passage

count that is needed. Regardless, we calculate the mean of these percentages;

our final result is 75%. Now with this finding, we can set minPassageCount.

MinPassageCount is 75% of 157 (mean of the whole corpus) 117 ≈ 120. MaxPas-

sageCount is 157 + 153 = 310.

In conclusion, we find that the minimum passages needed for our classification

method is 120 and the maximum passages needed is 310. For our further tests

we will use these values as their respective parameters.

28

5.2 Experiments with Gaussian NBC

In this section we do experiments on Gaussian Naive Bayes Classifiers. In the

first subsection we perform experiments on Naive Bayes Classifier using numeric

features. We give information about its testing methodology and its success rate.

In the second subsection we do experiments on Nominal Naive Bayes Classifier

using our bag of words feature. We discuss the methodology and success rate of

the classifier. Finally, we experiment by merging the two methods together.

5.2.1 Experiments with NBC

While experimenting with Naive Bayes Classifier we use numeric features. We

want to add more distinctive features to increase our success rate. We find in

the experiments that when we follow the cumulative approach, our success rate

increases.

In our first six experiments we wanted to use all our features in isolation. With

this method we want to find the most beneficial feature in all of them. Then we

try to add remaining features to the most beneficial one and try to find the most

beneficial pair. This is also called forward-feature selection.

For all of our experiments on NBC with numeric features, we experiment with the

following parameters; Minimum passage count : 120, Maximum passage count :

310, Total authors loaded : 215, Total passages loaded : 50620, Total passages

tested per fold : 5062. For ease of use we refer to our features as shown in table

5.2.

We want to experiment on isolated features. With this experiment we will find

the best isolated feature.

As we see in table 5.3, we find that WordCountFeature is the most successful

feature. We also see that σ of correct guesses are very low. This indicates that

29

Feature Referral
AverageParagraphLengthFeature F1
AverageWordLengthFeature F2
PunctuationCountFeature F3
SentenceLengthAsWordCountFeature F4
VocublaryExtendFeature F5
WordCountFeature F6

Table 5.2: Feature referrals

Feature Success Rate µ of Correct Guesses σ Correct Guesses
F1 4.97% 251.9 14.6
F2 2.51% 127.5 9.2
F3 3.4% 172.2 12.33
F4 3.39% 172.1 10.23
F5 2.59% 131.4 8.23
F6 5.06% 256.3 8.04

Table 5.3: Isolated performances of each feature

our model has consistent predictions. We will give a brief comment on each

feature and its result as follows:

AverageParagraphLengthFeature was one of the good features we introduced.

With 4.97% success rate it is the second most successful feature.

AverageWordLengthFeature was not very useful like the VocublaryExtendFeatu-

re. While calculating the average word length, a whole passage of words might

draw the average closer to the other passages. With 2.51% success rate, it is the

least successful feature.

PunctuationCountFeature was a moderately good feature. With 3.4% success

rate, it is the third most successful feature.

SentenceLengthAsWordCountFeature was as useful as the Punctuation Feature.

Assuming every sentence has punctuation at the end and some in the middle, this

might explain the similarity in benefit of the two. With a 3.39% success rate, it

is the fourth most successful feature.

30

VocublaryExtendFeature was not very useful compared to other features. We

can say that for our data, authors did not use many different words compared to

one another. In other words, they keep the ratio of unique words similar to each

other. With 2.59% success rate, it is the fifth most successful feature.

WordCountFeature was the best feature we created. We first thought newspapers

might demand a minimum an column size from an author. But the upper limit

of the column might have an effect on the success here. With 5.06% success rate

our word count feature is the most successful feature.

Before we start forward-feature selection, we want to experiment on AverageWord-

LengthFeature’s parameter whether or not it is beneficial to look at the roots of

the word when using AverageWordLengthFeature. For this experiment, we will

use a smaller data sample. We will use 6 authors and each author will have 310

passages.

Feature Root Version Success Rate µ of Corr. Guess. σ Corr. Guess.
All Features false 77.95% 145 5.92
All Features true 76.55% 142.4 6.05

Table 5.4: AverageWordLengthFeature performance with root-version parameter

As expected, using the root version when using the average word length feature,

decreases the success rate. Using the roots of the words decreases the difference

between words and eventually decreases the average difference between authors.

Next we will experiment using two features. We will fix WordCountFeature and

experiment to find the best feature pair.

Feature Success Rate µ of Correct Guesses σ Correct Guesses
F6&F1 9.88% 500.6 20.42
F6&F3 8.46% 428.3 9.95
F6&F5 8.14% 412.4 20.44
F6&F2 9.64% 488.1 18.08
F6&F4 9.38% 474.8 10.1

Table 5.5: Performance of each feature when paired with feature F6

31

As we see in table 5.5, we find using the AverageParagraphLengthFeature with

the WordCountFeature gives us the best result. They are both the two most suc-

cessful features. Pairing WordCountFeature with AverageWordLengthFeature

also gives us a close result of 9.64% compared to 9.88%. The idea of adding the

second most successful to the most successful to get better scores might not be

true. To find an answer to this question, we will continue trying new features in

the same fashion.

F6 F1 F2 F4 F5 F3

5

10

15

20

Features Added

S
u
cc

es
s

R
at

e

Figure 5.2: Forward feature selection success results

On tri-grouping, merging F6&F1 pair with AverageWordLengthFeature gives

us better results compared to PunctuationCountFeature. This is an inter-

esting result because the PunctuationCountFeature was more successful com-

pared to AverageWordLengthFeature in isolated tests. But merging F6&F1 with

PunctuationCountFeature is not more successful compared to the AverageWord-

LengthFeature.

On tetra-grouping, merging F6&F1&F2 with SentenceLengthAsWordCount

Feature gives us the best result. Despite its weaker contribution in getting better

success in the tri-grouping test and the isolated test, SentenceLengthAsWord-

CountFeature gives us the best tetra-grouping performance.

32

On penta-grouping, merging F6&F1&F2&F4 with VocabularyExtendFeature

gives us better results compared to merging with the PunctuationCountFeature.

Both in isolated and tetra-grouping tests, PunctuationCountFeature was more

beneficial, but on penta-grouping, this is again different.

In our final grouping we used all of our features together. Combining all features

increased our classification success from 20.42% to 22.76%.

All of our comments above have one common result. Even though isolated per-

formances are lower, some features might score higher when merged with more

appropriate features.

We find with our grouping experiments that combining our features with each

other increases our success rate linearly. We do not need to do forward feature

selection.

Our numeric feature usage brought us some level of success. However, we want to

know whether our success will increase with using different types of classification

methods or merging them.

5.2.2 Experiments with Nominal NBC

Another Naive Bayes Classifier we experimented on had nominal features. With

nominal features, we need to create a model with a bag of words. To find our bag

of words, we have to make two experiments as we mentioned in Chapter 2. We

need to experiment on window size and padding. And finally after we find the

windows size and padding parameters, we can experiment on the classifier.

5.2.2.1 Experiments with word window-padding

Before experimenting on window size and padding, we need to find the window

size first. We set the padding to 0 and increase the window size gradually. After

we find the optimum window size, we start to experiment on the padding size.

33

To experiment on padding size, we fix the window size to the optimum value and

start to increase the padding from 0 gradually. Then we make an experiment

with optimum window and padding sizes.

We use a smaller sample from original data to determine window size and padding.

For our window size and padding tests, we loaded 38 authors with 8720 passages

loaded.

• Experiment 1 : In this experiment we set the padding to 0. We increased

the word window size from 30 to 600.

0 100 200 300 400 500 600

10

15

20

25

30

Window Size

S
u
cc

es
s

R
at

e

Figure 5.3: Window size relative to success rate

The nominal classifier success rate peaked at 32.42% with a 500 word win-

dow size and 0 padding. This experiment showed us that using 500 words

as a bag of words size was optimal.

• Experiment 2 : In this experiment we set the window size to 500. We

increased padding from 0 to 10000.

34

0 50 100 150 200 250 300

28

30

32

34

36

38

Padding Size

S
u
cc

es
s

R
at

e

Figure 5.4: Padding size relative to success rate

The nominal classifier success rate peaked at 38.46% with a 500 window size

and 125 padding. This experiment shows us that we need to discard 125

most frequent words from the word frequency file to maximize the success

rate.

• Experiment 3 : After we found the optimal values for window size and

padding size, we want to make a final test for Nominal NBC. For this ex-

periment we set the minimum passage count to 120, the maximum passage

count to 310, the window size to 500, and the padding size to 125. We used

195 authors and 45440 total passages to test our Nominal NBC.

Classification Method Success Rate µ of Corr. Guess. σ Corr. Guess.
Numeric NBC 22.76% 1152 out of 5062 19.51
Nominal NBC 27.89% 1267.4 out of 4544 21.77

Table 5.6: Numeric NBC vs Nominal NBC

As we can see in table 5.6, Nominal NBC has better success rate compared

to Numeric NBC. This experiment tells us that for stand alone usage, Nom-

inal NBC is better at identifying authors than Numeric NBC. Representing

35

passages with a bag of words compared to numeric values is a better solu-

tion.

5.2.3 Experiments with Merged Gaussian NBC

Numeric features and Nominal features represent our data and create their model

differently. We want to know whether we can increase our success rate by merging

these two classifiers? In a merged classifier, we model two different models and

calculate their probabilities separately. To find the final probability, we multiply

respective probabilities.

For the next two experiments we will use all of our numeric features for our

numeric classifier as in table 5.2. We used 500 as the window size and 125 as the

padding size.

• Experiment 1 : In this experiment we test the result of two classification

methods merged together. We are expecting a better success rate relative

to each separate classification method. We experiment with the following

parameters; minimum passage count : 120, maximum passage count : 310,

total authors : 197, total passages : 45700.

Classification Method Success Rate µ of Corr. Guess. σ Corr. Guess.
Numeric&Nominal 35.23% 1610.1 out of 4570 17.22

Table 5.7: Numeric NBC and nominal NBC merged success rate

As expected, our classification success rate increases relative to each classi-

fication method. This increase was not the combination of each individual

method but it was a subtle increase.

• Experiment 2 : We want to further experiment on the author parameter

to identify how our classifier’s success changes depending on small author

samples and bigger samples. In each experiment shown below we fixed all

36

parameters but author size. The author size changes between 2 to 190, and

the total passage count changes between 1120 to 44100.

0 20 40 60 80 100 120 140 160 180 200

40

50

60

70

Author Size

S
u
cc

es
s

R
at

e

Figure 5.5: Changes on success rate with author size using merged classifier

Author identification is more successful with smaller samples. For example,

with 2 authors our success rate is 73.95%. Choosing from a smaller sample

and thus creating less models, inevitably increases success rate. We also

determined that 70 authors, especially after 110 authors, the difference be-

tween test result decreases. This indicates that for larger author samples

the success rate will not go down drastically.

5.3 Experiments with Multinominal NBC

In this section we list our experiments on Multinominal NBC. In the first sub-

section we experiment on Synonym NBC. We do our experiments with various

author sizes. In the second sub-section we test Synonym NBC by merging it with

our previous classifiers.

37

5.3.1 Experiments with Synonym NBC

Synonym Naive Bayes Classifier is similar to Nominal NBC. Instead of a bag

of words, it uses a bag of synonyms. We extract our synsets from BalkaNet

wordNET and use them to represent our passages. We experiment on various

author sizes.

We want to test isolated performance of Synonym NBC. For this experiment we

used the following parameters : minimum passage count : 120 and maximum

passage count : 310. We test our classifier with author size between 2 and 20 and

620 to 4460 passages.

2 4 6 8 10 12 14 16 18 20

20

40

60

80

Author Size

S
u
cc

es
s

R
at

e

Figure 5.6: Success rate relative to author size using Synonym NBC

Synonym NBC and Nominal NBC are similar in the way we implement them.

In Nominal NBC we used a bag of words as a feature vector. In Synonym NBC

we are using synsets as a feature vector. We expect a similar or better result

compared to Nominal NBC’s relative scores. But compared to Nominal NBC,

the results are considerably lower and computation time is a lot longer. The

reason behind the poor results might be the synset source we are using. In our

classification, we used BalkaNet’s synset source. It is a general purpose synset but

it might not include the necessary synsets our data needs. To test this reasoning,

we count every word that we find in a relative synset. We find that for 69% of the

38

words, we can not find their synset in BalkaNet. The 69% absence might explain

why our success rates are low.

5.3.2 Experiment with all NBC Merged together

Merging NBC with numeric features and NBC with nominal features was a good

step to increase classification success. We want to try to merge those two methods

with multinominal NBC to increase success rate. We follow the same method as

previous merging to calculate the final probability. For this experiment we use

the following parameters; minimum passage count : 120, maximum passage count

: 310, window size : 500, padding size : 125. We test our classifier with an author

size between 2 and 20 and 620 to 4460 passages.

2 4 6 8 10 12 14 16 18 20
20

30

40

50

60

70

Author Size

S
u
cc

es
s

R
at

e

Figure 5.7: Success rate relative to author size using all classifiers merged together

Poor results from the isolated test of Synset NBC affects the merged classification

results. 73.95% success rate increased to 74.22%. Synset NBC added little to no

contribution to the merged success rate of Numeric NBC and Nominal NBC; for

bigger author sizes, the success rate decreases rapidly. We think increasing the

success rate of Synset NBC will contribute to the merged version. In order to do

this, we need to increase the synset finding rate.

39

Chapter 6

Conclusion and Future Work

The study was set out to implement and compare Numeric NBC, Nominal NBC,

and Multinominal NBC algorithms for author identification. The study has also

sought to know whether merging individual classifiers together can bring better

classification results. The study attempted to answer two questions:

1. How does each classification method perform? Which one is the most suc-

cessful?

2. Does merging individual classification methods result with better classifica-

tion results?

The experiments in Chapter 5 are listed by various classification methods. These

are : Experiments with NBC in section 5.2.1, Experiments with Nominal NBC in

section 5.2.2, Experiments with Merged Gaussian NBC in section 5.2.3, Experi-

ments with Synonym NBC in section 5.3.1 and, Experiment with all NBC Merged

together in section 5.3.2. We can answer the study’s two research questions by

synthesizing the experiment results.

1. How does each classification method perform? Which one is the most suc-

cessful?

In isolated experiments, Nominal NBC is the most successful classification

method with 27.6% success rate. In our merged classification experiments,

40

Merged Gaussian NBC is better compared with Nominal NBC with 34.95%

success. Merging two Numeric NBC with Nominal NBC gives us the most

successful result overall.

2. Does merging individual classification methods result is greater classifica-

tion success?

Merging Numeric NBC with Nominal NBC increased classification results

compared to individual scores. But merging the two with Synonym NBC

did not increase the classification success rate. Because of the low synonym

vector extraction rate, as we mention in experiment 5.3.1, merging the three

decreased overall classification success.

Our study shows that the use of a single method Nominal NBC is the best solution

for author identification. With an exception of Synonym NBC method, merging

multiple methods results in better classification rates.

The author identification problem is extensive and complicated. To increase clas-

sification success and examine an author’s styles and representation, there is need

for further research and work. Exploring the following as future research items

can achieve this goal:

• Find a better resource for synonym feature extraction.

• Implement and experiment on merging different semantic classifiers.

• Implement and experiment with different classification algorithms other

than NBC.

In support of what is often reported about the benefit of using Nominal NBC for

text classification, merging Numeric NBC with Nominal NBC achieves a better

classification scores.

41

References

[1] Wikipedia. The Federalist Papers — Wikipedia, the free encyclopedia,

2016. URL https://en.wikipedia.org/wiki/The_Federalist_Papers.

[Online; accessed 22-April-2016].

[2] Brinegar Claude S. Mark Twain and the Quintus Curtius Snodgrass Let-

ters: A Statistical Test of Authorship. Journal of the American Statistical

Association, (58):85–96, 1963.

[3] Morton Andrew Q. The Authorship of Greek Prose. Journal of the Royal

Statistical Society, Series A, (128):169–233, 1965.

[4] Brainerd Barron. Weighting Evidence in Language and Literature: A Sta-

tistical Approach. University of Toronto Press, 1974.

[5] Holmes David I. A Stylometric Analysis of Mormon Scripture and Related

Texts, year = 1992. Journal of the Royal Statistical Society, (155):91–120.

[6] G. Kokkinakis N. Fakotakis, E. Stamatatos. Automatic Text Categorization

in Terms of Genre and Author. Journal Computational Linguistics, 26(155):

471–495, 2000.

[7] Tufan Taş and Abdül Kadir Görür. Author Identification for Turkish Texts.

Journal of Arts and Sciences, 26:151–161, 2007.

[8] Banu Diri and M. Fatih Amasyalı. Automatic Author Detection for Turkish

Texts. ICANN, 2014.

[9] Jonathan Hedley. jsoup. https://github.com/jhy/jsoup.

42

https://en.wikipedia.org/wiki/The_Federalist_Papers
https://github.com/jhy/jsoup

[10] Ahmet A. Akın. Zemberek. https://github.com/ahmetaa/zemberek-nlp,

2005.

[11] Wikipedia. Statistical Classification — Wikipedia, the free ency-

clopedia, 2016. URL https://en.wikipedia.org/wiki/Statistical_

classification. [Online; accessed 22-April-2016].

[12] BalkaNet. Balkanet. URL http://www.dblab.upatras.gr/balkanet/

index.htm.

[13] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-

duction to Information Retrieval. Cambridge University Press, 2008.

43

https://github.com/ahmetaa/zemberek-nlp
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Statistical_classification
http://www.dblab.upatras.gr/balkanet/index.htm
http://www.dblab.upatras.gr/balkanet/index.htm

	Abstract
	Özet
	Acknowledgements
	List of Tables
	List of Figures
	List of Abbreviations
	1 Introduction
	1.1 Literature Review
	1.2 Organization

	2 Solution Methodology
	2.1 Our approach to the problem
	2.1.1 Corpus Construction Methodology
	2.1.1.1 Collecting Data
	2.1.1.2 Data Cleanup
	2.1.1.3 Linguistic Processing

	2.1.2 Classification Methodology
	2.1.2.1 Classification Concept
	2.1.2.2 Training the Classification Model
	2.1.2.3 Testing the Classification Model

	3 Linguistic Features
	3.1 Numeric, Nominal and Semantic Features
	3.1.1 Numeric Features
	3.1.1.1 Features Used

	3.1.2 Nominal Features
	3.1.3 Semantic Features

	4 Machine Learning Techniques
	4.1 Naive Bayes Classifier
	4.1.1 Gaussian Naive Bayes
	4.1.2 Multinominal Naive Bayes

	5 Experiments
	5.1 Experiments about data selection
	5.2 Experiments with Gaussian NBC
	5.2.1 Experiments with NBC
	5.2.2 Experiments with Nominal NBC
	5.2.2.1 Experiments with word window-padding

	5.2.3 Experiments with Merged Gaussian NBC

	5.3 Experiments with Multinominal NBC
	5.3.1 Experiments with Synonym NBC
	5.3.2 Experiment with all NBC Merged together

	6 Conclusion and Future Work
	References

