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Sophisticated signal processing techniques have to be developed for capacity enhancement of future wireless communication sys-
tems. In recent years, space-time coding is proposed to provide significant capacity gains over the traditional communication
systems in fading wireless channels. Space-time codes are obtained by combining channel coding, modulation, transmit diversity,
and optional receive diversity in order to provide diversity at the receiver and coding gain without sacrificing the bandwidth. In
this paper, we consider the problem of blind estimation of space-time coded signals along with the channel parameters. Both con-
ditional and unconditional maximum likelihood approaches are developed and iterative solutions are proposed. The conditional
maximum likelihood algorithm is based on iterative least squares with projection whereas the unconditional maximum likeli-
hood approach is developed by means of finite state Markov process modelling. The performance analysis issues of the proposed
methods are studied. Finally, some simulation results are presented.
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1. INTRODUCTION

The rapid growth in demand for a wide range of wireless
services is a major driving force to provide high-data rate
and high quality wireless access over fading channels [1].
However, wireless transmission is limited by available radio
spectrum and impaired by path loss, interference from other
users and fading caused by destructive addition of multipath.
Therefore, several physical layer related techniques have to
be developed for future wireless systems to use the frequency
resources as efficiently as possible. One approach that shows
real promise for substantial capacity enhancement is the use
of diversity techniques [2]. Diversity techniques basically re-
duce the impact of fading due to multipath transmission and
improve interference tolerance which in turn can be traded
for increase capacity of the system. In recent years, the use of
antenna array at the base station for transmit diversity has
become increasingly popular, since it is difficult to deploy
more than one or two antennas at the portable unit. Trans-
mit diversity techniques make several replicas of the signal

available to the receiver with the hope that at least some
of them are not severally attenuated. Moreover, the meth-
ods of transmitter diversity combined with channel coding
have been employed at the transmitter, which is referred to as
space-time coding, to introduce temporal and spatial corre-
lation into signals transmitted from different antennas [2, 3].
The basic idea is to reuse the same frequency band simultane-
ously for parallel transmission channels to increase channel
capacity [2, 3].

Unfortunately, employing antenna diversity at the trans-
mitter is particularly challenging, since the signals are com-
bined in space prior to reception. Moreover, estimation of
fading channels in space-time systems is further complicated,
since the receiver estimates the path gain from each transmit
antenna to each receive antenna. It is also important to note
that space-time decoding requires multi-channel state infor-
mation. Thus the achievable diversity gain comes at the price
of proportional increase in the amount of training which
results in efficiency loss, especially in a rapidly varying en-
vironment. Clearly, the practical advantages of eliminating
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Figure 1: Space-time coding and decoding system.

the need for a training sequence numerous. This motivates
the development of receiver structures with blind channel
estimation capabilities. There has been considerable work
reported in the literature on the estimation of channel in-
formation to improve performance of space-time coded sys-
tems operating on fading channels [4, 5, 6, 7]. In this paper,
we consider the problem of blind estimation of space-time
coded signals along with the matrix of path gains. We pro-
pose two different approaches based on the assumptions on
the input sequences. Our proposed approaches also exploit
the finite alphabet property of the space-time coded sig-
nals. We treat both conditional and unconditional maximum
likelihood (ML) approaches. The first approach (conditional
ML) results in joint estimation of the channel matrix and the
input sequences, and is based on the iterative least squares
and projection [8]. The second approach, which is known as
unconditional ML, treats the input sequence as stochastic in-
dependent identically distributed (i.i.d.) sequences. In con-
trast, the unconditional ML approach formulates the blind
estimation problem in discrete-time finite state Markov pro-
cess framework [9, 10, 11]. Since the proposed algorithms
obtain ML estimates of channel matrix and the space-time
coded signals, they enjoy many attractive properties of the
ML estimator including consistency and asymptotic normal-
ity. Moreover, it is asymptotically unbiased and its error co-
variance approaches Cramér-Rao lower bound (CRB).

The performance of the proposed ML approaches are ex-
plored based on the evaluation of CRB. The CRB is a well-
known statistical tool that provides benchmarks for evalu-
ating the performance of actual estimators. For the condi-
tional estimator, the CRB derived in [12], is adapted to the
present scenario. In unconditional case, since, the computa-
tion of the exact CRB is analytically intractable, some alter-
native methods must therefore be considered for simplifying
CRB calculation [13]. The derivation technique used for un-
conditionalML have the advantage of eliminating the need to
evaluate computationally intractable averaging over all pos-
sible input sequences. However, it provides a looser bound
which is not as tight as the exact CRB, but it is computation-
ally easier to evaluate.

The outline of the paper is as follows. In Section 2, we
describe a basic model for a communication system that em-
ploys space-time coding with n transmit and m receive an-
tennas. In Section 3, we derive both conditional and uncon-
ditionalML estimators for the blind estimation of space-time
coded signals along with the channel matrix. In Section 4,
we develop CRB for the covariance of the estimation er-
rors for the achievable variance of any unbiased estimator

for these parameter set. Finally, we present some numerical
examples that illustrate the performance of the ML estima-
tors in Section 5.

Notations used in this paper are standard. Symbols for
matrices (in capital letter) and vector (lower case) are in
boldface. (·)T , (·)H , (·)∗, and ⊗ denote transpose, Hermitian,
conjugate, and Kronecker product, respectively. The symbol
I stands for identity matrix with proper dimension; θ̂ de-
notes the estimate of parameter vector θ; and ‖ · ‖ denotes
the 2-norm.

2. SYSTEMMODEL

In the sequel, we consider a mobile communication system
equipped with n transmit antennas and optional m receive
antennas. A general block diagram for the systems of interest
is depicted in Figure 1. In this system, the source generates bit
sequence s(k), which are encoded by an error control code to
produce codewords. The encoded data are parsed among n
transmit antennas and then mapped by the modulator into
discrete complex-valued constellation points for transmis-
sion across channel. The modulated streams for all antennas
are transmitted simultaneously. At the receiver, there are m
receive antennas to collect the transmissions. Spatial channel
link between each transmit and receive antenna is assumed
to experience statistically independent fading.

The signals at each receive antenna is a noisy superposi-
tion of the faded versions of the n transmitted signals. The
constellation points are scaled by a factor of Es, so that the
average energy of transmitted symbols is 1. Then we have
the following complex base-band equivalent received signal
at receive antenna j:

r j(k) =
n∑
i=1

αi, j(k)ci(k) + nj(k), (1)

where αi, j(k) is the complex path gain from transmit antenna
i to receive antenna j, ci(k) is the coded symbol transmitted
from antenna i at time k, nj(k) is the additive white Gaussian
noise sample for receive antenna j at time k.

Equation (1) can be written in a matrix form as

r(k) = Ω(k)c(k) + n(k), (2)

where r(k) = [r1(k), . . . , rm(k)]T ∈ Cm×1 is the received signal
vector, c(k) = [c1(k), . . . , cn(k)]T ∈ Cn×1 is the code vector
transmitted from the n transmit antennas at time k, n(k) =
[n1(k), . . . , nm(k)]T ∈ Cm×1 is the noise vector at the receive
antennas, andΩ(k) ∈ Cm×n is the fading channel gain matrix
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given as

Ω(k) =



α1,1(k) · · · α1,n(k)

... · · ·
...

αm,1(k) · · · αm,n(k)


 . (3)

We impose the following assumptions on model (2) for the
rest of the paper:

(AS1) the coded symbol ci(k) is adopting finite complex val-
ues;

(AS2) the noise vector n(k) = [n1(k), . . . , nm(k)]T is Gaus-
sian distributed with zero-mean and

E
[
n(k)nH(l)

]
= σ2Iδk,l, E

[
n(k)nT(l)

]
= 0, (4)

where E denotes expectation operator and δk,l is the
Kronecker delta (δk,l = 1 if k = l and 0 otherwise).
Thus n(k) is assumed to be uncorrelated both tempo-
rally and spatially;

(AS3) the fading channel is assumed to be quasi-static flat
fading, so that during the transmission of L codeword
symbols across anyone of the links, the complex path
gains do not change with time k, but are independent
from one codeword transmission to the next, that is,

αi, j(k) = αi, j , k = 1, 2, . . . , L. (5)

The problem of estimating matrix of path gains along with
the space-time coded signals from noisy observations r(L) =
[rT(1), . . . , rT(L)]T is the main concern of the paper. The
traditional solution to this problem is to first estimate θ =
[Ω, σ2] from training sequence embedded in the input signal,
and then use these estimates as if they were the true param-
eters to obtain estimates of input sequence. As an alterna-
tive, we propose ML blind approaches based on finite alpha-
bet property of the space-time coded signals. Then we derive
ML cost functions for our proposed approaches in the next
section.

3. ML ESTIMATION

Regarding the input sequence, two different assumptions can
be considered: (i) conditional model which assumes the in-
put sequences to be deterministic unknown parameters and
(ii) unconditional model which assumes the input sequences
to be stochastic processes. These two signal models lead to
corresponding ML solutions. In the first approach, the input
sequences are treated as unknown but deterministic quanti-
ties, therefore they are part of the set of unknown parame-
ters. The number of unknown parameters in deterministic
case grows with the increase in the number of observations
which usually results in inconsistent estimates. In contrast,
under the unconditional signal model, the input sequences
are treated as random quantities, and are not included in
the parameter set. As a result, the number of unknown pa-
rameters is fixed and it is therefore possible to obtain consis-
tent estimates. Now we develop corresponding ML estima-
tion algorithms.

3.1. Conditional ML approach

In this section, an ML approach is developed under (AS1),
(AS2), (AS3), and the conditional signal model assumption.
The log-likelihood function is then given by

� = −const −mL log σ2 − 1
σ2

L∑
k=1

∥∥r(k) −Ωc(k)
∥∥2
. (6)

The conditional ML estimation can be obtained by jointly
maximizing � over the unknown parameters Ω and c(L) =
[cT(1), . . . , cT(L)]T . After neglecting unnecessary terms, con-
ditional ML yields the following minimization problem:

min
Ω,c(L)

∥∥r(L) −Ωc(L)
∥∥2
. (7)

Since the elements of c(L) are restricted to be finite alpha-
bet, (7) results in a nonlinear separable optimization prob-
lem with mixed integer and continuous variables. Typically,
the minimization problem in (7) is solved in two steps by
alternatively minimizing with respect to Ω and c(L) while
keeping other parameters fixed. First, we minimize (7) with
respect to Ω by the least squares solution. Then substitute Ω̂
back into (7) and solve it for c(L). The ML estimate of c(L)
in the second step can be obtained by enumeration. How-
ever, this search is computationally very demanding since the
number of possible c(L) matrices that need to be checked
grows exponentially both with L and n. Therefore, the iter-
ative approaches attempt to solve this problem with lower
computational complexity.

We now adopt a block conditional ML algorithm that
has a lower computational complexity [8]. The proposed al-
gorithm is based on iterative least squares and projection
(ILSP). It takes advantage of the ML estimator being sepa-
rable in its continuous and integer variables. Note that the
dimension of the channel gain matrix Ω is chosen to satisfy
n ≤ m for this particular approach.

Given an initial estimate Ω̂ of Ω, the minimization of
(7) with respect to c(L) is a least squares problem that can
be solved in closed form. Each element of the solution is
rounded-off to its closest discrete values (coded MPSK sig-
nals). Then a better estimate of Ω is obtained by minimiz-
ing (7) with respect toΩ, keeping ĉ(L) fixed. This minimiza-
tion also results in least squares. This process continues un-
til Ω converges. In practice, we can stop when the difference
‖Ωi −Ωi−1‖ is within a threshold ε.

The following steps summarize the conditional ML algo-
rithm:

Start with initial estimateΩ(0), i = 0
(1) i = i + 1

• ci(L) = (Ω∗
i−1Ωi−1)−1Ω∗

i−1r(L).• Project each element of ci(L) to closest dis-
crete values.

• Ωi = rc∗i (L)(ci(L)c
∗
i (L))

−1.
(2) Continue until ‖Ωi −Ωi−1‖ ≤ ε.

Clearly, due to nonlinear operation in projecting ci(L) to its
closest discrete values, the convergence is not guaranteed.
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However, sufficiently good initialization provided from sub-
optimal techniques improve the possibility of global conver-
gence and also reduce the number of iterations required.

3.2. Unconditional ML approach

Under (AS2), (AS3), and the signal model (2), we can formu-
late the probability density function of the received vector r
(given u) as

fθ(r | u) = 1(
πσ2

)mL

L∏
k=1

exp

{
−
∥∥r(k) −Ωg

(
u(k)

)∥∥2

σ2

}
, (8)

where g(·) is the same nonlinear mapping that describes
channel coder, spatial formatter, and modulator, u(k) is the
input sequence influencing the space-time coded symbols.

In general, trying to estimate θ and u jointly from (8) is
computationally demanding except for small data alphabet
size and small data record. Therefore, the goal is to obtain a
cost function that is dependent only on θ, in this way it is
possible to avoid least squares based on two step procedures
for blind ML estimation. To this end, we therefore consider
an unconditional signal model and compute the correspond-
ing ML cost function via the expectation of the conditional
ML function with respect to the statistics of the input se-
quences

fθ(r) = Eu
[
fθ(r | u)

]
. (9)

However, the expectation Eu in (9) leads to complicated cost
function. The maximization of this cost function is there-
fore computationally demanding. At this point, we modified
(AS1) for the unconditional case in the following form:

(AS1u) information sequence s(k) is an i.i.d. sequence
adopting equiprobable finite values.

If we exploit the assumption (AS1u) on the input se-
quence and use the conditional ML function (8), we can ob-
tain the unconditional ML function specifically for the prob-
lem at hand as

fθ(r)=
1

2(l+t−1)
(
πσ2

)mL

L∏
k=1

2(l+t−1)∑
p=1

exp

{
−
∥∥r(k)−Ωg

(
ζ p
)∥∥2

σ2

}
,

(10)
where ζ p = [s(lk + l − 1), . . . , s(lk − t)]T is the input vec-
tor influencing the coded symbols at time k, t is the number
of memory elements in the encoder, l = log2M is the block
length of information bits that are transmitted (if we restrict
ourselves to MPSK). Since each element of the ζ p takes on
2 possible values, 2(l+t−1) is the set of all possible (l + t − 1)
vectors of 2.

The log-likelihood function for the unconditional signal
model is then given by

�(θ) =
L∑

k=1

log

(
2(l+t−1)∑
p=1

exp

{
−
∥∥r(k) −Ωg

(
ζ p
)∥∥2

σ2

})

+ constant,

(11)

and the unconditional ML estimation of θ is the global max-

imizer of �(θ). Unfortunately, existence of the globally con-
vergent algorithm for this nonlinear cost function is un-
likely. Moreover, the direct maximization of (11) still re-
sults in computationally demanding nonlinear optimiza-
tion problem. In finding the ML estimator, it is quite com-
mon to resort numerical techniques of maximization such
as the Newton-Raphson and scoring methods. However, the
Newton-Raphson and scoring methods may suffer from con-
vergence problems. As an alternative, the problem can be cast
in a finite-state Markov chain framework by employing the
Baum-Welch algorithm which reduces computational bur-
den significantly. The Baum-Welch algorithm although iter-
ative in nature, is guaranteed under certain mild conditions
to converge and at convergence to produce a local maximum.

In the sequel, we exploit finite-state Markov process
modelling property of the space-time coded signals and em-
ployed associated estimation algorithm to provide computa-
tionally efficient solution to resulting optimization problem.
Let us then introduce unconditionalML framework based on
finite-state Markov process modelling first.

3.2.1 Function of aMarkov chain

Many important problems in digital communications such
as inter-symbol interference, partial response signalling can
be modelled by means of finite-state Markov process with
unknown parameters observed in independent noise [10,
11]. Based on (AS1u), codeword produced by the channel
encoder in space-time coder can be characterized as a finite-
state Markov process. Moreover, the received signal vector at
an antenna array in the presence of spatial formatting, fading
channel and noise can also be viewed as a stochastic process
(function of Markov chain) that has an underlying Marko-
vian finite-state structure.

The space-time coder is characterized by a memory of
length t and 2(l+t−1) state trellis, where the state ζ(k) at time k
labels the coder memory (s(lk + l − 2), . . . , s(lk − t)),

ζ(k) ∈ Π =
{
τp, p = 1, . . . , 2(l+t−2)

}
. (12)

The transition from state ζ(k) to ζ(k + 1) is represented
on the trellis by a branch denoted by the vector

φ(k) =
[
s(lk + l − 1), . . . , s(lk − t)

]T (13)

and φ(k) ∈ Φ = {ξn, n = 1, . . . , 2(l+t−1)}. Then both the {ζ(k)}
sequence and the {φ(k)} sequence form a first-order finite
Markov chains, that is,

Pr
[
φ(k) = ξn

]
= Pr

[
ζ(k) = τq, ζ(k − 1) = τs

]
(14)

for some q, s depending on k.
The observation vector r(k) can therefore be modelled

as a probabilistic function of the Markov chain. In the re-
ceived signal model, the unknown channel matrix Ω enter
in a linear way, while the nonlinear part of the function g(·)
is due to the space-time coder and is known. Let g(ξn) de-
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note the space-time coder output corresponding to the event
φ(k) = ξn. The sample φ(k) = ξn is a realization of the
complex random sample g(φ(k)) which takes 2(l+t−1) possible
values depending on the φ(k) = ξn. Moreover, every realiza-
tion of a sequence of symbols corresponds to the sequence of
branches {xk} of length L, given as

� =
(
x1, . . . , xL

)
, � ∈ Ξ |Ξ| ∈ 2L(l+t−1). (15)

The underlying Markovian structure of our signal model can
then be characterized by the following model parameters:

(i) Pr[ζ(k) = τq | ζ(k − 1) = τs] is a predetermined tran-
sition probability. If no information about the trans-
mitted sequence is available, all permissible state tran-
sitions have the same probability, that is, Pr[ζ(k) = τq |
ζ(k − 1) = τs] = 1/2(l+t−1), if state τs leads to state
τq;

(ii) π̂(0) = [π̂1(0), . . . , π̂2(l+t−1) (0)] initial state probability
vector. If no assumption on the starting bits is made,
the initial probability is same for all states;

(iii) the conditional density f (r(k) | ζ(k) = τq, ζ(k − 1) =
τs) = f (r(k) | φ(k) = ξn) is that of a Gaussian complex
random vector with meanΩ g(ξn) and variance σ2.

Since the state transition probability and the initial state
probability vector are predetermined, the only model param-
eter of the Markov chain left to be estimated is f (r(k) |
φ(k) = ξn) for the current model. We therefore devise the
Baum-Welch algorithm to estimate the Markov chain model
parameter (iii) or equivalently to estimate θ.

3.2.2 Baum-Welch algorithm

The Baum-Welch algorithm is a commonly used iterative
technique for estimating the parameters of a probabilistic
functions of a Markov chain. It maximizes an auxiliary func-
tion related to the Kullback-Leibler information measure in-
stead of the likelihood function [9]. The auxiliary function is
defined as a function of two sets of parameters θ, θ′

Q
(
θ, θ′

)
=
∑
�∈Ξ

fθ(r,�) log
(
fθ′(r,�)

)
, (16)

where fθ(r,�) represents the conditional likelihood, given a
particular branch sequences �, weighted by Pr[�], the a pri-
ori probability of � (e.g., [10]).

The theorem that forms the basis for the Baum-Welch al-
gorithm explains the reason why Kullback-Leibler informa-
tion measure can be used instead of the average likelihood.

Theorem 1. The maximization of Q(θ, θ′) leads to increased
likelihood, that is, Q(θ, θ′) ≥ Q(θ, θ) ⇒ fθ′(r) ≥ fθ(r).

For the proof of the theorem, see [9].
To obtain the explicit form of the auxiliary function for

the current problem, we start with

log fθ′(r,�) = log Pr[�] + log fθ′(r | �). (17)

Since sequences � have equal probability, the first term
log Pr[�] is constant. For the second term, we use the fact
that the noise samples are independent and obtain

L∑
k=1

log fθ′
(
r(k), xk

)

=
L∑

k=1

2(l+t−1)∑
p=1

log fθ′
(
r(k), xk = ξ p

)
δ
(
xk, ξ p

)
,

(18)

where δ(xk, ξ p) = 1 when xk = ξ p and 0 otherwise, and

log fθ′
(
r(k), xk = ξ p

)
= − 1

σ ′2
∥∥r(k) −Ω′g

(
ξ p

)∥∥2 − log
(
σ ′2). (19)

Substitution of (18) in (16) yields

Q
(
θ(i), θ′

)

= C +
L∑

k=1

2(l+t−1)∑
p=1

{[
− 1

σ ′2
∥∥r(k) −Ω′g

(
ξ p

)∥∥2 − log
(
σ ′2)]

×
∑
�∈Ξ

fθ(i) (r,�)δ
(
xk, ξ p

)}
.

(20)

It was shown in [10], that the sum over Ξ is equal to
fθ(i) (r,φ(k) = ξ p). We thus have

Q
(
θ(i), θ′

)
= C +

L∑
k=1

2(l+t−1)∑
p=1

fθ(i)
(
r,φ(k) = ξ p

)

×
{
− 1

σ ′2
∥∥r(k) −Ω′g

(
ξ p

)∥∥2 − log
(
σ ′2)},

(21)

where θ(i) is the old parameter estimates obtained at the ith
iteration while θ′ = [Ω′, σ ′2] is the new parameter set to be
estimated at the (i+1)th iteration and fθ(i) (r,φ(k) = ξ p) is the
weighted conditional likelihood. The direct computation of
weighted conditional likelihood is computationally intensive.
Fortunately, there exist recursive procedures (called forward
and backward procedures), for computing fθ(i) (r,φ(k) = ξ p)
whose complexity increases only linearly with data length
L [9].

The following explicit expression for the array response
matrix is obtained from ∂Q/∂Ω′ = 0:

Ω(i+1) =

(
L∑

k=1

2(l+t−1)∑
p=1

fθ(i)
(
r,φ(k) = ξ p

)
r(k)g

(
ξ p

)H)

×
(

L∑
k=1

2(l+t−1)∑
p=1

fθ(i)
(
r,φ(k) = ξ p

)
g
(
ξ p

)
g
(
ξ p

)H)−1
.

(22)



502 EURASIP Journal on Applied Signal Processing

The last equality follows from the definition of the partial
derivative with respect to a complex quantity (see, e.g., [14])

∂Q

∂Ω′
i j
=
1
2

[
∂Q

∂Re
{
Ω′

i j
} + j

∂Q

∂Im
{
Ω′

i j
}], (23)

whereΩi j is the i jth element ofΩ.
From ∂Q/∂σ ′2 = 0, the iterative estimation formula can

also be derived for the noise variance

σ ′2 =

∑L
k=1

∑2(l+t−1)
p=1 fθ(i)

(
r,φ(k) = ξ p

)∥∥r(k) −Ω′g
(
ξ p

)∥∥2

∑L
k=1

∑2(l+t−1)
p=1 fθ(i)

(
r,φ(k) = ξ p

) .

(24)

Based on this results, the steps of the proposed uncondi-
tional ML algorithm are summarized as follows:

Set the parameters to some initial value θ(0) =
(Ω(0), σ2

(0)
).

(1) Compute the forward and backward variables to
obtain fθ(i) (r, ζ(k) = ζ p).

(2) ComputeΩ′(i+1) from (22).

(3) Compute σ ′2(i+1) from (24).
(4) Repeat steps (1)–(3) until ‖θ(i+1) − θ(i)‖ < ε,

where ε is a predefined tolerance parameter.
(5) Use fθ(i) (r,φ(k) = ξ p)’s to recover the transmitted

symbols.

Since the proposed method exploits the finite alphabet struc-
ture of the space-time coded signals and implements a
stochastic ML solution, it is expected to exhibit better per-
formance than suboptimal estimation techniques, especially
when short data records are available. For a sufficiently good
initialization, the proposed algorithm converges rapidly to
the ML estimate of θ̂. In practice, however, we did not ob-
serve convergence problem when we initialized parameters
according to suggestions of [11] (while initial guess on σ2

is large enough to avoid overflow, Ω is initialized arbitrarily
(e.g.,Ω(0) ≈ 0)).

4. PERFORMANCE ANALYSIS

The performance of the conditional and unconditional ML
methods are assessed here by deriving their CRBs for the
unbiased estimates of the nonrandom parameters. The CRB
depends on the information on vector parameter θ quanti-
fied by the Fisher information matrix (FIM) and provides a
lower bound on the variance of the unbiased estimate (i.e.,
E{θ̂} = θ). Then the CRB for an unbiased estimator θ̂ is
bounded by the inverse of the FIM J(θ):

E

{(
θ − θ̂

)(
θ − θ̂

)T} ≥ J−1(θ). (25)

4.1. Conditional CRB

The derivation of J(θ) in (25) follows along the lines of [12].
We start constructing FIM by calculating the derivative of (6)
with respect to

τ =
[
cTr (1) cTc (1) · · · cTr (L) cTc (L) αTr αTc

]T
, (26)

where

cr(k) = Re
{[
c1(k), . . . , cn(k)

]T}
,

cc(k) = Im
{[
c1(k), . . . , cn(k)

]T}
,

αir = Re
{[
α1,i, . . . , αm,i

]T}
,

αr = Re
{[
αT1 , . . . ,α

T
n

]T}
,

αic = Im
{[
α1,i, . . . , αm,i

]T}
,

αc = Im
{[
αT1 , . . . ,α

T
n

]T}
.

(27)

Taking the partial derivatives of (6), we then have

∂�
∂cr(k)

=
∂

∂cr(k)

(
const. − 1

σ2

L∑
k=1

nH(k)n(k)
)

k = 1, . . . , L

=
1
σ2

(
ΩHn(k) +ΩTn∗(k)

)
=

2
σ2

Re
{
ΩHn(k)

}
,

∂�
∂cc(k)

=
∂

∂cc(k)

(
const. − 1

σ2

L∑
k=1

nH(k)n(k)
)

k = 1, . . . , L

=
1
σ2

( − jΩHn(k) + jΩTn∗(k)
)

=
2
σ2

Im
{
ΩHn(k)

}
,

∂�

∂αir
=

2
σ2

L∑
k=1

Re
{
c∗i (k)n(k)

}
i = 1, . . . , n,

∂�
∂αr

=
2
σ2

L∑
k=1

Re
{
c∗(k) ⊗ n(k)

}
,

∂�

∂αic
=

1
σ2

{ − jc∗i (k)n(k) + jci(k)n∗(k)
}

i = 1, . . . , n

=
2
σ2

L∑
k=1

Im
{
ci(k)n(k)

}
,

∂�
∂αc

=
2
σ2

L∑
k=1

Im
{
c∗(k) ⊗ n(k)

}
.

(28)

We need the following assumption and results to obtain FIM,
(see [12]):

E
[
n(n)nH(m)

]
= σ2I,

E
[
n(n)nT(m)

]
= 0,

E
[
nH(n)n(n)nT(m)

]
= 0.

(29)

Using (28), (29), and taking expectations , we then obtain the
entries of the FIM for the conditional case, which are given
by
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E
{(

∂�
∂cr(n)

)(
∂�

∂cr(m)

)T}
=

2
σ2

Re
{
ΩHΩ

}
δn,m = A,

E
{(

∂�
∂cr(n)

)(
∂�

∂cc(m)

)T}
= − 2

σ2
Im

{
ΩHΩ

}
δn,m = B,

E
{(

∂�
∂cc(n)

)(
∂�

∂cc(m)

)T}
=

2
σ2

Re
{
ΩHΩ

}
δn,m,

E
{(

∂�
∂cr(k)

)(
∂�
∂αr

)T}
=

2
σ2

Re
{
ΩH ⊗ cH(k)

}
= Ck,

E
{(

∂�
∂cc(k)

)(
∂�
∂αr

)T}
=

2
σ2

Im
{
ΩH ⊗ cH(k)

}
= Dk,

E
{(

∂�
∂cr(k)

)(
∂�
∂αc

)T}
= − 2

σ2
Im

{
ΩH ⊗ cH(k)

}
,

E
{(

∂�
∂cc(k)

)(
∂�
∂αc

)T}
=

2
σ2

Re
{
ΩH ⊗ cH(k)

}
,

E
{(

∂�
∂αr

)(
∂�
∂αr

)T}
=

2
σ2

L∑
n=1

L∑
m=1

Re
[
c∗(k) ⊗ n(k)

×nH(m) ⊗ cH(m)
]
,

=
2
σ2

L∑
k=1

Re
[
c∗(k) ⊗ Im

⊗ cH(k)
]
= E,

E
{(

∂�
∂αc

)(
∂�
∂αc

)T}
=

2
σ2

L∑
n=1

L∑
m=1

Re
[
c∗(k) ⊗ n(k)

×nH(m) ⊗ cH(m)
]
,

=
2
σ2

L∑
k=1

Re
[
c∗(k) ⊗ Im ⊗ cH(k)

]
,

E
{(

∂�
∂αr

)(
∂�
∂αc

)T}
= − 2

σ2

L∑
n=1

L∑
m=1

Im
[
c∗(k) ⊗ n(k)

×nH(m) ⊗ cH(m)
]
,

= − 2
σ2

L∑
k=1

Im
[
c∗(k) ⊗ Im

⊗ cH(k)
]
= −F.

(30)

Then the FIM can be written in partitioned form as

J =




� 0 �1

. . .
...

0 � �L

�T
1 · · · �T

L �



, (31)

where

� =
[
A −B
B A

]
, �k =

[
Ck −Dk

Dk Ck

]
, � =

[
E −F
F E

]
.

(32)
The FIM can now be directly constructed. We can numeri-
cally compute the variance of individual parameter estimate
by inverting the FIM CRB(τ) = diag{J−1(τ)}.

4.2. Unconditional CRB

We now turn to the evaluation of the unconditional CRB.
Under (AS1u), the computation of the exact CRB is ana-
lytically intractable, we therefore consider an alternative ap-
proach for simplifying CRB calculation [13].

The evaluation of the exact form of the unconditional
CRB requires the Hessian matrix for the unconditional log-
likelihood function. The corresponding log-likelihood func-
tion explicitly for the current problem is given by

log
[
fθ(r)

]
= −nL log(2) −mL log

(
πσ2

)

+
L∑

k=1

log

(
2(l+t−1)∑
p=1

exp

{
−
∥∥r(k) −Ωg

(
ζ p
)∥∥2

σ2

})
.

(33)

Unfortunately, due to the nature of (33) the evaluation of the
Hessian matrix is analytically intractable. However, it is com-
mon to adopt (see, e.g., [13]) an approximate log-likelihood
function to obtain valid CRB. Due to concavity of the log-
likelihood function and Jensen’s inequality, we obtain from
(33) the following approximate log-likelihood function:

log
[
fθ(r)

] ≤ L∑
k=1

2(l+t−1)∑
p=1

log

[
exp

{
−
∥∥r(k) −Ωg

(
ζ p
)∥∥2

σ2

}]
.

(34)

If we further simplify (35), we obtain

log
[
fθ(r)

] ≤ − 1
σ2

L∑
k=1

2(l+t−1)∑
p=1

∥∥r(k) −Ωg
(
ζ p
)∥∥2

. (35)

At this point, we should point out that the Hessian matrix
from the approximate log-likelihood function can be eas-
ily obtained. However, (35) leads to a CRB called modified
CRB(MCRB) which is not as tight as exact CRB, but it is
computationally easier to evaluate.

It turns out from the approximate log-likelihood func-
tion of (34) that the entries of the FIM are as

Jσ2 ,σ2 =
nL

σ4
, Jσ2 ,Ω = 0, JΩ,σ2 = 0. (36)

Moreover, the submatrix JΩ,Ω can also be obtained as

JΩ,Ω =
2
σ2

2(l+t−1)∑
p=1

g
(
ζ p
)
gH

(
ζ p
)
. (37)

The i.i.d. input sequence coded with orthogonal space-time
codes results in uncorrelated coded sequence. It is therefore
possible to further simplify the valid MCRB’s. In this case,
the valid MCRB can be easily obtained as follows:

J−1 = σ2



σ2

nL
0

0
2 I

22(l+t−1)


 . (38)
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Figure 2: 4-state space-time coding system model.
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Figure 3: 8-state space-time coding system model.

5. SIMULATIONS

In this section, we illustrate some simulation results to eval-
uate the effectiveness and applicability of the proposed ML
approaches. We consider the generator matrix form repre-
sentation of the space-time coding system [15]. In this rep-
resentation the stream of coded complexMPSK symbols are
obtained by applying the mapping function � to the follow-
ing matrix multiplication:

c(k) = �
(
u(k) ·G(modM)

)
, (39)

where u(k) = [s(lk+ t−1), . . . , s(lk− t)]T andG is the genera-
tor matrix with n columns and l+ s rows and � is a mapping
function that maps integer values c̃i to the codedMPSK sym-
bols, �(c̃i) = exp(2π jc̃i/M).

The performance of the proposed methods was evalu-
ated as a function of SNR (signal-to-noise ratio) based on
the Monte Carlo simulations. Both conditional and uncon-
ditional ML methods were tested for 200 Monte Carlo trials
per SNR point across range of SNRs. In each trial, the estima-
tion error of each parameter estimate from conditional and
unconditional ML for the channel parameters were recorded.
We consider the following two different cases.

Case 1. 4PSK space-time code example shown in Figure 2 is
considered with n = 2, t = 2 and the generator matrix

G =



2 0
1 0
0 2
0 1


 . (40)

In this case, the coded 4PSK symbols obtained from two cur-
rent information bits are transmitted over the first antenna,
whereas the coded 4PSK symbols obtained from two pre-
ceding bits are transmitted over the second antenna simul-
taneously. The coded symbols are then transmitted through
quasi-static fading channel matrix.

In Figure 4, we have plotted the estimation error ob-
tained from conditional and unconditional ML for the chan-
nel parameters as well as the corresponding CRBs. The esti-
mation error experienced by the proposed estimation proce-
dures at each iteration (SNR = 10 dB) is shown in Figure 6.

Case 2. A slightlymore complicated space-time encoder with
n = 2, t = 3 and the generator matrix

G =



2 0
1 0
0 2
0 1
2 2


 (41)

is considered in this case. This example would be an 8-state
code as shown in Figure 3.

In Case 2, the coded 4PSK symbols generated from
[s(2k + 1), s(2k), s(2k − 3)] are transmitted over the first
antenna, whereas the coded 4PSK symbols obtained from
[s(2k−1), s(2k−2), s(2k−3)] are transmitted over the second
antenna simultaneously. The coded symbols are then trans-
mitted through the quasi-static fading channel matrix.

Figure 5 shows the experimental estimation error for
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Figure 4: Case 1: Channel matrix estimation error norm.
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Figure 5: Case 2: Channel matrix estimation error norm.

both the conditional and unconditional ML together with
their corresponding CRB’s for a range of SNR’s. Figure 7
shows the estimation error experienced by the proposed es-
timation procedures at each iteration (SNR = 10 dB).

Based on the simulations we made the following obser-
vations:

(i) the proposed conditional and unconditional ML ap-
proaches perform almost identically for high SNR val-
ues. Moreover, conditional ML achieve conditional
CRB for high SNRs;

(ii) since the unconditional cost function is dominated
by only one term for high SNR, it results in exactly
the same cost function as one would obtain for con-
ditional ML estimation of θ. It is therefore expected
that both conditional and unconditional cost func-
tions yield similar estimates of θ at high SNR. Thus the
unconditional ML approach also achieves conditional
CRB for high SNR;
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Figure 6: Case 1: Convergence of the channel matrix.
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Figure 7: Case 2: Convergence of the channel matrix.

(iii) the unconditional approach requires more iterations
than the conditional approach to converge, however,
unconditional approach is more successful in reduc-
ing channel estimation error norm at convergence for
moderate SNR values.

6. CONCLUSIONS

In this paper, we presented the conditional and uncondi-
tional approaches to the problem of blind estimation of
the channel parameters along with the space-time coded se-
quence. We derived iterative ML algorithms based on the
conditional and unconditional signal models. Furthermore,
the performance of the proposed algorithms are explored
based on the derivation of their associated CRBs. We also
presented Monte Carlo simulations to verify the theoretically
predicted estimator’s performance. The examples demon-
strated that proposedML approaches achieve the conditional
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CRB for high SNR values. Since the unconditional CRB pro-
vides a looser bound, it is not as tight as exact CRB.
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