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Abstract
We investigate the existence of solutions for two high-order fractional differential
equations including the Caputo-Fabrizio derivative. In this way, we introduce some
new tools for obtaining solutions for the high-order equations. Also, we discuss two
illustrative examples to confirm the reported results. In this way one gets the
possibility of utilizing some continuous or discontinuous mappings as coefficients in
the fractional differential equations of higher order.
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1 Introduction
Up to now, there have been defined some fractional derivations of which most used are
the Caputo and Riemann-Liouville operators. The applications of the fractional calculus
with these two main derivatives can be observed within a huge range of real world phe-
nomena. In order to increase the power and applicability of the fractional calculus some
researchers suggested a new type of fractional derivatives possessing different kernels.
Thus, Caputo and Fabrizio defined recently a new fractional derivative possessing a sin-
gular kernel [] and the properties of it were discussed in []. Some researchers have used
distinct methods for solving some different equations including the Caputo-Fabrizio (CF)
fractional derivative (see [–, , ] and the references therein) and multi-singular point-
wise defined equations [–]. Despite these original results, still several issues regarding
this new fractional derivative have to be developed. Below we discuss the existence of ap-
proximate solutions analytically corresponding to two CF fractional differential equations
(FDE).

The plan of the manuscript can be seen below. In the following section we recall the
main results needed in this paper. Section  contains the original results and the illustrative
examples. Finally, Section  summarizes our work.

2 Basic tools
Let c > , u ∈ H(, c) and α ∈ (, ). We recall that CF Dαu(t) = (–α)M(α)

(–α)
∫ t

 exp( –α
–α

(t –
r))u′(r) dr means the CF fractional derivative, such that t ≥  and M(α) denotes the nor-
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malization constant and fulfilling M() = M() =  []. The corresponding fractional in-
tegral is written as CF Iαu(t) = (–α)

(–α)M(α) u(t) + α
(–α)M(α)

∫ t
 u(r) dr for  < α <  []. We re-

call that M(α) = 
–α

for all  ≤ α ≤  []. As a result, the CF fractional derivative be-
comes CF Dαu(t) = 

–α

∫ t
 exp(– α

–α
(t – r))u′(r) dr, where t ≥  and  < α <  []. Note

that CF Dαu ∈ H when u ∈ H. This hints to a new idea about high-order derivations.
If n ≥  and α ∈ [, ], then the CF fractional derivative of order n + α is defined by
CF Dα+nu := CF Dα(CF Dnu(t)) []. We need the following results.

Lemma . ([]) The unique solution of CF Dαu(t) = v(t) with u() = c and  < α <  is
given by u(t) = c + aα(v(t) – v()) + bα

∫ t
 v(r) dr, where aα = (–α)

(–α)M(α) =  – α and bα =
α

(–α)M(α) = α. In addition v() = .

For investigating the existence of solutions for most FDE, researchers utilized the well-
defined fixed point results, e.g. the Banach contraction principle. We recall that there are
many nonlinear FDE admitting no exact solutions []. In this case, numerical methods
are utilized to get an approximation of exact solutions. In addition, u represents an ap-
proximate solution for FDE when we could get a sequence of functions {vn}n≥ such that
vn → u.

If an exact solution u is not obtained, then we use this approach. This case arises when
we discuss the FDE within a non-complete metric space.

Below we present some basic notions needed in this manuscript. Let (Y , d) denoting a
metric space, F a self-map on Y , α : Y × Y → [,∞) a mapping and ε a positive num-
ber. We say that F is α-admissible when α(x, y) ≥  implies α(Fx, Fy) ≥  []. When
d(Fx, x) ≤ ε, x ∈ Y is called an ε-fixed point of F .

We say that F possesses the approximate fixed point property when F possesses
an ε-fixed point for all ε >  []. We recall that some mappings admit approximate
fixed points while possessing no fixed points []. Let R be the set of all continu-
ous mappings f : [,∞) → [,∞) fulfilling f (, , , , ) = f (, , , , ) := h ∈ (, ),
f (μx,μx,μx,μx,μx) ≤ μf (x, x, x, x, x) for all (x, x, x, x, x) ∈ [,∞) and μ ≥ 
and also f (x, x, x, , x) ≤ f (y, y, y, , y) and f (x, x, x, x, ) ≤ f (y, y, y, y, ) when
x, . . . , x, y, . . . , y ∈ [,∞) with xj < yj for j = , , ,  []. F denotes a generalized α-
contractive mapping when there exists f ∈R obeying

α(x, y) d(Fx, Fy) ≤ f
(
d(x, y), d(x, Fx), d(y, Fy), d(x, Fy), d(y, Fx)

)

for all x, y ∈ Y []. We need the following result.

Theorem . ([]) Let (Y , d) denoting a metric space, α : Y × Y → [,∞) be a mapping
and F denoting a generalized α-contractive and α-admissible self-map on Y . Let us sup-
pose that there exists x ∈ Y obeying α(x, Fx) ≥ . Then F possesses an approximate fixed
point.

3 The results
We use the main idea of [] for obtaining our results in this work.
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As is well known, by using the Cauchy formula for repeated integration, we get

Jnu(t) =
∫ t=tn



∫ s=tn–



∫ tn–


· · ·

∫ t


u(t) dt, dt, . . . , d(tn–) ds

︸ ︷︷ ︸
n

=


(n – )!

∫ t


u(s)(t – s)n– ds,

for all n ≥ , a, t ∈R and t > . If n is substituted by a positive real number α and (n – )! by
its generalization �(α), a formula for fractional integration is obtained for the fractional
operator Jαu(t) = 

�(α)
∫ t

 u(s)(t – s)α– ds, which is called the Riemann-Liouville fractional
integral of order α.

Let us to consider the following symbols:

CF Dα[n]
u(t) := CF Dα

(CF Dα
(CF Dα · · · (CF Dαu(t)

) · · · ))
︸ ︷︷ ︸

n

, CF Dα[]
u(t) = u(t), (∗)

∫ t[n]


u(s) ds =

∫ t=tn



∫ s=tn–



∫ tn–


· · ·

∫ t


u(t) dt, dt, . . . , d(tn–) ds

︸ ︷︷ ︸
n

= Jnu(t), (∗∗)

and Ju(t) =
∫ t[]

 u(s) ds := u(t). Also, we define

(
aα + bαJu(t)

)[n] =
(

aα + bα

∫ t


u(s) ds

)[n]

=

(
n


)

an
αb

α

∫ t[]


u(s) ds +

(
n


)

an–
α b

α

∫ t[]


u(s) ds

+ · · · +

(
n

n – 

)

a
αbn–

α

∫ t[n–]


u(s) ds +

(
n
n

)

a
αbn

α

∫ t[n]


u(s) ds

=
n∑

i=

(
n
i

)

an–i
α bi

α

∫ t[i]


u(s) ds

=
n∑

i=

(
n
i

)

an–i
α bi

αJ iu(t).

Below we present the main results of the manuscript.

Lemma . Let u, v ∈ H(, ) and L a real number obeying |u(s) – v(s)| ≤ L for all
s ∈ [, ]. Thus, |CF Dα[n] u(s) – CF Dα[n] v(s)| ≤ (–α)n

(–α)n L for all s ∈ [, ]. This result implies

that |CF Dα[n] u(s)| ≤ (–α)n

(–α)n L for all s ∈ [, ] whenever u ∈ H(, ) with |u(s)| ≤ L for
some L ≥  and all s ∈ [, ].

Lemma . Let u, v ∈ H(, ) with u() = v() and La real number fulfilling |u(s) –
v(s)| ≤ L for all s ∈ [, ]. Thus, |CF Dα[n] u(s) – CF Dα[n] v(s)| ≤ 

(–α)n L for all s ∈ [, ]. This

result implies that |CF Dα[n] u(s)| ≤ 
(–α)n L for all s ∈ [, ] whenever u ∈ H(, ) with

u() =  and |u(s)| ≤ L for some L ≥  and all s ∈ [, ].
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Lemma . Let u, v ∈ CR[, ] and there is L ≥  satisfying |u(s) – v(s)| ≤ L for all s ∈
[, ]. Thus, |CF Iα[n] u(s) – CF Iα[n] v(s)| ≤ L for all s ∈ [, ].

This result implies that |CF Iα[n] u(s)| ≤ L for all s ∈ [, ] whenever u ∈ CR[, ] with
|u(s)| ≤ L for some L ≥  and all s ∈ [, ].

Lemma . Let  < α <  and u, v ∈ H(, ). The problem CF Dα[n] u(t) = v(t), u() = ,
possesses the following unique solution: u(t) = (aα + bαJv(t))[n], where CF Dα[n] is defined
by (∗).

Proof By using the Lemma . for CF Dαu(t) = v(t), we get u(t) = aαv(t) + bα

∫ t
 v(s) ds.

Also by using Lemma . for CF Dα[] u(t) = v(t), we obtain CF Dαu(t) = aαv(t) + bα

∫ t
 v(s) ds.

Hence,

u(t) = aα

(

aαv(t) + bα

∫ t


v(s) ds

)

+ bα

∫ t



(

aαv(s) + bα

∫ s


v(r) dr

)

ds

= a
αv(t) + aαbα

∫ t


v(s) ds + b

α

∫ t



∫ s


v(r) dr ds

=
(

aα + bα

∫ t


v(s) ds

)[]

.

Suppose that u(t) = (aα + bαJv(t))[n] is the solution of the equation CF Dα[n] u(t) = v(t).
We show that u(t) = (aα + bαJv(t))[n+] is the solution of the equation CF Dα[n+] u(t) =
v(t).

If CF Dα[n] (CF Dαu(t)) = v(t), then CF Dαu(t) = (aα + bαJv(t))[n]. Thus,

u(t) = aα

(
aα + bαJv(t)

)[n] + bα

∫ t



(
aα + bαJv(s)

)[n] ds

= aα

[(
n


)

an
αb

α

∫ t[]


v(s) ds +

(
n


)

an–
α b

α

∫ t[]


v(s) ds

+ · · · +

(
n

n – 

)

a
αbn–

α

∫ t[n–]


v(s) ds +

(
n
n

)

a
αbn

α

∫ t[n]


v(s) ds

]

+ bα

[(
n


)

an
αb

α

∫ t[]


v(s) ds +

(
n


)

an–
α b

α

∫ t[]


v(s) ds

+ · · · +

(
n

n – 

)

a
αbn–

α

∫ t[n]


v(s) ds +

(
n
n

)

a
αbn

α

∫ t[n+]


v(s) ds

]

=

(
n


)

an+
α b

α

∫ t[]


v(s) ds +

[(
n


)

+

(
n


)]

an
αb

α

∫ t[]


v(s) ds

+ · · · +

[(
n
n

)

+

(
n

n – 

)]

a
αbn

α

∫ t[n]


v(s) ds +

(
n
n

)

a
αbn+

α

∫ t[n+]


v(s) ds

=

(
n + 



)

an+
α b

α

∫ t[]


v(s) ds +

(
n + 



)

an
αb

α

∫ t[]


v(s) ds
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+ · · · +

(
n + 

n

)

+ a
αbn

α

∫ t[n]


v(s) ds

+

(
n + 
n + 

)

a
αbn+

α

∫ t[n+]


v(s) ds

=
(
aα + bαJv(t)

)[n+]

and so u(t) = (aα + bα

∫ t
 v(s) ds)[n] = (aα + bαJv(t))[n] holds for all n. �

In the last result, we used some notation such as
∫ t[n]

 u(s) ds, which was introduced by
(∗∗). We need the following result.

Lemma . ([]) Suppose t ∈ R, then et =
∑∞

i=
ti

i! for  < |t| < ∞, t�∞
i=( – t

iπ ) = sin t
and �∞

i=( – t

(i–)π ) = cos t.

Let γ ,λ : [, ] × [, ] → [,∞) denoting two continuous maps with
supr∈I | ∫ t

 λ(r, s) ds| < ∞ and supr∈I | ∫ r
 γ (r, s) ds| < ∞, respectively.

Let φ and ϕ be two maps defined as (φu)(r) =
∫ r

 γ (r, s)u(s) ds and (ϕu)(r) =
∫ r

 λ(r, s)u(s) ds, respectively. Let η ∈ L∞(I) with η∗ = supt∈I |η(t)| and k, h and g be con-
tinuous on [, ] with M = supt∈I |k(t)|, M = supt∈I |h(t)| and M = supt∈I |g(t)|. Put
γ = sup | ∫ t

 γ (t, s) ds| and λ = sup | ∫ t
 λ(t, s) ds|. Below we study the fractional-order

integro-differential problem

CF Dα[n]
z(s) = μk(s)CF Dβ[m](

z(s) + h(s)CF Dγ [p]
z(s)

)

+ f
(
s, z(s), (φz)(s), (ϕz)(s), CF Iθ [q]

z(s), g(s)CF Dδ[r]
z(s)

)
()

with z() =  under some conditions, where μ >  and α,β ,γ , θ , δ ∈ (, ) as well as
n, m, p, q, r ≥ . Since CF Dα[n] u ∈ H for all n, the right hand is too.

Theorem . Let f : [, ] ×R
 →R be a continuous function such that

∣
∣f (t, x, y, w, u, u) – f

(
t, x′

, y′
, w′

, v, v
)∣∣

≤ η(t)
(∣
∣x – x′


∣
∣ +

∣
∣y – y′


∣
∣ +

∣
∣w – w′


∣
∣ + |u – v| + |u – v|

)

for all t ∈ I and x, y, w, x′
, y′

, w′
, u, u, v, v ∈ R. Then the stated problem () possesses

an approximate solution when � = η∗( + γ + λ + M
(–δ)r ) + μ( MM

(–γ )p(–β)m + M
(–β)m ) < .

Proof Let H equipped with d(z, v) = ‖z – v‖ on X, such that ‖z‖ = supt∈I |z(t)|. Let F :
H → H be a map defined as follows:

(Fz)(t) =
(

aα + bα

∫ t



[
μk(s)CF Dβ[m](

z(s) + h(s)CF Dγ [p]
z(s)

)

+ f
(
s, z(s), (φz)(s), (ϕz)(s), CF Iθ [q]

z(s), g(s)CF Dδ[r]
z(s)

)]
ds

)[n]

,
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where aα and bα are introduced in Lemma . and the notation CF Iθ [q] z(s) and CF Dγ [p] z(s)
is introduced by (∗) and (∗∗). By using Lemmas . and ., we get

∣
∣μk(s)CF Dβ[m](

z(s) + h(s)CF Dγ [p]
z(s)

)

+ f
(
s, z(s), (φz)(s), (ϕz)(s), CF Iθ [q]

z(s), g(s)CF Dδ[r]
z(s)

)

– μk(s)CF Dβ[m](
v(s) + h(s)CF Dγ [p]

v(s)
)

– f
(
s, v(s), (φv)(s), (ϕv)(s), CFIθ [q]

v(s), g(s)CF Dδ[r]
v(s)

)∣∣

≤ μ
∣
∣
∣
∣k(s)

∣
∣CF Dβ[m](

z(s) + h(s)CF Dγ [p]
z(s)

)
– CF Dβ[m](

v(s) + h(s)CF Dγ [p]
v(s)

)∣∣

+
∣
∣f

(
s, z(s), (φz)(s), (ϕz)(s), CF Iθ [q]

z(s), g(s)CF Dδ[r]
z(s)

)

– f
(
s, v(s), (φv)(s), (ϕv)(s), CFIθ [q]

v(s), g(s)CF Dδ[r]
v(s)

)∣
∣

≤ μ
[∣∣k(s)

∣
∣
∣
∣CF Dβ[m](

z(s) – v(s)
)∣∣

+
∣
∣k(s)

∣
∣
∣
∣h(s)

∣
∣CF Dβ[m](CF Dγ [p](

z(s) – v(s)
))]

+
∣
∣η(s)

∣
∣[

∣
∣z(s) – v(s)

∣
∣ +

∣
∣(φz)(s) – (φv)(s)

∣
∣

+
∣
∣(ϕz)(s) – (ϕv)(s)

∣
∣ +

∣
∣CF Iθ [q]

z(s) – CF Iθ [q]
v(s)

∣
∣ +

∣
∣g(s)

∣
∣
∣
∣CF Dδ[r]

z(s) – CF Dδ[r]
v(s)

∣
∣
]

≤
[

η∗
(

 + γ + λ +
M

( – δ)r

)

+ μ

(
MM

( – γ )p( – β)m +
M

( – β)m

)]

‖z – v‖.

Since z() = , we obtain

∣
∣(Fz)(t) – (Fv)(t)

∣
∣

≤
(

aα + bα

∫ t



[

η∗
(

 + γ + λ +
M

( – δ)r

)

+ μ

(
MM

( – γ )p( – β)m +
M

( – β)m

)]

‖z – v‖ds
)[n]

,

and so

‖Fz – Fv‖

≤ (aα + bα)n
[

η∗
(

 + γ + λ +
M

( – δ)r

)

+ μ

(
MM

( – γ )p( – β)m +
M

( – β)m

)]

‖z – v‖

for all t ∈ I and z, v ∈ H. Define the mappings g : [,∞) → [,∞) and α : H × H →
[,∞) by g(x, x, x, x, x) = �

 (x + x + x) and α(x, y) =  for all x, y ∈ H and
x, . . . , x ∈ [,∞). One can easily check that g ∈ R. In addition we conclude that F de-
notes a generalized α-contractive map. From Theorem ., we conclude that F possesses
an approximate fixed point which is an approximate solution of (). �

Suppose that functions k, s, h, g and q are bounded on [, ] with M = supt∈I |k(t)| <
∞, M = supt∈I |s(t)| < ∞, M = supt∈I |h(t)| < ∞, M = supt∈I |g(t)| < ∞ and M =
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supt∈I |q(t)| < ∞. Now we discus the following problem:

CF Dα[n]
u(r) = λk(r)CF Dβ[m]

u(r) + μs(r)CF Iρ[p]
u(r)

+
∞∑

i=

CF Dθ [i] f(r, u(r), (φu)(r), h(r)CF Iν[q] u(r), g(r)CF Dδ[r] u(r))
i!

+
∫ r


f

(

s, u(s), (ϕu)(s), q(s)
∞∑

i=

CF Dγ [i] u(s)
di

)

ds ()

with u() =  under some conditions, where λ,μ ≥ , α,β ,ρ, θ ,ν, δ ∈ (, ), | 
d(–γ ) | < 

and n, m, p, q, r, k ≥ . The functions k, s, h, g and q maybe are not continuous, but the
right hand of () should be a member of H because CF Dα[n] u ∈ H.

Theorem . Suppose that f : [, ] × R
 → R and f : [, ] × R

 → R are integrable
functions such that

∣
∣f(t, x, y, w, v) – f

(
t, x′

, y′
, w′

, v′

)∣
∣

≤ ξ
∣
∣x – x′


∣
∣ + ξ

∣
∣y – y′


∣
∣ + ξ

∣
∣w – w′


∣
∣ + ξ

∣
∣v – v′


∣
∣,

∣
∣f(t, x, y, w) – f

(
t, x′

, y′
, w′


)∣
∣

≤ ξ ′

∣
∣x – x′


∣
∣ + ξ ′


∣
∣y – y′


∣
∣ + ξ ′


∣
∣w – w′


∣
∣

for some nonnegative real numbers λ,μ, ξ, ξ, ξ, ξ, ξ ′
, ξ ′

, ξ ′
 and all x, y, w, v, x′

, y′
, w′

,

v′
 ∈ R and t ∈ I . If � = [λ M

(–β)m + μM + e


(–θ ) (ξ + ξγ + ξM + ξ
M

(–δ)r ) + ξ ′
 + ξ ′

λ +
ξ ′

 d(–γ )M
d(–γ )– ] < , then the stated problem () possesses an approximate solution.

Proof Let H equipped with d(z, v) = ‖z – v‖, such that ‖z‖ = supt∈I |z(t)|. Define the map
F : H → H by

(Fz)(t) =

(

aα + bα

∫ t



[

λk(s)CF Dβ[m]
z(s) + μs(s)CF Iρ[p]

z(s)

+
∞∑

i=

CF Dθ [i] f(s, z(s), (φz)(s), h(s)CF Iν[q] z(s), g(s)CF Dδ[r] z(s))
i!

+
∫ s


f

(
r, z(r), (ϕz)(r), q(r)

) ∞∑

i=

CF Dγ [i] z(r)
di dr

]

ds

)[n]

.

By using Lemmas ., . and ., we get

∣
∣
∣
∣
∣

[

λk(s)CF Dβ[m]
z(s) + μs(s)CF Iρ[p]

z(s)

+
∞∑

i=

CF Dθ [i] f(s, z(s), (φz)(s), h(s)CF Iν[q] z(s), g(s)CF Dδ[r] z(s))
i!

+
∫ s


f(r, z(r), (ϕz)(r), q(r)

∞∑

i=

CF Dγ [i] z(r)
i dr

]
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–

[

λk(s)CF Dβ[m]
v(s) + μs(s)CF Iρ[p]

v(s)

+
∞∑

i=

CF Dθ [i] f(s, v(s), (φv)(s), h(s)CFIν[q] v(s), g(s)CF Dδ[r] v(s))
i!

+
∫ r


f(r, v(r), (ϕv)(r), q(r)

∞∑

i=

CF Dγ [i] v(r)
di dr

]∣
∣
∣
∣
∣

≤ λ
∣
∣k(s)

∣
∣
∣
∣CF Dβ[m](

z(s) – v(s)
)∣∣ + μ

∣
∣s(s)

∣
∣
∣
∣CF Iρ[p](

z(s) – v(s)
)∣∣

+

∣
∣
∣
∣
∣

∞∑

i=


i!( – θ )i

[
f
(
s, z(s), (φz)(s), h(s)CF Iν[q]

z(s), g(s)CF Dδ[r]
z(s)

)

– f
(
s, v(s), (φv)(s), h(s)CFIν[q]

v(s), g(s)CF Dδ[r]
v(s)

)]
∣
∣
∣
∣
∣

+
∫ s



∣
∣
∣
∣
∣
f(r, z(r), (ϕz)(r), q(r)

∞∑

i=

CF Dγ [i] z(r)
di

– f(r, v(r), (ϕv)(r), q(r)
∞∑

i=

CF Dγ [i] v(r)
di

∣
∣
∣
∣
∣
dr

≤ λ
M

( – β)m ‖z – v‖ + μM‖z – v‖

+
∞∑

i=


i!( – θ )i

(

ξ‖z – v‖ + ξγ‖z – v‖ + ξM‖z – v‖ + ξ
M

( – δ)r ‖z – v‖
)

+ ξ ′
‖z – v‖ + ξ ′

λ‖z – v‖ +
∞∑

i=

ξ ′
M

di( – γ )i ‖z – v‖

=
[

λ
M

( – β)m + μM + e


(–θ )

(

ξ + ξγ + ξM + ξ
M

( – δ)r

)

+ ξ ′
 + ξ ′

λ +
ξ ′

 d( – γ )M

d( – γ ) – 

]

‖z – v‖

= �‖z – v‖.

Since z() = v(), |(Fz)(t)–(Fv)(t)| ≤ (aα +bα

∫ t
 �‖z–v‖ds)[n]. Hence, ‖Fz–Fv‖ ≤ �‖z–v‖

for all t ∈ I and z, v ∈ H. Define the mappings g : [,∞) → [,∞) and α : H × H →
[,∞) by g(x, x, x, x, x) = �

 (x + x + x) and α(x, y) =  for all z, v ∈ H and
x, . . . , x ∈ [,∞). One can easily check that g ∈ R. By simple calculations we prove that
F represents a generalized α-contractive map. Besides, from Theorem ., we conclude
that F possesses an approximate fixed point which represents an approximate solution
for (). �

Below we show two illustrative examples.

Example . Let the maps η ∈ L∞([, ]) and γ,λ : [, ] × [, ] → [,∞) be η(t) =
e–(π t+)

 , γ(t, s) = et–s and λ(t, s) = eln(|t–s|+). Then η∗ = 
e ,γ ≤ e and λ ≤ eln(). Now,

put μ = 
e , α = 

 , β = 
 ,γ = 

 , θ = 
 , δ = 

 , n = , m = , p = , q =  and r =
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. Let k(t) = sin(t), h(t) = t–
t+ and g(t) = 

 tan–(t) be two functions. Then M =
supt∈I |k(t)| = , M = supt∈I |h(t)| =  and M = supt∈I |g(t)| = π

 . Let us discus

CF D



[]
u(t) =


e sin tCF D




[]
(

u(t) +
t – 
t + 

CF
D




[]
u(t)

)

+
e–(π t+)



[

t +



u(t) +



∫ t


et–su(s) ds +

∫ t


eln(|t–s|+)u(s) ds

+

e

CF I



[]
u(t) +


 tan–(t)CF D




[]
u(t))

]

()

with u() = . Let f (t, x, y, w, u, u) = e–(π t+)

 (t + 
 x + 

 y + w + e–u + u). In our
case � = [η∗( + γ + λ + M

(–δ)r ) + μ( MM
(–γ )p(–β)m + M

(–β)m )] < . < . Now by using
Theorem ., () has an approximate solution.

Example . Let γ,λ : [, ] × [, ] → [,∞) be γ(t, s) = t–s
+t and λ(t, s) = sin(t –

s)eln(|t–s|+), respectively. Then γ ≤  and λ ≤ eln(). Put λ = 
, , μ = 

 , α = 
 , β = 

 ,
ρ = 

 , θ = 
 , ν = 

 , δ = 
 , γ = 

 , n = , m = , p = , q = , r = , d = , ξ = 
, ,

ξ = 
, , ξ = 

 , ξ = 
e , ξ ′

 = 
 , ξ ′

 = e
π and ξ ′

 = 
 . Now, consider the func-

tions k(t) = ln( + t), s(t) = , h(t) = , g(t) = esinπ t , q(t) = 
 when x ∈ Q ∩ [, ] and

q(t) =  when x ∈ Q
c ∩ [, ]. Then we have M = supt∈I |k(t)| = ln , M = supt∈I |s(t)| = ,

M = supt∈I |h(t)| = , M = supt∈I |g(t)| = e and M = supt∈I |q(t)| = 
 . Now, consider the

integro-differential problem

CF D



[]
z(t) =


,

ln( + t)CF D



[]
z(t) +




CF I



[]
z(t)

+
∞∑

i=


i!

CF D



[i]
(




t +


,
z(t) +


,

∫ t



t – s
 + t

ds

+



CF I




[]
z(t) +


e esinπ t(t)CF D




[]
z(t)

)

+
∫ t



[

s +
z(s)
 +

e
π 

∫ s


sin(t – s)eln(|s–r|+)z(r) dr

+



q(s)

∞∑

i=

CF D 


[i]
z(s)

i

]

ds ()

with z() = . Let f(t, x, y, w, v) = 
 t + 

, x + 
, y + 

 w + 
e v and f(t, x, y,

w) = t + 
 x + e

π y + 
 w. In addition,

� =
[

λ
M

( – β)m + μM + e


(–θ )

(

ξ + ξγ + ξM + ξ
M

( – δ)r

)

+ ξ ′
 + ξ ′

λ +
ξ ′

 d( – γ )M

d( – γ ) – 

]

< . < .

Now by using Theorem ., the problem () possesses an approximate solution.
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4 Conclusions
The higher-order FDE play an important role in modelling the dynamics of complex sys-
tems. This direction is an important topic in modelling the dissipative phenomena espe-
cially by fractional derivatives as Riemann-Liouville and Caputo. However, the CF deriva-
tive is equipped with a non-singular kernel, therefore it was found attractive and very
suitable for several types of models possessing a memory effect. Thus, finding suitable
numerical techniques and their approximate solutions for some complicated models con-
taining a CF higher-order derivative are subjects of current interest. Along this line of
thought in this manuscript we show the existence of approximate solutions analytically
for two higher-order Caputo-Fabrizio FDE. We check our results by providing two exam-
ples. We conclude this manuscript by saying that, utilizing the numerical methods, one
can obtain approximations of the unknown exact solution.
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