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DOĞAN DALVA
B.S., Electronics Engineering, IŞIK UNIVERSITY, 2009
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Abstract

Sentence segmentation of speech aims detecting sentence boundaries in a stream

of words output by the speech recognizer. Sentence segmentation is a prelimi-

nary step toward speech understanding. It is of particular importance for speech

related applications, as most of the further processing steps; such as parsing,

machine translation and information extraction, assume the presence of sentence

boundaries.

Typically, statistical methods require a huge amount of manually labeled data,

which is time and labor consuming process to prepare. In this work, novel multi-

view semi-supervised learning strategies for the solution of sentence segmentation

problem are proposed.

The aim of this work is to find effective semi-supervised machine learning strate-

gies when only a small set of sentence boundary labeled data is available. This

work proposes three-view co-training and committee-based strategies incorpo-

rating with agreement, disagreement and self-combined strategies using lexical,

morphological and prosodic information, and investigates performance of the pro-

posed learning strategies against baseline, self-training and co-training. The ex-

perimental results show that the proposed learning strategies highly improve the

sentence segmentation problem, since data sets can be represented by three re-

dundantly sufficient and disjoint feature sets.

Keywords: Boosting, Co-Training, Forced Alignment, Lexical Feature Ex-

traction, Machine Learning, Morphology, Multi-View Semi-Supervised Learn-

ing, Prosody, Prosodic Feature Extraction, Sentence Segmentation, Self-

Training
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Bürüsel, Sözcüksel ve Biçimbilgisel Bilgiyi Kullanan

Eş-Eğitim ile Türkçe Konuşma Dilinin

Otomatik Cümle Bölütlemesi

Özet

Cümle bölütleme işlevi, standart Otomatik Konuşma Tanıma (OKT) sistem-

lerinin çıkışından elde edilen işlenmemiş kelime dizisi biçimindeki veriyi cümlelere

ayırarak zenginleştirmeyi amaçlayan bir işlemdir. Cümle bölütleme; çözümleme,

makine çevrimi, bilgi çıkarımı gibi cümle bölütlemenin yapıldığının varsayıldığı

konuşma işlemenin daha ileri uygulamaları için bir ön adım olarak gerçekleştiril-

mektedir.

Cümle bölütlemede kullanılan standart yöntemler, model eğitimi aşamasında

oldukça fazla etiketlenmiş veriye ihtiyaç duyar. El ile yapılan veri etiketleme

işlemi; emek, dikkat ve zaman isteyen bir işlemdir. Bu çalışmada çok bakışlı

yarı öğreticili yöntemler geliştirerek, daha az el ile etiketlenmiş veri ile standart

yöntemlere göre daha yüksek başarımın sağlanması hedeflenmektedir.

Bu çalışmada çok bakışlı yarı öğreticili yöntemler geliştirerek, daha az el ile

etiketlenmiş veri ile standart yöntemlere göre daha yüksek başarımın sağlanması

hedeflenmektedir. Bu çalışmada sözcüksel, biçimbilgisel ve prozodik özellikleri

kullanan, uzlaşma (agreement), uzlaşamama (disagreement) ve self-combined yön-

temleri ile beraber çalışan yeni üç bakışlı eş eğitim (co-training) ve kurul tabanlı

(committee-based) yöntemler geliştirildi. Yeni yöntemlerin performansları, iki

bakışlı eş eğitim yöntemleri, kendi kendini eğitme (self-training) yöntemi ve stan-

dart yöntemler ile kıyaslandı. Deneysel sonuçlar, veri kümeleri yeterli ve ayrık

özellik grupları kullanılarak ifade edilebildiği için, önerilen yöntemlerin cümle

bölütleme başarımını oldukça arttırdığı göstermektedir.

Anahtar kelimeler: Biçimbilgisel Bilgi (Morfoloji), Eş Eğitim (Co-Training),

Çok Bakışlı Yarı Öğreticili Öğrenme, Cümle bölütleme, Makine Öğrenmesi,

Prozodi, Prozodik Özellik Çıkarımı, Sözlüksel (Lexical) Özellik Çıkarımı,

Zorlanmış Hizalama
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Chapter 1

Introduction

Automatic Speech Recognition (ASR) systems provide transcriptions of spoken

words without punctuation signs. ASR systems are widely used in several human-

machine interactions such as using smart phones with little commands, call-center

decision trees, smart home systems. On the other hand, when ASR output of

a long speech is considered, gathering information from such output is almost

impossible, even for humans, without segmenting this raw output into sentences.

In addition, manually sentence segmenting is time and labor consuming for a huge

data. Following example illustrates typical output of an ASR system.

“automatic speech recognition asr systems provide transcriptions of spoken words

without punctuation signs asr systems are widely used in several human machine

interaction such as using smart phones with little commands call center decision trees

smart home systems on the other hand when asr output of a long speech is considered

asr systems provide raw text transcripts of recognized words without any punctuation

signs gathering information from such output is next to impossible even for humans

without segmenting this raw output into sentences segmenting raw asr output into

sentences manually is time and labor consuming for a huge data” . . .

1



In the literature it has been shown that sentence boundaries are very crucial for

legibility of speech transcripts [1]. Moreover, missing sentence boundaries cause

meaning ambiguity for some utterances. For instance the following utterance “no

jobs are running” has two completely different possible interpretations such that

“No jobs are running” and “No. Jobs are running.” [2]. This example shows

that using only lexical features may not be sufficient for sentence segmentation.

It has been shown that prosodic information in speech (acoustic model), and

morphological information in text (language model) [3] provide complementary

information to lexical information for segmentation of speech into sentences [3, 4,

5].

In previous studies, supervised methods have been employed for sentence segmen-

tation. Training binary classifiers with supervised methods require huge amounts

of manually labeled training data, which is time and labor consuming to prepare.

Supervised model adaptation methods proposed in [5], divide training set into

two subsets which are called labeled (in-domain) and unlabeled (out-of-domain)

data, where the size of the former is significantly smaller than the latter. More-

over in [6], the effects of single pass co-training algorithms on sentence segmenta-

tion problem have been analyzed using prosodic and lexical information. In [7],

the performance of multi-view semi-supervised models, which exploit unlabeled

data using prosodic and lexical features were compared to several semi-supervised

learning methods, such as self-training and co-training on sentence segmentation

task. In that work, two-view co-training approach was employed on the Interna-

tional Computer Science Institute (ICSI), Meeting Recorder Dialog Act (MRDA)

Corpus [8, 9], and it has been shown that iterating two-view co-training algo-

rithm using the agreement, disagreement and self-combined strategies outper-

formes single pass two-view co-training and self-training algorithms even at the

first iteration.

This work and [10] propose a better sentence segmentation system, which extend

two-view semi-supervised co-training approach into three-view co-training strate-

gies (Strategies 1 to 7) incorporating agreement, disagreement, and self-combined
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strategies. In this work, it has been shown that three-view co-training strategies,

which are considered as either combined or extended versions of two-view co-

training strategies, are very appropriate for the sentence segmentation problem,

since data sets can be represented by three redundantly sufficient and disjoint

feature sets such as prosodic, morphological and lexical information. In addition,

this work proposes committee-based learning strategies over different feature sets

in Committee-Based Learning Strategy 8 (Strategy 8), and over committee-based

learning strategies (Strategies 2, 3, 5, 6, 7, 8) in Committee-Based Learning

Strategy 9 (Strategy 9).

The organization of this thesis is follows as: Chapter 2 presents previous related

studies, Chapter 3 presents data collection and annotation methods, Chapter 4

presents prosodic and lexical feature extraction methods and contents of prosodic,

lexical and morphological information, Chapter 5 presents semi-supervised meth-

ods and experimental setup, Chapter 6 presents experimental results based on

different features and strategies, and finally Chapter 7 presents the conclusion.
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Chapter 2

Literature Survey

Before presenting the details of the semi-supervised learning methods employed

in this work, first the related work for sentence segmentation and the literature

review on the semi-supervised learning methods are presented.

2.1 Sentence Segmentation

Automatic segmentation of speech into sentence units (SU) is a very important

task and essential for many natural language processing (NLP) methods. In the

literature, one of the most typical approaches of sentence segmentation is classi-

fication of words into two classes such that whether the current word is followed

by a sentence boundary (s) or a non-sentence boundary (n). Therefore, this

task can be considered as a binary classification problem by finding probability

argmaxTP (T |F ) which is the most likely boundary tag sequence T given by the

features F [11].

Raw or unformatted word transcript of an utterance processed by an ASR is as

follows [12]:

”hi bill it’s tracy at around three thirty PM just got an apartment for one thousand

three thirty one thousand four hundred a month my number is five five five eight

eight eight eight extension is three thirty bye”.
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Corresponding formatted transcript version processed by human annotators of

the transcript above should be in the following form:

”Hi Bill. It’s Tracy. At around three thirty PM just got an apartment for one

thousand three thirty one thousand four hundred a month. My number is five five

five eight eight eight eight. Extension is three thirty. Bye.”

Several different methods such as discriminative, generative or hybrid approaches

are employed on sentence segmentation problem for different spoken languages.

In [13], hidden event language model (HELM), which is one of the well-known

generative approaches, has been proposed. In that work, probability of the current

word followed by a hidden event was modeled as P (Yt|Wt, Yt−1,Wt−1), where Yt

represents the boundary that follows the current word Wt. In that work they

proposed a new language model which classifies disfluencies such as filled pauses

(typically “uh” or “um”), repetitions (contiguous repeated words) and deletions.

In [3], HELM extended to factored HELM (fHELM) for sentence segmentation of

Turkish spoken language. In that work, probability of the current word followed

by a sentence boundary was modeled as

P (Yt|Wt,Mt, Yt−1,Wt−1,Mt−1), where Mi represents morphological information

based on pseudo morphological features, which include last three letters of the

current word. Last three letters may include inflectional and derivational suffixes,

which provide important cues about location of sentence boundaries. Similar

pseudo morphological features were also used in [14] for Czech spoken language.

In [4, 15], prosodic and lexical information were used in hybrid models based on

decision trees to improve the performance of either sentence or topic segmentation.

In that work fundamental prosodic features (duration, pitch, pause and other

features) were described, and feature selection mechanisms such that leave-one-

out and beam search methods were used, to obtain effective prosodic feature

subsets.

In discriminative classification approaches, conditional random fields (CRFs)

which directly estimate posterior boundary label probabilities [16], boosting which
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trains a final strong classifier using weighted sum of weak classifier decisions [5],

and hybrid approaches were developed with emphasis on boosting and maxi-

mum entropy (MaxEnt) in [17]. In addition, a maximum-likelihood approach

for automatically constructing maximum entropy models were proposed and ef-

ficient implementation methods of in several natural language processing (NLP)

problems were described in [17]. In [4], performance of the following methods:

posterior probability interpolation, integrated HMM and HMM posteriors as de-

cision tree features, have been compared. In another work [18], performances

of several classification algorithms such as HELMs, MaxEnt and boosting (using

BoosTexter) were compared for sentence segmentation problem in English and

Mandarin spoken languages using speaker change information, lexical features,

and prosodic features. In that work it has been shown that boosting-only was

the most effective method compared to HELM-only and MaxEnt-only methods.

In binary combination of those methods, hybrid usage of HELM and Boosting

outperformed other binary combinations when lexical and prosodic features are

used. For Spanish and Portuguese spoken languages, [19, 20] used language mod-

els, part of speech (POS) tags, pause duration and speaker change information

to classify full stops, comma and question marks using maximum entropy (ME)

models.

Adaptation methods were first proposed in [21]. In that work, several adaptation

methods such as data concatenation, logistic regression, and boosting were used

for sentence segmentation of conversational telephone speech (CTS) of Switch-

board corpus. Moreover in [22], hybrid combination of prosodic features and

feature selection for multilingual sentence segmentation and logistic regression

were used to analyze the effect of model adaptation for dialog act tagging.

Distinct modeling approaches such as Hidden Markov Model (HMM), MaxEnt,

and CRFs were used in [23, 24] for disfluency detection and sentence segmentation

problems. In [14], language models were constructed by N-grams and prosodic

models were used to classify each inter-word boundary into several classes such as

sentence boundary and short pauses for Czech spoken language. In [25], sentence

6



utterance detection was implemented using Multi-level language analysis for Chi-

nese spoken language. Moreover in [26], performances of trained models by using

several subsets of prosodic features were compared for English, Mandarin and

Arabic spoken languages.

One of the main differences between English and Turkish spoken languages is

the productive and agglutinative morphology of Turkish [27]. Therefore num-

ber of possible word forms derived from a root word is much larger compared

to English. This increases the complexity when we want to develop a statistical

language model for sentence segmentation. To alleviate this problem, [28] used

morphological information in sentence segmentation of Turkish spoken language.

In that work it has been shown that combination of lexical and morphological

information outperformed lexical-only models. Novel methods for discriminative,

generative and hybrid sequence classification were presented on sentence segmen-

tation of Turkish in [3]. In that work it has been shown that discriminative clas-

sification approaches; CRF and boosting, provided the best results for sentence

segmentation of Turkish, since CRF provided better results with prosodic and

lexical features only and morphological features provided additional significant

information for boosting. Moreover, application of multi-view semi-supervised

learning algorithm by using prosodic and lexical information were investigated in

[6] and [7].

Additionally for Turkish broadcast news (BN) data, prosodic features were ex-

tracted using Purdue Prosodic Feature Extraction Tool based on Praat, developed

by [29], then these features were used on sentence segmentation in [30, 31, 32]. Fi-

nally, in [33] lexical, prosodic and morphological features were extracted in order

to use them in sentence segmentation of Turkish BN data.

2.2 Semi-Supervised Learning

In conventional machine learning approaches only manually labeled data is used to

train the classifiers or statistical models. Labeling data manually is an inefficient
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process. On the other hand it is easy to gather unlabeled data but there are

few unsupervised methods to use them. Semi-supervised learning addresses this

problem by using huge amount of unlabeled data, together with a small set of

manually labeled data, to build better classifiers. Automatic labeling based on

semi-supervised learning provides high accuracy with reduced human effort and

it is of great interest both in theory and in practice [34].

Semi-supervised methods, which require small amount of initial manually labeled

data, are preferred in order to increase efficiency of most real-life applications.

In semi-supervised methods, the training set is divided into two parts called in-

domain labeled data and out-of-domain unlabeled data, to build better classifiers.

Typically the size of the former is relatively much more smaller than the latter

[34]. During the process, the labels (classes) of unlabeled portions of the data

are estimated with confidence scores, then, a certain amount of most confident

automatically classified examples are moved to the in-domain data with their

hypothesized labels. This process is iterated until performance of the final model

decreases or converges [35].

2.2.1 Self-Training

Self-training is one of the well known semi-supervised learning methods. This

method improves the initial model by hypothesizing classes for the unlabeled

portion of the training data with confidence scores and moves certain amount of

most confident examples to labeled portion of the training data and retrain the

model in each iteration [35]. It should be noted that the classifier uses its own

predictions to supervise itself. This is a “hard” version of the mixture model

and Expectation Maximization (EM) algorithm. Self-training is also called self-

teaching, or bootstrapping in the Natural Language Processing (NLP) commu-

nity. The main disadvantage of this training is that a classification mistake can

reinforce itself.
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Self-training method related to several unsupervised model adaptations is typi-

cally employed for speech processing systems. For instance maximum a posteriori

(MAP) adaptation is one of the most popular approaches [36]. Moreover in [37]

and [38] Language Model (LM) and speaker adaptation were employed on voice

mail transcription application and call center spoken dialog acts application re-

spectively. Moreover self-training applied to several language processing tasks

such as speech tagging [39], word-sense disambiguation [40] and syntactic parsing

[41].

2.2.2 Co-Training

The major difference between multi-view and traditional machine learning con-

cept is that, multi-view approach consists of two or more distinguishable and

sufficient feature subsets (views) rather than a single-view. The aim of multi-

view approach is to improve performance of a supervised learning algorithm by

incorporating large amounts of unlabeled data into the training data set. Multi-

view algorithms work by generating two or more classifiers trained on different

views of the labeled data that used to label the unlabeled data separately. Simi-

lar with self-training algorithm, most confidently labeled examples i.e. examples

with highest confidence score are added to the manually labeled data in several

iterations in order to improve the performance of the final model. However, confi-

dence score of each example is determined by different models, which are trained

in different iterations. They provide reliable confidence scores.

Co-training is one of the most effective multi-view approaches, which was first in-

troduced in [42]. The theorems and proofs described in that work are summarized

below.

Let X represent a data set which consists of two different views X1 and X2 such

that X = X1 ×X2, and let x ∈ (x1, x2) represent a single example that belongs

to the data set X = X1 ×X2.
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Let the distribution D be consistent with unbiased target functions such that f1 ∈

C1 and f2 ∈ C2 with PD[f1(x1) 6= f2(x2)] = 0, where C1 and C2 are binary target

classes, and let h(X1) and h(X2) are initial weak predictors. Therefore probability

of weak predictor corresponds to the first view that classifies an example as class

“1” given the target function described in Equation 2.1.

p = PD[f(x) = 1] ≥ ε (2.1a)

q = PD[f(x) = 1|h(x1) = 1] > p+ ε (2.1b)

c = PD[h(x1) = 1] (2.1c)

PD[h(x1) = 1|f(x) = 1] =
qc

p
(2.1d)

PD[h(x1) = 1|f(x) = 0] =
(1− q)c

p
(2.1e)

Let α denote the occurrence probability of false positives and β denote the oc-

currence probability of false negatives. If views X1 and X2 provide sufficient

information to train individual models which have α+ β < 1, and if X2 is condi-

tionally independent of X1 over the distribution D given the classification, h(x1)

will be independent of x2 given the target function f = f(f1, f2) ∈ C1 × C2.

Therefore if h(x1) correspond to a noisy portion of X2, the error rate probability

of the second view is described in Equation 2.2.

α + β =

(
1− qc

p
+

(1− q)c
1− p

)
=

(
1− c q − p

p(1− p)

)
(2.2a)

α + β ≤

(
1− ε2

p(1− p)

)
≤ 1− 4ε2 (2.2b)
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Hence, C2 is learnable in the probably approximately correct (PAC) model with

(α, β) classification noise rate, and if conditional independence assumption is

satisfied, then (C1, C2) is learnable from unlabeled data given an initial h(x1).

In [42, 43], the aim was to identify the web pages of academic courses from a

large collection of web pages from several computer science departments. The

data used in that work has two natural feature sets: the words present in the

course web page, and the words used in the links pointing to that web page. It

has been shown that co-training was PAC learnable when the two views were

individually sufficient for classification and conditionally independent given the

class.

In [44], a greedy algorithm to maximize the agreement on unlabeled data was

proposed. It has been shown that the rate of disagreement between two clas-

sifiers with weak independence is an upper bound on the co-training error rate

and co-training was still effective under a weaker independence assumption. In

[45], it has been shown that the performance of the co-training was sensitive

to the learning algorithm used by applying co-training to the email classifica-

tion task. Unfortunately, in that work co-training with Naive Bayes did not

provide improvement. However, this situation was explained with the inability

of the Naive Bayes to deal with large sparse data sets and was confirmed by

improved results after feature selection. Furthermore, in [35] the relationship

between the expectation-maximization (EM) algorithm and the semi-supervised

learning methods was demonstrated. In addition, a hybrid approach called Co-

EM, which was an iterative semi-supervised learning method, was proposed in

which all the unlabeled data were exploited iteratively. In [6] co-training algo-

rithms were extended by using two example selection mechanisms: agreement

and disagreement, where in the former the examples are labeled with high con-

fidence by both classifier, and in the latter examples that are labeled with high

confidence by one classifier while labeled with low confidence in the other, and

those examples are moved to the labeled in-domain data from the unlabeled out-

of-domain data. In that work, prosodic and lexical information have been used in
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sentence segmentation problem. In [7], self-combined approach was proposed in

dialog act segmentation of speech by using prosodic and lexical features, which is

a combination of self-training and co-training algorithms and it has been shown

that self-combined method outperformed co-training and self-training for the first

iteration, however after multiple iterations, co-training resulted in better perfor-

mance. Instead of simply adding machine labeled data to the set of manually

labeled data as in the co-training algorithm, existing model is adapted using the

machine labeled data in the co-adaptation algorithm proposed in [46]. In [47]

two different views corresponding to the acoustic and lexical/syntactic knowledge

sources in the Boston Radio News corpus were used in the co-training framework

for automatic prosodic event labeling task. A committee-based semi-supervised

approach using randomized decision trees was proposed to decrease word error

rate (WER) for large-vocabulary continuous speech recognition (LVCSR) problem

in [48].
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Chapter 3

Data Collection and Annotation

In this work, the Voice of America (VOA)1 Turkish Broadcast News (BN) data

has been used. There are 42 Turkish BN records where each of the BN records

are approximately 30 minutes long. These records include 14 speakers (7 female

and 7 male) which were recorded at different acoustical environments such as

studio (approximately 73% of the data), telephone conversation (approximately

14% of the data) and noisy environments (approximately 13% of the data). The

BN records were recorded at a 16 bit, 16 kHz sampling rate, and corresponding

transcription files, which are segment time mark (STM) and conversation time

mark (CTM) files extracted in the Bosporus University BUSIM Laboratory2.

Processing steps of CTM and STM files and overall data profile are described in

sections 3.1 and 3.2, respectively. The Linguistic Data Consortium (LDC) release

of this data3 is available in [49, 50].

3.1 Pre-processing Data

Prosodic feature extraction tool which was used in this work and described in

section 4.1.2 require audio files and speaker based word and phoneme transcrip-

tions with timing informations. To provide required transcriptions i.e. forced

1http://www.voanews.com/turkish
2http://www.busim.ee.boun.edu.tr
3https://catalog.ldc.upenn.edu/LDC2012S06
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alignments, HTK4 (Hidden Markov Model Toolkit) based ASR system has been

used in the previous work [32]. Figures 3.1 and 3.2 presents the overview and

output of this process, respectively. In Fig 3.1 MFCC represents Mel-Frequency

Cepstral Coefficients, HCopy and HVite represents specific tools of the Hidden

Markov Model Toolkit (HTK).

Before describing the process of extraction of forced alignments using HTK as an

Automatic Speech Recognition (ASR) system, first fundamental descriptions of

ASR systems will be presented.

The goal of Automatic Speech Recognition (ASR) systems is to obtain text tran-

scriptions of spoken words given a speech segment. In other words, the aim is to

estimate the probability of each word given valid expressions that represents cor-

responding waveform (such as Mel-Frequency Cepstral Coefficients that described

below) such as W = argmaxxP (W |X). Using the well-known Bayes formulation

this expressions can be expressed in terms of acoustic model PA(X|W ) and lan-

guage model PLW , as shown in Equation 3.1, since P (X) is independent from

P (W ).

P (W |X) =
P (X,W )

P (X)
=
P (X|W )P (W )

P (X)
(3.1a)

P (W |X) = PA(X|W )PLW (3.1b)

The complexity of an ASR system depends on vocabulary size and length of

given speech segments. For instance, Isolated Word Recognition (IWR) systems

are designed to recognize words in short messages given a vocabulary list that

contains a few words, such as recognizing one-digit numbers given a sequence

that contains only one-digit numbers. On the other hand, Continuous Speech

4http://htk.eng.cam.ac.uk
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Figure 3.1: Prosodic Feature Extraction Scheme

Figure 3.2: Graphical Representation of Forced Alignment Output

Recognizing (CSR) Systems has been designed to transcribe longer segments given

a larger size of vocabulary, such as transcribing words in BN records.

STM (Segment Time Marks) files include several information belonging to a time-

segment of speech such as initial time, final time, corresponding text transcripts,

speaker-id, native/non-native speaker, gender of the speaker and acoustical back-

ground conditions of that time segment. STM files are prepared manually as

reference files in order to evaluate the performance of the ASR system. An ex-

ample STM file is illustrated in Table 3.1. CTM (Conversation Time Mark) files

represent the output of the ASR system. CTM files include initial time, duration
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Transcriber export by tstm.tcl,v 1.21 on Fri Nov 23 04:58:11 PM EET 2007 with encoding ISO-8859-9 transcribed by , version 3 of 071105
CATEGORY “0”
LABEL “O” “Overall” “Overall”
CATEGORY “1” “Hub4 Focus Conditions”
LABEL “F0” “Baseline Broadcast Speech”
LABEL “F1” “Spontaneous Broadcast Speech”
LABEL “F2” “Speech Over Telephone Channels”
LABEL “F3” “Speech in the Presence of Background Music”
LABEL “F4” “Speech Under Degraded Acoustic Conditions”
LABEL “F5” “Speech from Non-Native Speakers”
LABEL “FX” “All other speech”
CATEGORY “2” “Speaker Sex”
LABEL “female” “Female”
LABEL “male” “Male”
LABEL “unknown” “Unknown”
CATEGORY “3” “Topic”
LABEL “ozet” “Ozet”
LABEL “spor” “Spor”
LABEL “hava” “Hava Durumu”
LABEL “isitme” “Isitme Engelliler”
LABEL “demec” “Demec”
LABEL “ekonomi” “Ekonomi”
LABEL “haberler” “Haberler”
LABEL “unknown” “Unknown”

FM1028 0108 063000 1 excluded region 0.000 1.800 (o,,unknown) FM1028 0108 063000 1 FM1028 0108 063000 VOA Speaker 1
1.800 10.450 (o,f0,female,Haber) geCen hafta toplanan yeni kongrede CoGunluGu oluSturan demokrat partili Uyeler Iraka daha fazla asker
gOnderilmesine karSI CIkIyor.
FM1028 0108 063000 1 FM1028 0108 063000 VOA Speaker 1 10.450 18.265 (o,f0,female,Haber) temsilciler meclisi baSkanI
nancy pelosi Iraktaki mevcut askerlere daha fazla Odenek ayrIlmasInI desteklediklerini bildirdi.
FM1028 0108 063000 1 FM1028 0108 063000 VOA Speaker 1 18.265 23.575 (o,f0,female,Haber) bununla birlikte pelosi
baSkan bushdan ek asker gOnderilmesini OngOren planI
FM1028 0108 063000 1 FM1028 0108 063000 VOA Speaker 1 23.575 28.619 (o,f0,female,Haber) ve istediGi tahsisat
hakkInda gerekCeler gOstermesi gerektiGini bildirdi.
FM1028 0108 063000 1 FM1028 0108 063000 VOA Speaker 1 28.619 35.825 (o,f0,female,Haber) pelosi amerikan halkInIn
sonu belli olmayan bir savaSI desteklemeye mecbur edilemeyeceGini de belirtti.
FM1028 0108 063000 1 FM1028 0108 063000 VOA Speaker 1 35.825 40.553 (o,f0,female,Haber) amerikan anayasasI baSkana
askeri kararlar alma konusunda yetki veriyor
FM1028 0108 063000 1 FM1028 0108 063000 VOA Speaker 1 40.553 45.550 (o,f0,female,Haber) ancak savunma harcamalarInIn
arttIrIlmasI kongrenin yetkisine giriyor.

Table 3.1: Example of a STM File

and channel number information of each word. Table 3.2 illustrates an exam-

ple of a CTM file. In addition, Mel-Frequency Cepstal Coefficients (MFCC) of

audio files were extracted by HCopy tool of HTK. HVite tool requires MFCC,

word transcriptions and a dictionary which includes words with corresponding

phonemes to extract forced alignments. In this process HVite tool uses Viterbi

Algorithm. Different force alignments were generated for different speakers based

on different acoustical conditions to use open source and speaker based prosodic

feature extraction tool properly. Table 3.3 presents a typical forced alignment

output for the word “geçen” in terms of 100 nanoseconds.
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FM1028 0108 063000 1 1.80 0.36 Z1
FM1028 0108 063000 1 2.16 0.31 geCen
FM1028 0108 063000 1 2.47 0.30 hafta
FM1028 0108 063000 1 2.77 0.59 toplanan
FM1028 0108 063000 1 3.36 0.26 yeni
FM1028 0108 063000 1 3.62 0.56 kongrede
FM1028 0108 063000 1 4.18 0.55 CoGunluGu
FM1028 0108 063000 1 4.73 0.47 oluSturan
FM1028 0108 063000 1 5.20 0.41 demokrat
FM1028 0108 063000 1 5.61 0.04 Z1
FM1028 0108 063000 1 5.65 0.37 partili
FM1028 0108 063000 1 6.02 0.46 Uyeler
FM1028 0108 063000 1 6.48 0.42 Z1
FM1028 0108 063000 1 6.90 0.55 Iraka
FM1028 0108 063000 1 7.45 0.23 Z1
FM1028 0108 063000 1 7.68 0.28 daha
FM1028 0108 063000 1 7.96 0.38 fazla
FM1028 0108 063000 1 8.34 0.36 asker
FM1028 0108 063000 1 8.70 0.74 gOnderilmesine
FM1028 0108 063000 1 9.44 0.32 karSI
FM1028 0108 063000 1 9.76 0.01 Z1
FM1028 0108 063000 1 9.77 0.43 CIkIyor

Table 3.2: Example of a CTM file

0 700000 silence
700000 1600000 g gecen
1600000 1900000 e
1900000 2500000 c
2500000 2800000 e
2800000 3100000 n
3100000 3900000 short pause

Table 3.3: Example of a Forced Alignment Output

Fundamental steps of forced alignment extraction are as follows:

Step 1: Segmentation of STM and corresponding audio files.

The open-source prosodic feature extraction tool is that was used in this work

(Purdue Prosodic Feature Extraction tool described in section 4.1.2) requires

speaker based speech waveforms with corresponding forced alignment outputs at

the input, since this tool operates under speaker-based input assumption. More-

over, presence of different acoustical conditions in an input audio waveform will

affect either word or frame based energy and pitch calculations, which are con-

sidered as a subset of prosodic features.
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Original STM File
WavFile1 0.000 5.000 Speaker1 transcribed words for the first segment here .
WavFile1 5.000 10.000 Speaker2 transcribed words for the second segment here .
WavFile1 10.000 15.000 Speaker1 transcribed words for the third segment here .
WavFile1 15.000 20.000 Speaker2 transcribed words for the fourth segment here .

Constituted STM File 1
WavFile1 0.00 10.00 Speaker1 transcribed words for the first segment here
transcribed words for the third segment here .

Constituted STM File 2
WavFile1 0.00 10.00 Speaker2 transcribed words for the second segment here
transcribed words for the fourth segment here .

Table 3.4: Example of Generation of Speaker Based STM Files

Table 3.1 presents an example of a STM file. Those files consist of approximately

5 second speech segments with name of the corresponding audio file in “wav”

format, initial and final times of the segment in terms of seconds, different speaker

ID tags for different speakers and corresponding word transcripts. Speaker and

acoustical condition based new STM files were constituted. Table 3.4 illustrates

this process.

Corresponding waveform files has been arranged by using the linux based “sox”

tool. This tool requires input waveform file, initial time and duration in terms of

minutes and seconds as a floating number with two digits (10 milliseconds sense)

and provides a corresponding waveform file of the desired segment. This tool also

concatenates different audio waveform files into a single audio waveform file.

At the end of this process, at least 30 minutes long speaker and acoustical con-

dition based STM and corresponding waveform files have been constituted. Note

that each segment in the re-organized STM files should contain at least 10 - 15

minutes long speech segment to avoid existence of additional silence clues as much

as possible. Afterwards master label files (MLF) are constituted from those STM

files. Table 3.5 illustrates an example of a master label file.

In the example shown in Table 3.5 the labels 0 and 1000 represent indexes of

corresponding MFCC vectors in the output of HCopy tool, which is described in

the following step. Those labels are located in a MFC list file. Table 3.6 illustrates
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data WavFile1 0 1000.lab
transcribed
words
for
the
first
segment
here
transcribed
words
for
the
third
segment
here
.

Table 3.5: Example of a Master Label File (MLF)

data WavFile1 0 1000 = WavFile1[0,1000]
data WavFile1 1000 2000 = WavFile1[1000,2000]

Table 3.6: Example of a MFC List File

an example of a MFC list file. Numerical labels represent time in terms of 10

milliseconds, since each MFCC vector represents a 10 ms Hamming filtered frame.

Step 2: Extraction of Mel-Frequency Cepstral Coefficients (MFCC)

MFCC is considered as the output of a mathematical model of how the shape of

vocal tract is manifested in the envelope of the short power spectrum to produce

phonemes or sounds. On the other hand mel-scale translates actual frequency of a

pure tone into spiral shaped human cochlea perception frequency scale such that

Mel(f) = 1125 ln (1 + f/700). In most of ASR applications, extraction of MFC

Coefficients is the preliminary step to express waveforms in terms of numerical

values.

The implementation steps of MFCC extraction are as follows: The audio wave-

form is divided into 25 milliseconds frames with 15 ms overlap, since speech signal

can be assumed as quasi-periodic in 20-40 ms. frames, and Hamming filter is ap-

plied into each frame to eliminate discontinuities at the edges. For each frame,

periodogram estimates of power spectrum is calculated. Mel-filterbank is applied

into power spectra and energy of each filter. The logarithms of each filterbank
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Almanya a l m a n y a sil
Almanya a l m a n y a sp
arayan a r I1 y a n sil
arayan a r I1 y a n sp
Brezilya b r e z i l y a sil
Brezilya b r e z i l y a sp
Danimarka d a n i m a r k a sil
Danimarka d a n i m a r k a sp
Gelmeyen g e l m i y e n sil
Gelmeyen g e l m i y e n sp

İspanya i s p a n y a sil

İspanya i s p a n y a sp
Türkiye t U1 r k i y e sil
Türkiye t U1 r k i y e sp
. sil

Table 3.7: Example of a Dictionary File

energies is taken and discrete cosine transforms (DCT) of log filterbanks are cal-

culated. Typically first 13 coefficients are considered as mel-frequency cepstral

coefficients. Moreover, delta and delta-delta features represent differential and

acceleration of MFCC vectors and they are calculated by using MFCC vectors.

The HCopy tool of HTK has been used to extract MFC coefficients. HCopy

requires a configuration file, which includes feature extraction specifications and

an input waveform file. The output format of HCopy is binary file. Therefore,

one can use HList tool of HTK after using HCopy tool to obtain MFC Coefficients

in terms of numerical values.

Step 3: Construction of the Dictionary file.

The dictionary file contains each transcribed word with corresponding phoneme

list, in alphabetical order. In other words, when each phoneme is assumed as

states of a left-right Markov model, dictionary provides state transitions for each

word. Dictionary files are also used to optimize initial distribution, state transi-

tion matrix and symbol probability distribution of states to maximize the prob-

ability of observation (word) given the Hidden Markov Model (HMM). Table 3.7

illustrates an example to a dictionary file content for several words in Turkish

spoken language.
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Since most of Turkish words are written as it is pronounced, letters also represents

phonemes (monophones). Therefore dictionary of a Turkish speech segment can

be extracted easily by using a simple script. In this example in Table 3.7 the

states “sp” and “sil” represents short pause and silence models, respectively.

Step 4: Extraction of forced alignments using HVite tool of HTK

The HVite tool requires a configuration file which includes specifications, master

label files, MFCC list files which contains MFCC vector indexes of each segment,

dictionary file and finally phoneme (monophone) list of the processed spoken

language at the input. HVite provides phoneme and word durations of each

transcribed word of corresponding STM files in terms of 100 nanoseconds at the

output.

3.2 Data Profile

The data that has been used in this work consists of 104458 words with their

corresponding prosodic, lexical, morphological features, and original labels (if it

is a sentence boundary or not). The definition of features and feature extraction

processes are described in Chapter 4. There are 6881 sentence boundaries at

total. The data was split into a training set (61375 words and 4043 sentences,

approximately 60% of the data), a development set (21533 words, 1438 sentences,

approximately 20% of the data) and a test set (21550 words, 1400 sentences,

approximately 20% of the data) as shown in Table 3.8.

This data includes voice records from different speakers (1 anchorwoman, 1 an-

chorman, 6 female and 6 male native speakers) recorded at different acoustical

conditions. Tables 3.9 - 3.12 illustrate percentage distributions of training, de-

velopment and test sets in terms of different speakers and different acoustical

conditions.

Three different random orderings of the training set have been used and the aver-

age performance has been reported in order to get different feature distributions
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Non-sentence Boundaries Sentence Boundaries Total

Training Set 57332 4043 61375
Development Set 20095 1438 21533
Test Set 20150 1400 21550

Table 3.8: Number of Sentence and Non-sentence Boundaries in the Data Sets

Speaker Gender Environment Non-sentence Boundary(%) Sentence Boundary(%) Total(%)

Alparslan Esmer M Studio 15.55 1.14 16.69
Alparslan Esmer M Noise 4.22 0.36 4.58
Arzu Çakır F Phone 4.87 0.29 5.15
Aydan Kızıldağlı M Studio 0.98 0.06 1.04
Barış Ornallı M Studio 2.53 0.19 2.72
Cem Dalaman M Studio 5.68 0.29 5.97
Cem Dalaman M Noise 0.51 0.03 0.54
Değer Akal F Phone 4.72 0.28 5.00
Değer Akal F Noise 1.15 0.07 1.23
Devrim Çubukçu M Studio 6.37 0.48 6.85
Devrim Çubukçu M Noise 1.02 0.10 1.12

Elif Özmenek F Stüdyo 4.21 0.24 4.45
Elif Ural F Phone 1.75 0.12 1.86

Güven Özalp M Studio 4.14 0.26 4.40
Hale Ebiri F Studio 25.56 1.91 27.47
Hale Ebiri F Noise 4.17 0.36 4.52
Hülya Polat F Studio 1.18 0.09 1.27
Mevlüt Katık M Phone 2.22 0.11 2.33

Özge Övün F Studio 1.83 0.13 1.96

Özge Övün F Noise 0.77 0.09 0.86

Total 93.41 6.59 100

Table 3.9: Distribution of the Training Set in terms of Speakers and Acoustical
Conditions

Non-sentence Boundary Sentence Boundary Total

934 66 1000
Ordering 1 2801 199 3000

5605 395 6000

933 67 1000
Ordering 2 2800 200 3000

5610 390 6000

931 69 1000
Ordering 3 2800 200 3000

5584 416 6000

Table 3.10: Number of Sentence and Non-sentence Boundaries at the Initial La-
beled Set for each Different Random Ordering

and remove biasing effect. The word and sentence boundary distributions of ini-

tial labeled data sets for each random orderings are shown in Table 3.10. On the

other hand, the development and test sets were kept same for all the experiments.
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Speaker Gender Environment Non-sentence Boundary(%) Sentence Boundary(%) Total(%)

Alparslan Esmer M Studio 16.34 1.19 17.53
Alparslan Esmer M Noise 5.45 0.52 5.97
Arzu Çakır F Phone 2.26 0.16 2.42
Aydan Kızıldağlı M Studio 0.74 0.06 0.79
Barı Ornallı M Studio 1.44 0.09 1.53
Cem Dalaman M Studio 4.93 0.24 5.17
Cem Dalaman M Noise 10.38 0.57 10.95
Değer Akal F Phone 7.70 0.46 8.16
Devrim Cubukçu M Studio 7.45 0.57 8.02
Devrim Cubukçu M Noise 0.84 0.07 0.91

Elif Özmenek F Studio 3.20 0.21 3.41
Elif Ural F Phone 2.01 0.11 2.12

Güven Özalp M Studio 3.84 0.25 4.09
Hale Ebiri F Studio 15.02 1.18 16.20
Hale Ebiri F Noise 5.42 0.53 5.94
Mevlut Katık M Phone 4.67 0.24 4.92

Özge Övün F Studio 0.87 0.06 0.94

Özge Övün F Noise 0.85 0.07 0.92

Total 93.40 6.60 100

Table 3.11: Distribution of the Development Set in terms of Speakers and Acous-
tical Conditions

Speaker Gender Environment Non-sentence Boundary(%) Sentence Boundary(%) Total(%)

Alparslan Esmer M Studio 14.67 1.09 15.76
Alparslan Esmer M Noise 2.77 0.27 3.04
Arzu Çakır F Phone 3.47 0.18 3.65
Aydan Kızıldağlı M Studio 1.5 0.15 1.65
Barı Ornallı M Studio 3.36 0.27 3.63
Cem Dalaman M Studio 7.77 0.33 8.1
Cem Dalaman M Noise 2.37 0.15 2.51
Değer Akal F Phone 10.6 0.63 11.23
Değer Akal F Noise 2.05 0.13 2.18
Devrim Çubukçu M Studio 3.93 0.35 4.28
Devrim Çubukçu M Noise 0.9 0.1 0.99

Elif Özmenek F Studio 1.22 0.08 1.3
Elif Ural F Phone 1.83 0.11 1.95

Güven Özalp M Studio 4.8 0.31 5.11
Hale Ebiri F Studio 19.5 1.45 20.95
Hale Ebiri F Noise 4.24 0.36 4.6
Hülya Polat F Studio 1.03 0.07 1.1
Mevlüt Katık M Phone 2.23 0.11 2.33

Özge Övün F Studio 4.43 0.32 4.74

Özge Övün F Noise 0.81 0.11 0.91

Total 93.47 6.53 100

Table 3.12: Distribution of the Test Set in terms of Speakers and Acoustical
Conditions
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Chapter 4

Extraction of Prosodic, Morphological and Lexical

Features for Sentence Segmentation Problem

In this chapter, feature extraction processes is summarized and feature contents

are described for prosodic, morphological and lexical features in Sections 4.1, 4.2

and 4.3, respectively.

4.1 Prosodic Features

Prosody of speech includes melody, tone, rhythm and emphasis based on linguistic

rules of the spoken language (syntactic structure, metrical rhythm, lexical tone,

stress [51]) and current psychological conditions of the speaker. Several prosodic

clues are determined by notations in written language. On the other hand, the

ASR output does not provide notations, locations of several hidden speech events

such as breathing, self-corrections if it is necessary and duration of little stops.

Therefore, it is almost impossible to clarify either sentence or topic boundaries

using the raw ASR output.

Prosodic features provide timing, duration, pitch patterns and energy patterns

for each word. Since prosody of a spoken language is highly correlated with

structure and semantics of the corresponding language, prosodic features provide

important clues based on locations of the hidden speech events. Furthermore

prosodic information is also used in several applications such as, dialog act tagging
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[52, 53, 54, 55], emotion segmentation [56, 57, 58], speaker identification [59, 60,

61, 62], language identification, and analyzing characteristics of a new language

without any available lexicon.

In our previous works [30, 31, 32], we have shown that a special subset of prosodic

features, which designed by [4], and shown in Table 4.4, are sufficient to train

strong models rather than using all of the prosodic features. Therefore, in this

work, this subset of prosodic features which includes baseline measurements such

as pause durations between two consecutive words and various measures of the

range, movement and slope information of voiced regions, energy and voice of

the speaker, have been used. In addition, several derived features such as pitch,

energy before and after the current word, speaker normalized versions of them in

either a certain time window or complete word, and finally maximum, minimum,

average values in this range have been extracted and used.

Several types of information such as syntactic boundaries, resolving ambiguity,

speaker identity, emotion, and lexical stress, that prosody is used to convey pre-

sented in [63]. First, a higher pitch at the beginning of next unit (called pitch

reset in [64]), pauses, and pre-boundary lengthening are some important cues to

detect syntactic boundaries. Second, meaning ambiguity in a given sentence can

be resolved using duration pauses and stress. For instance the sentence “Tap the

frog with the flower” in [65] may have two different meanings about the flower

whether the flower is an instrument to tap frog or an object that indicates the

frog. Third, speaker based pitch and energy distributions are important cues on

speaker identification [60]. Fourth, activity in energy, pitch and speaking rate

provide several cues on emotional state of the speaker [66]. Fifth, in some of

spoken languages, the realization of word stress such as pitch accents, pitch ex-

cursions, or accents marked by changes in segmental duration or loudness may

assign part of speech tag of the pronunced word.

In addition there are several well-known prosodic cues related to sentence bound-

aries such as longer pauses between two consecutive words [67], drop in pitch
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before the boundary followed by starting the next unit at a higher pitch [63].

The prosodic feature subset that used in this work, were extracted using the SRI-

International Algemy prosodic feature extraction tool [68] and PRAAT1 based

Purdue prosodic feature extraction tool [29].

4.1.1 SRI-International Algemy Prosodic Feature Extraction Tool

SRI-International Algemy (Algemy), a Java based commercial prosodic feature

extraction tool, which was developed by Harry Bratt [26, 68, 69] at SRI-International2,

was used to extract a set of 34 prosodic features used in [3, 6, 7]. The user in-

terface of the Algemy prosodic feature extraction tool has shown in Figure 4.1.

This graphical user interface (GUI) allows researcher to modify prosodic feature

extraction algorithms. Since one of the major objectives of this work and pre-

vious works [30, 31, 32] is to develop a new system using open source tools as

much as possible, equivalent prosodic features of Algemy were also extracted by

using PRAAT based Purdue Prosodic Feature Extraction Tool which was devel-

oped by [29]. The simplest approach of determining prosodic features is to model

distributions of pitch and energy variations. Logarithm of pitch, logarithm of

energy and delta features of each voiced region determine prosodic features of

each frame. Those features are modeled by using Universal Background Model-

Gaussian Mixture Model (UBM-GMM). Another approach is to determine pitch,

energy and corresponding duration labels.

Fundamental prosodic feature groups are described below:

Pitch and Energy Features: Pitch features are classified into three groups such

as range, reset and slope features. First formant frequencies are evaluated using

10ms frames over pitch tracker. Second, lognormal tied mixture (LTM) models

eliminates halving and doubling errors. Third expectation maximization (EM)

1http://www.fon.hum.uva.nl/praat/
2https://www.sri.com/
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Figure 4.1: User Interface of the SRI-International Algemy Prosodic Feature Ex-
traction Tool

used to obtain speaker based statistical parameters. Extraction of energy features

are similar with those steps.

Reset Features: Those features determine locations of drop in pitch followed by

a pitch reset, which is an important cue on the locations of sentence boundaries.

Stylized pitch contours over words are used to extract those features.

Slope Features: Those features describe pitch trajectory around the segmental

boundaries. Those features are also used in speaker identification problems in

[60, 20, 62].

Segmental Duration: Those features measure the length of the last vowel and

rhyme preceding the boundary.
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Pause Duration: Longer pauses between two consecutive words are important

cues on sentence or topic boundaries.

Several fundamental prosodic features are described below:

PAUSE DUR: The duration of pause between the current word and the next

word.

PATTERN BOUNDARY: The boundary between last pattern of the word (PAT-

TERN WORD) in terms of “f” (fall), “r” (rise) , “u” (unvoiced region) and first

pattern of the next word (PATTERN NEXT WORD).

SLOPE DIFF: The difference between last non-zero slope (duration of this term

is bigger than minimum frame length) of the current word and the first non-zero

slope of the next word. The length of slopes which exceed minimum frame length

are labeled as ×.

PAU DUR PREV: The pause duration between the current word and the previous

word.

Several derived fundamental frequency (f0) features:

FOK WRD DIFF HIHI N: The normalized difference of maximum formant fre-

quencies between the interested word and the next word. This feature represents

log ratio between maximum piecewise linear fitted formant frequency of the cur-

rent word and maximum piecewise linear fitted formant frequency of the next

word.

FOK WRD DIFF HILO N: The normalized difference between maximum for-

mant frequency of the current word and minimum formant frequency of the next

word. This feature represents log ratio between maximum piecewise linear fit-

ted formant frequency of the current word and minimum piecewise linear fitted

formant frequency of the next word.

FOK WRD DIFF LOHI N: The normalized difference between minimum for-

mant frequency of the current word and maximum formant frequency of the
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next word. This feature represents log ratio between minimum piecewise linear

fitted formant frequency of the current word and maximum piecewise linear fitted

formant frequency of the next word.

FOK WRD DIFF LOLO N: The normalized difference of minimum formant fre-

quencies between the interested word and the next word. This feature represents

log ratio between minimum piecewise linear fitted formant frequency of the cur-

rent word and minimum piecewise linear fitted formant frequency of the next

word.

FOK WRD DIFF MNMN N: The normalized difference of average formant fre-

quencies between the interested word and the next word. This feature represents

log ratio between average piecewise linear fitted formant frequency of the current

word and average piecewise linear fitted formant frequency of the next word.

The formant frequency features related at edges of the current word:

FOK WRD DIFF BEGBEG: The log ratio between the first piecewise linear fit-

ted formant frequency (begin) of the current word and the first piecewise linear

fitted formant frequency (begin) of the next word.

FOK WRD DIFF ENDBEG: The log ratio between the last piecewise linear fit-

ted formant frequency (end) of the current word and the first piecewise linear

fitted formant frequency (begin) of the next word.

FOK INWRD DIFF: The log ratio between the first and last piecewise linear

fitted formant frequency of the current word.

Features based on normalized slopes:

SLOPE DIFF N: This is the ratio between the measured slope difference in for-

mant frequency and speaker related average formant frequency.

LAST SLOPE N: This is the ratio between the last slope of the formant frequency

and last piecewise linear fitted formant frequency.
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4.1.2 Purdue Prosodic Feature Extraction Tool

Prosodic feature extraction process of Purdue prosodic feature extraction tool3

is presented in Figure 4.2 and Table 4.1 [29]. Figure 4.2 illustrates computation

of statistics such as raw energy, stylized energy, energy slopes, raw pitch, voiced

and unvoiced frames, stylized pitch, pitch slopes, vowel and rhyme duration, and

Table 4.1 presents classes of prosodic features that extracted using those statistics.

Figure 4.2: Block Diagram Representation of Purdue Prosodic Feature Extraction
Tool

Duration Features FO Features Energy Features

Word + + +
Phone + - -
Vowel + - -
Rhyme + - -
VUV - + -

Raw Pitch - + -
Stylized Pitch - + -
Pitch Slope - + -
Raw Energy - - +

Stylized Energy - - +
Energy Slope - - +

Table 4.1: The Use of Raw Files for Extracting Various Prosodic Features

Purdue prosodic feature extraction tool requires speaker based speech waveforms

with corresponding word and phoneme durations (forced alignments) in the input.

Extracting force alignment process is as follows: At the first step, MFCC of

3ftp://ftp.ecn.purdue.edu/harper/praat-prosody.tar.gz
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Figure 4.3: Block Diagram Representation of Forced Alignment and Prosodic
Feature Extraction Process

corresponding waveforms are extracted using the HCopy tool of the HTK. Then,

forced alignments of those voice records are extracted by HVite tool of the HTK,

which requires corresponding trancsriptions, MFCC files and a dictionary which

indicates spelling of each word in terms of phonemes. Figure 4.3 presents overall

prosodic feature extraction process that has been used in this work.

Before extracting prosodic features using the Purdue prosodic feature extrac-

tion tool, the forced alignment outputs of HTK HVite tool should be converted

into required “TextGrid” formats of the prosodic feature extraction tool by us-

ing a simple script. Figure 4.4 illustrates the required format of the required

“TextGrid” file formats, where left side and right side presents “word.TextGrid”

and “phone.TextGrid” file formats such that the former include timing informa-

tion of each word and the latter include timing information of each phoneme. In

addition, default phoneme list in the directory “../code/routine.praat” include a

phoneme list (40 phonetic units of the English ARPAbet) based on English spo-

ken language. Those phonemes should be replaced with the phoneme list of the

Turkish spoken language for our problem, as shown in the Figure 4.5. One may

also use different phoneme lists for different spoken languages. This tool requires
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Figure 4.4: TextGrid File Format

the following files at the input. The waveform file (16 bit 16 kHz Wav files has

been used), corresponding word and phoneme alignments in “TextGrid” format

and a session list which includes speaker ID, speaker gender, session name and

corresponding audio waveform (wav) file.

Purdue prosodic feature extraction tool has two main operational steps which are

called “Global Statistics Computation” and “Feature Extraction”. The former

calculates global statistics such as speaker dependent and independent statistics,

specific phone duration statistics, pitch and energy related statistics and the

global phone duration statistics. The latter computes session dependent local

statistics such as means and variances of last rhyme duration, the last rhyme

phone duration, normalized last rhyme duration, and pause duration. Moreover

“Feature Extraction” step computes derived features using the statistical values
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Figure 4.5: Modifying Phoneme List of the Purdue Prosodic Feature Extraction
Tool

and baseline features. Figure 4.6 illustrates pitch slopes with blue lines, intensity

slopes with yellow lines, formant frequencies with red dots on the spectogram

in bottom, and blue lines on the time-domain speech waveform shown in top

presents pulses, for a pronunced Turkish spoken segment “tasariyi [short pause]

dun”.
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Figure 4.6: Graphical Representation of Pitch, Intensity Slopes, Formant Fre-
quencies on Spectogram, and Pulses on the Time Domain Speech Waveform

Step 1: Global Statistics Computation

Using code:
praat stats batch.praat../demo− wavinfo list.txt../demo/work dir yes
Using user interface shown in Figure 4.7:
1. Run Praat
2. Praat Objects / Read / Read from file / select stats batch.praat
3. Click the “Run” button on the Script Editor
4. Type ../demo− wavinfo list.txt and ../demo/work dir into the boxes
and choose the “yes option to use existing parameter files, or choose the “no”
option to generate parameter files from the beginning.
5. Click “OK”
6. Process will be displayed in the “Praat Info Window”.

Step 2: Prosodic Feature Extraction

Using Code:
praat main batch.praat../demo− wavinfo list.txt
user pf name table.Tab ../demo/work dir/stats files ../demo/work dir yes

Using user interface shown in Figure 4.8:
1. Run Praat
2. Praat Objects / Read / Read from file / select main batch.praat
3. Click the “Run” button on the Script Editor
4. Type ../demo− wavinfo list.txt and ../demo/work dir into the boxes
and choose the “yes” option to use existing parameter files, or choose the “no”
option to generate parameter files from the beginning.
5. Click “OK”
6. Process will be displayed in the “Praat Info Window”.

Table 4.2: Using the Praat Based Purdue Prosodic Feature Extraction Tool
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Figure 4.7: Global Statistics Computation Process of Purdue Prosodic Feature
Extraction Tool

Figure 4.8: Prosodic Feature Extraction Process of Purdue Prosodic Feature
Extraction Tool
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4.1.3 Comparison of SRI Algemy and Purdue Prosodic Feature Ex-

traction Tools

Table 4.4 presents the prosodic features that are used in this work and extracted

using the Purdue prosodic feature extraction tool, and equivalent prosodic fea-

tures are extracted using the Algemy prosodic feature extraction tool. Table

4.3 presents experimental results based on speaker based data sets. In these ex-

periments, a special subset of the data presented in Section 3.2 has been used.

Experimental results that presented in Table 4.3 show that sophisticated algo-

rithms of Algemy prosodic feature extraction tool outperforms performance of

the open-source PRAAT based Purdue prosodic feature extraction tool. How-

ever performance of Purdue prosodic feature extraction tool is still effective to

build classifiers. Since one of the goals of this work is to build classifiers using

open-source tools, prosodic features provided by Purdue prosodic feature extrac-

tion tool have been used. The experimental results presented in Table 4.3 are

in terms of F-measure score and NIST error rate, where the former is harmonic

mean of precision and recall, and the former is the ratio of misclassified examples

over all actual sentence boundaries. Definitions of F-measure score and NIST

error rate are presented in section 6.1.

Man. Labeled Data Prosodic Feature Extraction Tool F (%) NIST (%)

1K Words Purdue 76.9478 41.8317
1K Words SRI Algemy 80.0791 36.9224
3K Words Purdue 76.7717 41.5017
3K Words SRI Algemy 79.3052 38.0863
6K Words Purdue 76.6567 42.3267
6K Words SRI Algemy 81.9690 33.5396
Average Purdue 76.7920 41.8867
Average SRI Algemy 80.4511 36.1661

Table 4.3: Average Performance Comparison of SRI-International Algemy and
Purdue Prosodic Feature Extraction Tools Using Speaker Based Data Sets
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Prosodic Feature Names in Purdue Tool Corresponding Feature Names in SRI Algemy Tool Feature Values

PAUSE DUR PAU DUR continuous.
PATTERN BOUNDARY F0K PATTERN BOUNDARY X, f+f, f+r, r+f, r+r.
ENERGY PATTERN BOUNDARY ENERGY PATTERN BOUNDARY X, f+f, f+r, r+f, r+r.
SLOPE DIFF F0K SLOPE DIFF continuous.
ENERGY SLOPE DIFF ENERGY SLOPE DIFF continuous.
LAST SLOPE F0K LAST SLOPE continuous.
ENERGY LAST SLOPE ENERGY LAST SLOPE continuous.
LAST SLOPE N F0K LAST SLOPE N continuous.
ENERGY LAST SLOPE N ENERGY LAST SLOPE N continuous.
F0K WORD DIFF HIHI N F0K PREVWRD1 NEXTWRD1 HIHI N continuous.
ENERGY WORD DIFF HIHI N ENERGY PREVWRD1 NEXTWRD1 HIHI N continuous.
F0K WORD DIFF HILO N F0K PREVWRD1 NEXTWRD1 HILO N continuous.
ENERGY WORD DIFF HILO N ENERGY PREVWRD1 NEXTWRD1 HILO N continuous.
F0K WORD DIFF LOLO N F0K PREVWRD1 NEXTWRD1 LOLO N continuous.
ENERGY WORD DIFF LOLO N ENERGY PREVWRD1 NEXTWRD1 LOLO N continuous.
F0K WORD DIFF LOHI N F0K PREVWRD1 NEXTWRD1 LOHI N continuous.
ENERGY WORD DIFF LOHI N ENERGY PREVWRD1 NEXTWRD1 LOHI N continuous.
F0K WIN DIFF HIHI N F0K PREVWIN20 NEXTWIN20 HIHI N continuous.
ENERGY WIN DIFF HIHI N ENERGY PREVWIN20 NEXTWIN20 HIHI N continuous.
F0K WIN DIFF HILO N F0K PREVWIN20 NEXTWIN20 HILO N continuous.
ENERGY WIN DIFF HILO N ENERGY PREVWIN20 NEXTWIN20 HILO N continuous.
F0K WIN DIFF LOLO N F0K PREVWIN20 NEXTWIN20 LOLO N continuous.
ENERGY WIN DIFF LOLO N ENERGY PREVWIN20 NEXTWIN20 LOLO N continuous.
F0K WIN DIFF LOHI N F0K PREVWIN20 NEXTWIN20 LOHI N continuous.
ENERGY WIN DIFF LOHI N ENERGY PREVWIN20 NEXTWIN20 LOHI N continuous.
F0K WORD DIFF MNMN N F0K PREVWRD1 NEXTWRD1 MNMN N continuous.
ENERGY WORD DIFF MNMN N ENERGY PREVWRD1 NEXTWRD1 MNMN N continuous.
F0K WORD DIFF BEGBEG F0K PREVWRD1 NEXTWRD1 BEGBEG continuous.
ENERGY WORD DIFF BEGBEG ENERGY PREVWRD1 NEXTWRD1 BEGBEG continuous.
F0K WORD DIFF ENDBEG F0K PREVWRD1 NEXTWRD1 ENDBEG continuous.
ENERGY WORD DIFF ENDBEG ENERGY PREVWRD1 NEXTWRD1 ENDBEG continuous.
F0K INWORD DIFF F0K PREVWRD1 NEXTWRD1 INWRD DIFF continuous.
ENERGY INWORD DIFF ENERGY PREVWRD1 NEXTWRD1 INWRD DIFF continuous.
PAUSE DUR PREV PAU DUR PREV continuous.

Table 4.4: Useful Prosodic Features for Sentence Segmentation
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4.2 Morphological Features

The expression “Morphology” means word formation of a language based on pat-

terns such as inflections, derivations and compositions. In linguistics, morphology

is the study of description of the behavior and combination of morphemes, where

morpheme is the smallest unit that has a meaning. Morphological features pro-

vide linguistic information about the current word.

The morphological features used in [3], [33] and this work are obtained using a

morphological analyzer for Turkish developed by [27]. This tool can tag bound-

aries related to morphology, morphemes and part of speech (POS) tags. Those

tags are useful in morphological feature extraction process. The initialization and

finalization times of morphemes are evaluated using initialization and finalization

times of phonemes that are provided by ASR system. Homonymic words may

have different morphological analysis (uncertainity) for each different meaning.

For instance the word “bak + an” (noun) has two meanings in Turkish: minis-

ter and “bak + an” where the word “bak” (verb) means to look and “bak + an

(adjective) means someone looking. Different morphological analyzes for differ-

ent meanings of each homonymic words are kept in the database. Determination

of actual morphological analysis of a homonymic word is possible with usage of

prosodic information of the corresponding word.

Despite typical constituent order of Turkish is Subject + Object + Verb, con-

stituents can also be used in different orders. Table 4.5 presents useful morpho-

logical features for sentence segmentation and 4.6 illustrates those morphological

features of a simple sentence [3] “çocuk yemek yedi” in Turkish, which means,

“the child ate the meal” in English. The Morphological analysis of this sentence

is as follows.

çocuk: Noun+A3sg+Pnon+Nom (the child);

yemek: Noun+A3sg+Pnon+Nom (the meal);

yedi:Verb+Pos (+dH)+Past+A3sg (ate).
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Turkish has an agglutinative morphology with productive inflectional and deriva-

tional suffixations [27]. Morphological information in Turkish can be represented

in general form as root + IG1 + DB + IG2 + DB + ... + DB + IGn. In this

representation, the inflectional groups (IGs) denote the derivational boundaries

which are marked with “DB”.

+Adj: adjective

+Noun: noun

+Verb: verb

+A3sg:3rd person singular agreement

+P1sg: 1st person singular possessive agreement

+Pnon: no possessive agreement

+Nom: nominative case

+Pos: positive polarity

+Past:past tense

+Fut: future tense

+FutPart: future participle

For instance the word “yapabilecegim” has three different morphological analysis

as shown below.

1. (yap)yap+Verb+Pos(+yAbil)DB+Verb

+Able(+yAcak)+Fut(+yHm)+A1sg

I will be able to do it

2. (yap)yap+Verb+Pos(+yAbil)DB+Verb

+Able(+yAcak)DB+Adj+FutPart(+Hm)+P1sg

The (thing that) I will be able to do

3. (yap)yap+Verb+Pos(+yAbil)DB+Verb

+Able(+yAcak)DB+Noun+FutPart+A3sg(+Hm)+P1sg+Nom

The one I will be able to do
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lastMarkerA3sg: 1,0.
lastMarkerNom: 1,0.
lastIGhasVerb: 1,0.
lastPOS: Adj, Adverb, Conj, Det, Dup, Interj, Noun, Num, Postp, Pron, Ques, Verb.
PrevLast3: text.
CurrentLast3: text.
NextLast3: text.
PrevCurrentLast3: text.
CurrentNextLast3: text.
PrevCurrentNextLast3: text.

Table 4.5: Useful Morphological Features for Sentence Segmentation

Word A3SG Nom Verb POS wp w wn wp-w w-wn wp-w-wn

Çocuk 0 1 0 Nom ? cuk mek ?-cuk cuk-mek ?-cuk-mek
Yemek 0 1 0 Nom mek cuk edi cuk-mek mek-edi cuk-mek-edi
Yedi 1 0 1 Verb edi mek ? mek-edi edi-? mek-edi-?

Table 4.6: Morphological Features of a Simple Sentence

This example illustrates a word which has a Verb - Adjective - Noun inflectional

group (IG) order. Words in Turkish are formed by lots of part of speech (POS)

tags in various orders because of productive and reproductive nature of this lan-

guage.

In this work, 10 morphological features have been used. Three of them are binary

features which state whether or not the current word is a verb or noun and person

singular agreement (A3sg). One feature determines part of speech of the current

word such as Adverb, Noun, Pronoun, Question or Verb. Since typical order of

constituents in Turkish, especially in BN is Subject + Object + Verb (SOV),

these four features provide strong information on the locations of the sentence

boundaries. In addition to these four features, there are six pseudo-morphological

features, which are formed by the last three phonemes (also letters for Turkish

spoken language) combined like n-grams. Pseudo-morphological features provide

the inflectional group of the interested word if it is a verb. For instance words

ending with letters “dti”, “ti”, “di” may correspond to past tense like “ed” in

English. Therefore this features indicate locations of sentence boundaries with a

probabilistic view.
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4.3 Lexical Features

The expression “lexical item” means the word in linguistics terminology. Lex-

ical features consists of N-grams, where N-grams can be considered as com-

bination of N words within a left-right HMM with a probability of occurence

P (WN)P (WN |WN−1)P (WN−1|WN−2)...P (W2|W1) based on vocabulary size of the

data. Therefore in language processing applications, lexical information provides

probabilistic models (i.e. language model) based on either letter or word orders

of the language [6]. In [3, 6, 7, 33] and in this work we use 6 N-gram features

which are shown in Table 4.7 for each word boundary such as three unigrams

(previous, current, next), two bigrams (previous-current and current-next) and

one trigram (previous-current-next). Lexical features of a simple complete sen-

tence [3] “çocuk yemek yedi” in Turkish, which means, “the child ate the meal”

in English, illustrated in Table 4.8. Lexical features of a written text could be

extracted by using a simple script.

Unigrams, P (WN ): Previous (wp),Current (w),Next (wn)
Bigrams, P (WN |WN−1): Previous-Current (wp-w),Current-Next (w-wn)
Trigrams, P (WN |WN−1,WN−2): Previous-Current-Next (wp-w-wn)

Table 4.7: Useful Lexical Features for Sentence Segmentation

Word wp w wn wp-w w-wn wp-w-wn

Çocuk ? Çocuk yemek ?-Çocuk Çocuk-yemek ?-Çocuk-yemek
Yemek Çocuk yemek yedi Çocuk-yemek yemek-yedi Çocuk-yemek-yedi
Yedi yemek yedi ? yemek-yedi yedi-? yemek-yedi-?

Table 4.8: Lexical Features of a Simple Sentence
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Chapter 5

Proposed Method

This chapter presents the sentence segmentation approach of this study, multi-

view semi-supervised methods, and proposed three-view co-training and committee-

based learning strategies for sentence segmentation task.

5.1 Sentence Segmentation

Finding locations of each punctuation sign of an ASR output task is considered

as a multi-class classification problem, where each notation sign preceded by cur-

rent word is a class. However, the aim of sentence segmentation problem is to

divide long output of ASR into sentences. In other words, the aim of sentence

segmentation problem is to decide whether or not the current word is followed

by a sentence boundary or not. Therefore, sentence segmentation task is consid-

ered as a binary sequence classification problem. Figure 5.1 illustrates sentence

segmentation problem graphically.

In this problem, the aim is to estimate the posterior probability P (yi = H(xi)|oi)

of existence a sentence boundary yi = (s) or non-sentence boundary yi = (n) be-

tween two consecutive words wi and wi+1, for a given word sequence {wi, ..., wN}

with feature observations oi. The sentence boundaries are hypothesized by a

binary classifier with a posterior probability, where the former and latter is repre-

sented by H(xi) ∈ {+1,−1} and P (yi = +1|oi) respectively. When P (yi = +1|oi)
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Figure 5.1: Graphical Representation of the Sentence Segmentation Problem

exceeds a certain threshold, the interested word is hypothesized as a sentence

boundary [70].

5.1.1 Boosting

Boosting is one of the most well-known supervised model training method. In

this work, Icsiboost1 [71], which is an AdaBoost (Adaptive Boosting) algorithm

[72] based tool, has been used.

Algorithm 1 presents the Adaboost Algorithm. This algorithm starts with an

initial uniform probability distribution D1 over all instances in the training set S.

In each iteration, first a weak learner ht is trained by using the instant distribution

Dt, then error probability εt and weights αt are evaluated, the distribution over

the training set is updated based on weights and whole process is iterated until

error decreases or converges at iteration T . In other words, individually weak

classifiers are generated in each iteration. Finally, the hypothesized label of the

interested instance H(x) is determined by weighted votes of weak classifiers ht(x),

rather than estimating once [73].

Final classifier provides a boosting score f(xi = +1) whose magnitude and sign

represents confidence and hypothesized label for an interested instance respec-

tively.

1https://github.com/benob/icsiboost
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Algorithm 1 AdaBoost
Initialization:
1. Given training data
S = (x1, y1), ..., (xm, ym) where xi ∈ X and
yi ∈ Y = {−1,+1}
2. Initialize the distribution D1(i) = 1

m
Algorithm:

for t = 1,...,T do
Train weak learner ht : X, using distribution Dt

Calculate the error probability
εt = PDT

(
ht(xi) 6= yi

)
Determine weight αt
αt = 1

2 ln(1−εtεt
)

Update the distribution over the training set:

Dt+1 =
Dt(i) exp

(
−αtyiht(xi)

)
Zt

, where
Zt is the normalization factor chosen so that Dt+1 will be a distribution.

end for
Final strong classifier:
H(X) = sign(f(x)) where f(x) =

∑T
t=0 αtht(x)

5.1.2 Calibrated Confidence Scores

In self-training and co-training algorithms, which were described in section 5.2,

boosting score is considered as a confidence score of the training models, in order

to separate easily classified examples from harder examples. On the other hand,

one may also use logistic regression methods described in [74] to obtain calibrated

posterior probabilities shown in Equation 5.1 where parameters A and B are esti-

mated by maximum likelihood estimation. Figure 5.2 illustrates plot of Equation

5.1 for different values of A and B, when it has been assumed that f(xi) > 0 for

sentence boundary hypothesis.

P (ht(xi) = n|xi) =
1

1 + exp(Af(xi) +B)
(5.1)
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Figure 5.2: Effects of Coefficients A and B to the Posterior Probability Function

5.2 Semi-Supervised Learning

In this section, several semi-supervised learning methods such as self-training,

co-training with agreement, disagreement and self-combined strategies are de-

scribed. Then the proposed three-view co-training and committee-based learning

strategies are described.

5.2.1 Self-Training

Self-training method is an iterative process, which is presented in Figure 5.3

and Algorithm 2. This process starts with a set of manually labeled data and

a set of unlabeled data, where the former includes small amount of examples

relative to the latter. In this algorithm, the classes of unlabeled examples are

hypothesized with single-view models. First an initial model is built using the

labeled data. Afterwards, unlabeled examples, with a boosting score exceeding a

certain threshold θ, are moved to the labeled set with their hypothesized labels

and the whole process is iterated.

Three different random orderings of the training set are used, then average per-

formance is reported in order to get different feature distributions and remove
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Figure 5.3: Self-Training Scheme

biasing effect. On the other hand, the development and test sets are kept same

for all the experiments. In those experiments, development and test sets are used

for model optimization and performance evaluation, respectively.

Self-training algorithm is applied with the following options:

• Lexical, Prosodic, Morphological, Lexical + Morphological, Lexical + Prosodic

and Prosodic + Morphological feature sets

• Different initially labeled data sizes, 1000, 3000 and 6000 words

• Different increment sizes of N, 100, 250, 500, 1000, 1500 words

• 25 iterations
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Algorithm 2 Pseudo-code of the self-training algorithm
Initialization:
1.Given a small set of manually labeled examples,
L = {(x1, y1), ..., (x|L|, y|L|)}
2.Given a large set of unlabeled examples,
U = {(x1), ..., (x|U |)}
where xi = (xi,features) and yi = Y ∈ {s, n}
Algorithm:

while U 6= ∅ and development set error rate does not
converge/increase do
Train classifier M from L

for each xi ∈ U do
if |fM (xi)| > θ then

U = U − {xi}
L = L ∪ {(xi, HM (xi))}

end if
end for

end while

Detailed algorithmic steps are described below:

Step 1: Divide the training set into the labeled and unlabeled data sets.

Divide the training set into two parts, called labeled set (L) and unlabeled set (U).

Three different initial labeled data sizes which are 1000, 3000 and 6000 words, are

used in order to estimate the learning curve of the self-training algorithm as well as

various feature sets. Each instance xi either in the labeled set or in the unlabeled

set contains words, features and the original label. So, xi = (wordi, xi,features, yi)

Step 2: Train the baseline (initial) model. Train the baseline model using the

initial labeled data set. In this stage we use development set in order to decide

optimum number of boosting iterations with respect to minimum error. Maximum

2000 boosting iterations are used.

Step 3: Self-training strategy.

The following steps are iterated for 25 times. Iteratively, N samples with the

highest boosting scores are moved from L to U with hypothesized label, and

removed from U . The value of N is set to 100, 250, 500, 1000 and 1500 words for

various runs. N samples selected according to the instructions below.
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Step 3.1: Hypothesize the classes HM(xi) of each example xi with a boosting score

fM(xi)

Hypothesize the classes HM(xi) of each example with a corresponding boosting

score fM(xi) in U using the current model. In the first iteration, the current

model is the same as the baseline model.

Step 3.2: Sort instances xi in U according to their boosting score fM(xi)

Sort the instances in U according to their boosting scores in decreased order with

their corresponding hypothesized labels.

Step 3.3: Update labeled and unlabeled data sets.

Select N instances with highest boosting scores in U . Move them to L with their

corresponding hypothesized labels and remove them from U . After this step new

data sizes of L and U will be |Lins|+N and |Uins| −N , respectively. Note that,

the expression θ seen in the Algorithm 2 corresponds to the boosting score of the

Nth example.

Step 3.4: Retrain the model.

Retrain the model using updated L according to the instructions described in the

Step 2.

Step 3.5: Performance evaluation of the retrained model

F-measure scores and NIST error rates of the retrained model are evaluated by

using the development set and the test set. These results are recorded into a

log file for each size of L. At the end of 25 iterations, optimum data size of L

is selected according to the maximum F-measure score on the development set,

and corresponding F-measure score and NIST error rate pair on the test set are

reported as the final performance of the algorithm.
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5.2.2 Co-Training

The general structure of multi-view co-training process which is shown in Figure

5.4 and Algorithm 3 is very similar to self-training process. In two-view co-

training experiments, binary combinations of prosodic, lexical and morphological

information are used as different view pairs. The co-training approach consists

of three steps. First, two individual single-view models (Mview1 and Mview2)

are trained using split versions of initial manually labeled data L according to

associated feature sets. For instance, for the (Lexical-Prosodic) case; MLexical

and MProsodic models are trained by using only lexical features (Llex) and only

prosodic features (Lpros) of L, respectively. Second, the confidence scores and

hypothesized labels of all examples in the unlabeled set, U , are estimated and

recorded using separate Mview1 and Mview2 models. Third, examples which will

be moved from unlabeled set to the labeled set are selected according to different

example selection mechanisms such as co-training with agreement, disagreement

and self-combined strategies [7].

5.2.2.1 Co-Training Agreement Strategy

In the Co-Training Agreement Strategy (Agreement), examples from the unla-

beled data, which are hypothesized as same class (sentence boundary or not)

by both views with high confidence score, are selected. In other words, agree-

ment occurs when models Mview1 and Mview2 classifies the interested example

certainly with the same decision. Agreed examples are selected in two steps.

First, agreed examples are sorted according to the sum of confidence scores, then

examples which has a corresponding confidence score exceeds a certain threshold

are selected. The example selection mechanism of the co-training with agreement

strategy is shown in Algorithm 4.

For the following example, morphological and lexical models are hypothesized

for the boundary preceding the word “belirtti” with a sentence boundary (s)
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Figure 5.4: Proposed Multi-View Co-Training Scheme

with high confidence scores. Therefore, this word is transferred to labeled part

of the data with hypothesized label (s) since sum of confidence scores from dif-

ferent views exceeded a certain threshold. From the morphological view, the

word “belirtti” is a third-person singular verb, therefore morphological model is

hypothesized as sentence boundary with a high confidence score. On the other

hand from the lexical view, the bi-grams “istediğini-belirtti” and “belirtti-Öte”

indicates high confidence to sentence boundary in probabilistic view.

Example: “...aralarındaki görüş ayrılıklarını çözme yönünde temel atmak istediğini

belirtti. {SB} Öte yandan...” which means “...remarked that he intended to

start settling the disagreement between two sides. on the other hand...” where

the word “remarked” represents the word “belirtti” in this translation.
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Algorithm 3 Proposed Multi-View Co-Training Algorithm
Initialization:
1.Given a small set of manually labeled examples,
L = {(x1, y1), ..., (x|L|, y|L|)}
2.Given a large set of unlabeled examples,
U = {(x1), ..., (x|U |)}
where xi = (xi,features) and yi = Y ∈ {s, n}
Algorithm:

while U 6= ∅ and development set error rate does not
converge/increase do

Obtain three sets from L.
Lview1 = {(x1,view1, y1), ..., (x|L|,view1, y|L|)}
Lview2 = {(x1,view2, y1), ..., (x|L|,view2, y|L|)}
Lview3 = {(x1,view3, y1), ..., (x|L|,view3, y|L|)}
Train classifier Mview1 using Lview1.
Train classifier Mview2 using Lview2.
Train classifier Mview3 using Lview3.
for each xi ∈ U do

Apply example selection strategies:
Two-view Co-Training Strategies in Algorithms 4-6 or
Proposed Three-View Co-Training Strategies 1-7 in Algorithms 7-13 or
Proposed Committee-Based Learning Strategies 8-9 in Algorithms 14-15
Update data sets L and U

end for
end while

Algorithm 4 Co-training Agreement Strategy

for each xi ∈ U do
if HMview1(xi,view1) = HMview2(xi,view2) and
|fMview1(xi,view1)|+ |fMview2(xi,view2)| > θ then
U = U − {xi}
L = L ∪ {(xi, HMview1(xi,view1)}

end if
end for
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Co-training algorithm with agreement strategy shown in Algorithm 3 is applied

with the following options:

• View1=Lexical, View2=Morphological

• View1=Prosodic, View2=Lexical

• View1=Prosodic, View2=Morphological

• Different initially labeled data (L) sizes: 1000, 3000 and 6000 words

• Different increment sizes (N): 100, 250, 500, 1000 and 1500 words

• 25 iterations

Detailed algorithmic steps are described below:

Initialization: Split the Development and test sets into different views.

Split development and test sets into four different subsets according to asso-

ciated feature sets of the interested views. Devview1 = (xi,view1, yi), Devview2 =

(xi,view2, yi), Testview1 = (xj,view1, yj), Testview2 = (xj,view2, yj), where i = 1, ..., |Dev|

and j = 1, ..., |Test| Keep these subsets same in each run.

Step 1: Divide the training set into the labeled and unlabeled data sets.

Similar with self-training algorithm, at the beginning divide the training set into

two subsets that called labeled L and unlabeled U data sets. Then, split labeled

and unlabeled subsets into different views such as prosodic, lexical and morpholog-

ical views. Three different initial labeled data size which are 1000, 3000 and 6000

words, are used in order to estimate the learning curve of the self-training algo-

rithm as well for various feature sets. Lview1 = (xk,view1, yk), Lview2 = (xk,view2, yk),

Uview1 = (xl,view1, yl), Uview2 = (xl,view2, yl), where k = 1, ..., |L| and l = 1, ..., |U |
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Step 2: Train current models.

Train current models Mview1, Mview2 and Mview1,view2 using subsets of the initial

labeled data Lview1, Lview2 and Lview1,view2, respectively. Note that current model

will be baseline model in the first iteration. In this step, the model training pro-

cedure is similar with self-training process. Baseline performances are evaluated

using Testview1, Testview2 and Testview1,view2, respectively in terms of F-measure

score and NIST error rate.

Step 3: Example selection mechanism.

Hypothesize examples in Uview1 and Uview2 with corresponding boosting scores

fM,view1(xi,view1) and fM,view2(xi,view2), using the current modelsMview1 andMview2,

respectively. Then, sort the agreed examples in U according to a corresponding

confidence score |fM,view1(xi,view1)| + |fM,view2(xi,view2)| in decreasing order. Fi-

nally select top N examples. Move them to L with their hypothesized labels and

remove them from the U . Note that the expression θ seen in the Algorithm 4

corresponds to the boosting score of the Nth example.

5.2.2.2 Co-Training Disagreement Strategy

The Co-Training Disagreement Strategy (Disagreement) aims to classify the ex-

amples, which are hypothesized with high confidence scores by one model and low

confidence scores by the other model. Thus, harder examples where one model

is hypothesized certainly while the other is indecisive can be hypothesized. In

this strategy, instances in the unlabeled set are sorted according to the absolute

difference of absolute confidence scores, then the examples, which exceed a cer-

tain threshold are picked with corresponding hypothesis of the confident model.

The example selection mechanism of the co-training with disagreement strategy

is shown in Algorithm 5.

For the following example, prosodic and morphological models hypothesized the

boundary that follows the word “oldugunu” differently. From the prosodic view,
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the word preceded by a relatively long silence is an important cue for the loca-

tion of a sentence boundary however the energy and pitch characteristics of the

spelling does not support that decision. Therefore prosodic model hypothesized

this example as a sentence boundary with a low confidence score. On the other

hand, from the morphological view, since the word “oldugunu” is not a verb

and this word is a noun, morphological model hypothesized this word as a non-

sentence boundary with a high confidence score. Hence, disagreement strategy

truly classified this example as a non-sentence boundary.

Example: “...Amerika’nin denetiminde oldugunu n [silence] iddia etti. s

Washington ise...” which means “...Claimed that this was under control of

America. However Washington...”

Algorithm 5 Co-training Disagreement Strategy

for each xi ∈ U do
if
∣∣|fMview1(xi,view1)| − |fMview2(xi,view2)|

∣∣ > θ then
U = U − {xi}
if |fMview1(xi,view1)| > |fMview2(xi,view2)| then

L = L ∪ {(xi, HMview1(xi,view1)}
else

L = L ∪ {(xi, HMview2(xi,view2)}
end if

end if
end for

Co-training algorithm with disagreement strategy shown in Algorithm 5 is applied

with the following options:

• View1=Lexical, View2=Morphological

• View1=Prosodic, View2=Lexical

• View1=Prosodic, View2=Morphological

• Different initially labeled data (L) sizes: 1000, 3000 and 6000 words

• Different increment sizes (N): 100, 250, 500, 1000 and 1500 words

• 25 iterations
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Detailed explanation of algorithmic steps are described below.

Step 1: Divide the training set into the labeled and unlabeled data sets.

This step is the same with as first step of co-training with agreement strategy.

Step 2: Train current models.

This step is the same as the first step of co-training with agreement strategy.

Step 3: Example selection mechanism.

Hypothesize examples in Uview1 and Uview2 with corresponding boosting scores

fM,view1(xi,view1) and fM,view2(xi,view2), using the current modelsMview1 andMview2,

respectively. Then assign hypothesized labels of each example in U accord-

ing to decision of more confident model with corresponding confidence score∣∣|fMview1
(xi,view1)| − |fMview2

(xi,view2)|
∣∣. Sort examples in U in decreasing order.

Finally select top N examples. Move them to L with their hypothesized labels

and remove them from the U .

5.2.2.3 Self-Combined Strategy

Self-combined strategy is considered as the combination of self-training algorithm

and co-training with the agreement strategy. At the beginning, labeled L and

unlabeled U data separated into two parts such as Lview1, Lview2 and Uview1,

Uview2 respectively. Then two individual models, Mview1 and Mview2 are trained

by using the corresponding separated parts of L and estimated boosting scores

fMview1(xi,view1) and fMview2(xi,view2) of the instances in Uview1 and Uview2 are ob-

tained. Afterwards examples are to be moved to L are picked in two steps.

First, the examples in Uview1 with corresponding confidence scores that exceed

a certain threshold, θ1, are selected if the estimated classes of both models are

agreed for the interested example. Second, the dual of the first step is repeated

for the examples in Uview2. The example selection mechanism of the co-training

with self-combined strategy is shown in Algorithm 6.
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Algorithm 6 Self-Combined Strategy

for each xi ∈ Uview1 do
if |fMview1(xi,view1)| > θ1 and

HMview1(xi,view1) = HMview2(xi,view2) then
U = U − {xi}
L = L ∪ {(xi, HMview1(xi,view1)}

end if
end for
for each xi ∈ Uview2 do

if |fMview2(xi,view2)| > θ2 and
HMview1(xi,view1) = HMview2(xi,view2) then
U = U − {xi}
L = L ∪ {(xi, HMview2(xi,view2)}

end if
end for

Self-combined algorithm shown in Algorithm 6 is applied with the following op-

tions:

• View1=Lexical, View2=Morphological

• View1=Prosodic, View2=Lexical

• View1=Prosodic, View2=Morphological

• Different initially labeled data (L) sizes: 1000, 3000 and 6000 words

• Different increment sizes (N): 100, 250, 500, 1000 and 1500 words

• 25 iterations

Detailed explanation of algorithmic steps are described below.

Step 1: Divide the training set into the labeled and unlabeled data sets.

This step is the same as the first step of co-training with agreement and disagree-

ment strategies.

Step 2: Train current models.

This step is the same as the first step of co-training with agreement and disagree-

ment strategies.
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Step 3: Example selection mechanism.

The following method have been applied in order to move N examples from U to L

iteratively. At the beginning, the classes HM,view1(xi,view1) and HM,view2(xi,view2)

of all examples in Uview1 and Uview2 are predicted by the models Mview1 and

Mview2 with corresponding boosting scores fM,view1(xi,view1) and fM,view2(xi,view2)

separately. Then the examples are sorted according to their absolute boosting

scores, fM,view1(xi,view1) and first N/2 examples are picked if predicted class of the

first view HM,view2(xi,view2). Dual of this process was repeated for the examples

in Uview2. The picked examples have been moved to the L with predicted labels

and removed from the U .

Hypothesize examples in Uview1 and Uview2 with corresponding boosting scores

fM,view1(xi,view1) and fM,view2(xi,view2), using the current modelsMview1 andMview2,

respectively. Then sort examples in U according to fM,view1(xi,view1) in decreased

order. Pick agreed examples that exceed a certain threshold and repeat the dual

of this step. Move selected examples to L with their hypothesized labels and

remove them from the U .

5.2.3 Proposed Three-view Co-Training and Committee-Based

Learning Strategies

In three-view approach, several algorithms has been developed which use prosodic,

lexical and morphological information together. The three-view co-training ap-

proach consists of three steps. First initial manually labeled data L is split

into three different views (Lview1, Lview2, Lview3) and three individual models

(Mview1,Mview2, Mview3) are trained separately. Second, classes of all examples in

the U are hypothesized with a corresponding confidence scores fM,view1(xi,view1),

fM,view2(xi,view2), fM,view3(xi,view3) by using (Mview1,Mview2 and Mview3). Finally,

selected examples are moved from the unlabeled set to the labeled set according

to nine different example selection strategies, which are shown in Table 5.1.
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Figure 5.5: Three-View Learning Structure 1

Figure 5.6: Three-View Learning Structure 2

As shown in Table 5.1 and Figures 5.5 - 5.6, three-view co-training strategies

could be considered as either combined (Structure 1 in Figure 5.5) or extended

(Structure 2 in Figure 5.6) versions of two-view co-training strategies. Structure

1 returns different models based on different view orders which are denoted as

(View1-View2-View3). On the other hand, Structure 2 returns same models based

on different view orders which are denoted as (View1+View2+View3).

In Table 5.1, there is a duality between Strategy 4 and Strategy 7 since these

strategies are combination of agreement and self-combined strategies in different

levels of the Structure 1, which shown in Figure 5.5. Similar duality is also

holds between Strategy 5 and Strategy 6, since these strategies are combination
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Strategy Learning Structure Level 1 Level 2

Strategy 1 Structure 2 (View1+View2+View3) Agreement -
Strategy 2 Structure 1 (View1-View2-View3) Agreement Disagreement
Strategy 3 Structure 2 (View1+View2+View3) Self-Combined -
Strategy 4 Structure 1 (View1-View2-View3) Agreement Self-Combined
Strategy 5 Structure 1 (View1-View2-View3) Self-Combined Disagreement
Strategy 6 Structure 1 (View1-View2-View3) Disagreement Self-Combined
Strategy 7 Structure 1 (View1-View2-View3) Self-Combined Agreement

Strategy 8 Structure 2 (View1+View2+View3) Committee-Based Learning

Strategy 9 Committee-Based Learning over Strategies 2,3,5,6,7,8 (View1+View2+View3)

Table 5.1: Proposed Three-View Co-Training Strategies (Strategy 1 to 7),
Committee-Based Learning Strategies (Strategy 8 and 9) and their Structures

of disagreement and self-combined strategies in different levels of the Structure

1. On the other hand, Strategy 2 is combination of agreement and disagreement

strategies in the first and second levels of the Structure 1 but we do not use another

strategy such that combination of disagreement and agreement strategies in the

first and second levels of the Structure 1. Because this combination converges

to self-training when a certain example is hypothesized by View 1 and View 2

indecisively. On the other hand, this combination converges to Strategy 1 when a

certain example is hypothesized with a high confidence score by one of the views

of the level 1, while the other view of level 1 is indecisive.

Algorithms 7-15 presents pseudo-codes of example selection mechanisms of three-

view strategies, which are presented in Table 5.1, inserted into “apply two-view or

three-view example selection mechanisms” line of Algorithm 3 in order to obtain

full pseudo-codes.
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Algorithms 7-15 has been applied with the following options:

• View 1=Lexical, View 2=Morphological, View 3=Prosodic

(for cases View1+View2+View3 and View1-View2-View3)

• View 1=Lexical, View 2=Prosodic, View 3=Morphological

(for cases View1-View2-View3)

• View 1=Morphological, View 2=Prosodic, View 3=Lexical

(for cases View1-View2-View3)

• Different initially labeled data (L) sizes: 1000, 3000 and 6000 words

(for cases View1+View2+View3 and View1-View2-View3)

• Different increment sizes (N): 100, 250, 500, 1000, 1500 words

(for cases View1+View2+View3 and View1-View2-View3)

• 25 iterations

(for cases View1+View2+View3 and View1-View2-View3)

5.2.3.1 Three-View Co-Training Strategy 1

Three-View Co-Training Strategy 1 (Strategy 1) is an extended version of two-

view co-training strategy according to Structure 2 shown in Figure 5.6. First, for

each agreed example, which are hypothesized as same class by different views,

we calculate absolute sum of boosting scores from different views. Then we sort

examples in decreasing order based on absolute sum of boosting scores. We move

top N examples with their hypothesized labels from unlabeled data set U to

labeled data set L and we remove them from the unlabeled data set iteratively.

The example selection mechanism is shown in Algorithm 7 and Table 5.1.

The detailed explanation of Strategy 1 is described below.

Step 1: Train different models from different views. Hypothesize labels of each

example in the unlabeled data set individually. Record hypothesized labels,
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Algorithm 7 Three-View Co-Training Strategy 1

for each xi ∈ U do
if HMview1(xi,view1) = HMview2(xi,view2) = HMview3(xi,view3) and
|fMview1(xi,view1)|+ |fMview2(xi,view2)|+ |fMview3(xi,view3)| > θ then
U = U − {xi}
L = L ∪ {(xi, HMview1(xi,view1)}

end if
end for

HMviewj
(xi,viewj

) with corresponding boosting scores, |fMview1
(xi,view1)|, where j ∈

{1, 2, 3}. Do Step 2 for each example.

Step 2: Check hypothesized labels of individual models. If three models are in

agreement, assign hypothesized label with a confidence score which is the sum of

absolute boosting scores of individual models, otherwise assign confidence score

to zero.

Step 3: Move most confident examples from unlabeled set to labeled set with

hypothesized labels.

5.2.3.2 Three-View Co-Training Strategy 2

Three-View Co-Training Strategy 2 (Strategy 2) is a combination of agreement

and disagreement strategies in the first and second levels of Structure 1 which

shown in Figure 5.5 and Table 5.1. Algorithm 8 presents pseudo-code of this

strategy. This strategy has two levels, where first level is agreement strategy

between View 1 and View 2, and level 2 is disagreement strategy between result

of level 1 and View 3.

As shown in Algorithm 8 the exterior if-condition applies co-training agreement

strategy between View 1 and View 2 in the first stage. In this level, for agreed

examples based on View 1 and View 2 are picked and absolute sum of their

boosting scores based on View 1 and View 2 is recorded as boosting score of level

1, θ1. Afterwards for each example that selected in level 1, the score of level 1,

θ1, compared with boosting score of the third view and disagreement strategy is
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Algorithm 8 Three-View Co-Training Strategy 2

for each xi ∈ U do
if HMview1(xi,view1) = HMview2(xi,view2)
|fMview1(xi,view1)|+ |fMview2(xi,view2)| = θ1 then
if
∣∣θ1 − |fMview3(xi,view3)|

∣∣ > θ2 then
U = U − {xi}
if θ1 > |fMview3(xi,view3)| then

L = L ∪ {(xi, HMview1(xi,view1)}
else

L = L ∪ {(xi, HMview3(xi,view3)}
end if

end if
end if

end for

applied in order to assign final hypothesized label with a corresponding confidence

score.

The detailed explanation of Strategy 2 is described below.

Step 1: Train different models from different views. Hypothesize labels of each

example in the unlabeled data set individually. Record hypothesized labels,

HMviewj
(xi,viewj

) with corresponding boosting scores, |fMview1
(xi,view1)|, where j ∈

{1, 2, 3}. Do Step 2 for each example.

Step 2: Check hypothesized labels of View 1 and View 2. If they are agree, assign

hypothesis of level1 with sum of absolute boosting scores of View 1 and View 2,

as confidence score of level 1. Then apply co-training disagreement between level

1 and View 3 to decide final hypothesis with final confidence score.

Step 3: Move most confident examples from unlabeled set to labeled set with

hypothesized labels.

5.2.3.3 Three-View Co-Training Strategy 3

Three-View Co-Training Strategy 3 (Strategy 3) is an extended version of two-

view self-combined strategy which shown in Table 5.1. As shown in Algorithm
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Algorithm 9 Three-View Co-Training Strategy 3

for each xi ∈ Uview1 do
if |fMview1(xi,view1)| > θ1 and

HMview1(xi,view1) = HMview2(xi,view2) = HMview3(xi,view3) then
U = U − {xi}
L = L ∪ {(xi, HMview1(xi,view1)}

end if
end for
for each xi ∈ Uview2 do

if |fMview2(xi,view2)| > θ2 and
HMview1(xi,view1) = HMview2(xi,view2) = HMview3(xi,view3) then
U = U − {xi}
L = L ∪ {(xi, HMview2(xi,view2)}

end if
end for
for each xi ∈ Uview3 do

if |fMview3(xi,view3)| > θ3 and
HMview1(xi,view1) = HMview2(xi,view2) = HMview3(xi,view3) then
U = U − {xi}
L = L ∪ {(xi, HMview3(xi,view3)}

end if
end for

9, at the beginning, the classes HM,viewj
(xi,viewj

),for j ∈ {1, 2, 3} of all exam-

ples in Uview1, Uview2 and Uview3 are predicted by the models Mview1, Mview2 and

Mview3 with corresponding boosting scores fM,viewj
(xi,viewj

) separately. After-

wards the examples in Uview1 are sorted according to their absolute boosting

scores,
∣∣fMview1

(xi,view1)
∣∣ and first N/3 examples are picked if predicted class of

the first view HMview1
(xi,view1) is same with the other views HMview2

(xi,view2) and

HMview3
(xi,view3). Dual of this process is repeated for the examples in Uview2

and Uview3. The picked instances are moved to the L with predicted labels and

removed from the U . Structure 2, shown in Figure 5.6, presents the learning

structure of this algorithm.

The detailed explanation of Strategy 3 is described below.

Step 1: Train different models from different views. Hypothesize labels of each

example in the unlabeled data set individually. Record hypothesized labels,

HMviewj
(xi,viewj

) with corresponding boosting scores, |fMview1
(xi,view1)|, where j ∈

{1, 2, 3}. Do Step 2 for each example.
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Step 2: If all of views are agreed, determine biggest absolute boosting score

as confidence score of the interested example with agreed hypothesized label.

Otherwise assign zero to confidence score of the interested example.

Step 3: Move most confident examples from unlabeled set to labeled set with

hypothesized labels.

5.2.3.4 Three-View Co-Training Strategy 4

Three-View Co-Training Strategy 4 (Strategy 4) is a combination of agreement

and self-combined strategies in the first and second levels of Structure 1, which

shown in Figure 5.5 and Table 5.1. Algorithm 10 presents pseudo-code of this

strategy. As shown in Table 5.1, this strategy has two levels, where first level

is agreement strategy between View 1 and View 2, and level 2 is self-combined

strategy between result of level 1 and View 3. As shown in Algorithm 10 there

are two exterior for loops which applies self-combined algorithm between decision

of level 1 (agreement strategy) and View 3. Each for loop selects N/2 examples

without repeated examples between each other.

Algorithm 10 Three-View Co-Training Strategy 4

for each xi ∈ U do
if |fMview1(xi,view1)|+ |fMview2(xi,view2)| > θ1 and

HMview1(xi,view1) = HMview2(xi,view2) = HMview3(xi,view3) then
U = U − {xi}
L = L ∪ {(xi, HMview1(xi,view1)}

end if
end for
for each xi ∈ U do

if |fMview3(xi,view3)| > θ2 and
HMview1(xi,view1) = HMview2(xi,view2) = HMview3(xi,view3) then
U = U − {xi}
L = L ∪ {(xi, HMview3(xi,view3)}

end if
end for
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The detailed explanation of Strategy 4 is described below.

Step 1: Train different models from different views. Hypothesize labels of each

example in the unlabeled data set individually. Record hypothesized labels,

HMviewj
(xi,viewj

) with corresponding boosting scores, |fMview1
(xi,view1)|, where j ∈

{1, 2, 3}. Do Step 2 for each example.

Step 2: If all views are in agreement, first apply co-training with agreement

between View 1 and View 2 to assign hypothesis label and confidence score of

the level 1. Then for each agreed example assign maximum of confidence score of

level 1 and absolute boosting score of View 3 to final confidence score with agreed

hypothesized label. If disagreement between the views occur, assign zero to the

confidence score of the interested example.

Step 3: Move most confident examples from unlabeled set to labeled set with

hypothesized labels.

5.2.3.5 Three-View Co-Training Strategy 5

Three-View Co-Training Strategy 5 (Strategy 5) is a combination of self-combined

and disagreement strategies. Algorithm 11 and Figure 5.5 presents pseudo-code

and structure of this strategy respectively. As shown in Table 5.1, this strategy

has two levels, where first level is self-combined strategy between View 1 and

View 2, and level 2 is disagreement strategy between result of level 1 and View

3. In pseudo-code of this algorithm which is presented in Algorithm 11 there

are two exterior for loops. First for loop can be considered as a confidence score

adjustment based on self-combined strategy. In this for loop, the boosting score

of each agreed example based on View 1 and View 2 re-organized according to

stronger model. Then in the second for loop, disagreement strategy between level

1 and View 3 is applied.
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Algorithm 11 Three-View Co-Training Strategy 5

for each xi ∈ U do
if HMview1(xi,view1) = HMview2(xi,view2) then

H1 = HMview1(xi,view1)
if |fMview1(xi,view1)| > |fMview2(xi,view2)| then

θ1 = |fMview1(xi,view1)|
else

θ1 = |fMview2(xi,view2)|
end if

end if
end for
for each xi ∈ U do

if
∣∣|fMview3(xi,view3)| − θ1

∣∣ > θ2 then
if |fMview3(xi,view3)| > θ1 then

U = U − {xi}
L = L ∪ {(xi, HMview3(xi,view3)}

else
U = U − {xi}
L = L ∪ {(xi, H1)}

end if
end if

end for

The detailed explanation of Strategy 5 is described below.

Step 1: Train different models from different views. Hypothesize labels of each

example in the unlabeled data set individually. Record hypothesized labels,

HMviewj
(xi,viewj

) with corresponding boosting scores, |fMview1
(xi,view1)|, where j ∈

{1, 2, 3}. Do Step 2 for each example.

Step 2: In the Level 1, for each example if hypotheses of View 1 and View 2 are

agreed, assign hypothesis of level 1 to the agreed hypothesis with a corresponding

boosting score as maximum absolute boosting scores of View 1 and View 2. Then

apply two-view co-training disagreement strategy between level 1 and View 3 to

determine final hypothesis with a corresponding confidence score for each agreed

example in the level 1.

Step 3: Move most confident examples from labeled set to unlabeled set with

hypothesized labels.
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5.2.3.6 Three-View Co-Training Strategy 6

Three-View Co-Training Strategy 6 (Strategy 6) is a combination of self-combined

and disagreement strategies. Algorithm 12 and Figure 5.5 presents pseudo-code

and structure of this strategy respectively. As shown in Table 5.1, this strategy

has two levels, where first level is disagreement strategy between View 1 and

View 2, and level 2 is self-combined strategy between result of level 1 and View

3. In pseudo-code of this algorithm which is presented in Algorithm 12 there

are three exterior for loops. First for loop can be considered as a disagreement

between View 1 and View 2. Then, second and third loops can be considered as

self-combined between result of first loop (level 1) and View 3.

Algorithm 12 Three-View Co-Training Strategy 6

for each xi ∈ U do
θ1 =

∣∣|fMview1(xi,view1)| − |fMview2(xi,view2)|
∣∣

if |fMview1(xi,view1)| > |fMview2(xi,view2)| then
H1 = HMview1(xi,view1)

else
H1 = HMview2(xi,view2)

end if
end for
for each xi ∈ U do

if θ1 > θ2 and
H1 = HMview3(xi,view3) then
U = U − {xi}
L = L ∪ {(xi, HMview3(xi,view3)}

end if
end for
for each xi ∈ U do

if |fMview3(xi,view3)| > θ3 and
H1 = HMview3(xi,view3) then
U = U − {xi}
L = L ∪ {(xi, HMview3(xi,view3)}

end if
end for

The detailed explanation of Strategy 6 is described below.

Step 1: Train different models from different views. Hypothesize labels of each

example in the unlabeled data set individually. Record hypothesized labels,

67



HMviewj
(xi,viewj

) with corresponding boosting scores, |fMview1
(xi,view1)|, where j ∈

{1, 2, 3}. Do Step 2 for each example.

Step 2: In the level 1, apply two-view co-training disagreement strategy between

View 1 and View 2 to assign hypothesized label of level 1 with a corresponding

confidence score. Then for each agreed example assign maximum of confidence

score of level 1 and absolute boosting score of View 3 to final confidence score

with agreed hypothesized label. If disagreement between the views occur, assign

zero to the confidence score of the interested example.

Step 3: Move most confident examples from unlabeled set to labeled set with

hypothesized labels.

5.2.3.7 Three-View Co-Training Strategy 7

Three-View Co-Training Strategy 7 (Strategy 7) is a combination of self-combined

and agreement strategies. Algorithm 13 and Figure 5.5 presents pseudo-code and

structure of this strategy respectively. As shown in Table 5.1, this strategy has

two levels, where first level is self-combined strategy between View 1 and View

2, and level 2 is agreement strategy between result of level 1 and View 3. In

pseudo-code of this algorithm which presented in Algorithm 13 there are three

exterior for loops. Similar to Strategy 5, first for loop can be considered as a

confidence score adjustment based on self-combined strategy. In this for loop,

the boosting score of each agreed example based on View 1 and View 2 are re-

organized according to stronger model. Then in the second for loop, agreement

strategy between level1 and View 3 is applied.

The detailed explanation of Strategy 7 is described below.

Step 1: Train different models from different views. Hypothesize labels of each

example in the unlabeled data set individually. Record hypothesized labels,

HMviewj
(xi,viewj

) with corresponding boosting scores, |fMview1
(xi,view1)|, where j ∈

{1, 2, 3}. Do Step 2 for each example.
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Algorithm 13 Three-View Co-Training Strategy 7

for each xi ∈ U do
if |fMview1(xi,view1)| > |fMview2(xi,view2)| then

θ1 = |fMview1(xi,view1)|
else

θ1 = |fMview2(xi,view2)|
end if

end for
for each xi ∈ U do

if |fMview3(xi,view3)|+ θ1 > θ2 and
HMview1(xi,view1) = HMview2(xi,view2) = HMview3(xi,view3) then
U = U − {xi}
L = L ∪ {(xi, HMview1(xi,view1)}

end if
end for

Step 2: For each agreed examples by all of the views, assign confidence score

of level 1 to maximum absolute boosting scores of View 1 and View 2, then

add absolute boosting score of View 3 to determine final confidence score, assign

hypothesized label to the agreed hypothesis. If disagreement occur, assign zero

to the final confidence score.

Step 3: Move most confident examples from unlabeled set to labeled set with

hypothesized labels.

5.2.3.8 Committee-Based Learning Strategy 8

Committee-Based Learning Strategy 8 (Strategy 8) is a kind of weighted vote

approach over three view as shown in Table 5.1. Figure 5.6 presents the structure

of this strategy. Since the classes of examples estimated with a boosting score, we

consider hypothesized class and absolute boosting score as vote of the view and

weight of the vote respectively. According to this strategy, if all of the three-view

models are agreed in a certain label, sum of absolute boosting scores determines

a confidence score for this example. On the other hand, if a disagreement occurs,

the absolute boosting scores of majority views added and absolute boosting score

of minority view subtracted in order to find the final confidence score of the

interested example in the Level 1 of the Structure 2.
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Algorithm 14 Committee-Based Learning Strategy 8

for each xi ∈ U do
if HMview1(xi,view1) = HMview2(xi,view2) = HMview3(xi,view3) then

H1 = HMview1(xi,view1)
θ1 = |fMview1(xi,view1)|+ |fMview2(xi,view2)|+ |fMview3(xi,view3)|

end if
if HMview1(xi,view1) = HMview2(xi,view2) 6= HMview3(xi,view3) then

H1 = HMview1(xi,view1)
θ1 =

∣∣|fMview1(xi,view1)|+ |fMview2(xi,view2)| − |fMview3(xi,view3)|
∣∣

end if
if HMview1(xi,view1) = HMview3(xi,view3) 6= HMview2(xi,view2) then

H1 = HMview1(xi,view1)
θ1 =

∣∣|fMview1(xi,view1)|+ |fMview3(xi,view3)| − |fMview2(xi,view2)|
∣∣

end if
if HMview2(xi,view2) = HMview3(xi,view3)H1 6= HMview1(xi,view1) then

H1 = HMview2(xi,view2)
θ1 =

∣∣|fMview2(xi,view2)|+ |fMview3(xi,view3)| − |fMview1(xi,view1)|
∣∣

end if
end for
for each xi ∈ U do

if θ1 > θ2 then
U = U − {xi}
L = L ∪ {(xi, H1)}

end if
end for

The detailed explanation of Strategy 8 is described below.

Step 1: Train different models from different views. Hypothesize labels of each

example in the unlabeled data set individually. Record hypothesized labels,

HMviewj
(xi,viewj

) with corresponding boosting scores, |fMview1
(xi,view1)|, where j ∈

{1, 2, 3}. Do Step 2 for each example.

Step 2: If all of models based on different views are in agreement, assign confidence

score and hypothesized label as absolute sum of boosting scores and agreed label,

respectively. If a disagreement occurs, assign confidence score and hypothesized

label as the sum of absolute boosting scores of majority views minus absolute

boosting score of the minority view, and hypothesized label by majority views,

respectively.

Step 3: Move most confident examples from unlabeled set to labeled set with

hypothesized labels.
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5.2.3.9 Committee-Based Learning Strategy 9

Committee-Based Learning Strategy 9 (Strategy 9) is one another approach based

on weighted vote over hypothesizes of Strategies 2,3,5,6,7 and 8. Algorithm 15

presents the pseudo-code of this strategy. This strategy starts with hypothesizing

unlabeled data using Strategies 2,3,5,6,7 and 8 with the strongest view order of

Lexical (l), Morphological (m) and Prosodic (p) views. When ideal view order of

l,m and p are used, Strategy 4 and Strategy 7 provides the same hypothesis with

the same confidence score for each example. In addition, Strategy 1 provides

a subset of Strategy 8 outputs. Therefore, Strategy 1 and Strategy 4 are not

used in Strategy 9. Different hypothesis with corresponding confidence scores

are normalized over each strategy, then a committee-based approach is used to

obtain final hypothesis with a corresponding confidence score. In this approach

the confidence scores of examples which are hypothesized as sentence boundaries

by corresponding strategies are multiplied by “−1” and confidence scores of other

examples are kept the same. Then final confidence score is determined by sum of

confidence scores come from different strategies, and sign of this sum determines

final hypothesis. Based on the given data distribution, in each iteration the

coefficients “α” and “β” are estimated by normalizing examples with respect to

final confidence scores of hypothesized two classes individually in each iteration,

to select sufficient amounts of examples from both hypothesized classes.

The detailed explanation of Strategy 9 is described below.

Step 1: Train different models from different views. Hypothesize labels of each

example in the unlabeled data set individually. Record hypothesized labels,

HMviewj
(xi,viewj

) with corresponding boosting scores, |fMview1
(xi,view1)|, where j ∈

{1, 2, 3}. Do Step 2 for each example.

Step 2: This step consists of several sub steps.

Step 2a: Obtain different confidence scores from Strategies 2,3,5,6,7,8 for each

View1-View2-View3 ordering of lexical, morphological and prosodic views. For
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Algorithm 15 Committee-Based Learning Strategy 9

for Three-View Strategies n = 2, 3, 5, 6, 7, 8 do
for view orders j = 1: l-m-p, 2: l-p-m and 3: m-p-l do

for each xi ∈ U do
Hi,Strategyn,orderj = HM,Strategyn,orderj (xi) and
fi,Strategyn,orderj = |fM,Strategyn,orderj (xi)|
if Hi,Strategyn,orderj is undefined then

Hi,Strategyn,orderj = N and
fi,Strategyn,orderj = 0

end if
end for

end for
Assign Hi,Strategyn

with respect to fi,Strategyn = argmaxj(fi,Strategyn,orderj ).
Normalize confidence scores within each strategy
||fi,Strategyn || =

fi,Strategyn
argmaxi(fi,Strategyn )

if Hi,Strategyn = S then

f̂i,Strategyn = −1 ∗ ||fi,Strategyn ||
else

f̂i,Strategyn = 1 ∗ ||fi,Strategyn ||
end if

end for
fM (xi) =

∑
n(f̂i,Strategyn)

if fM (xi) < 0 then
|fM (xi)| = −α ∗ fM (xi)
Hi = S

else
|fM (xi)| = β ∗ fM (xi)
Hi = N

end if
for each xi ∈ U do

if |fM (xi)| > θ then
U = U − {xi}
L = L ∪ {(xi, Hi)}

end if
end for

each strategy, assign the decision of most confident (highest confidence score) or-

dering combination of View1-View2-View3 as decision of the associated strategy.

In the case of uncertainty, assign 0 to confidence score and assign non-sentence

boundary (N) decision to hypothesized label of the associated strategy.

Step 2b: Normalize confidence scores within each strategy.

Step 2c: Assign a minus and plus signs for sentence boundary and non-sentence
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boundary labeled examples with associated magnitude of strategy based confi-

dence scores, respectively. Then evaluate sum of those result. If this sum is

smaller than zero, assign sentence boundary label (S) to final hypothesized label,

then multiply the resulting sum with coefficient α and assign it to final confi-

dence score. On the other hand if this sum is bigger than zero, assign sentence

boundary label (N) to final hypothesized label, then multiply the resulting sum

with coefficient β and assign it to final confidence score.

Step 3: Move most confident examples from unlabeled set to labeled set with

hypothesized labels.
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Chapter 6

Experiments and Results

In this work, experiments are performed by using different sizes of initial manu-

ally labeled data and newly proposed three-view co-training and committee-based

learning strategies compared to two-view co-training with agreement disagree-

ment and self-combined strategies, self-training and baseline. In these experi-

ments, icsiboost were used as a boosting classifier.

6.1 Evaluation Metrics

Since sentence boundaries are hypothesized by a binary classifier, the description

of confusion matrix follows for each example.

• True Positives (TP ) represent correctly labeled sentence boundaries such

that H(Xi) = 1|yi = 1.

• True Negatives (TN) represent correctly labeled non-sentence boundaries

such that H(Xi) = 0|yi = 0.

• False Positives (FP ) represent unexpected sentence boundaries, i.e. the in-

terested example is a non-sentence boundary but hypothesized as a sentence

boundary by the classifier such that H(Xi) = 1|yi = 0.
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• False Negatives (FN) represent missing sentence boundaries, i.e. the inter-

ested example is a sentence boundary but hypothesized as a non-sentence

boundary by the classifier such that H(Xi) = 0|yi = 1.

F-measure score (F1 score when β = 1), shown in Equation 6.1, represents har-

monic mean of precision and recall, where the former measures the ratio of cor-

rectly labeled sentence boundaries over all of sentence boundary decisions made

by the classifier, and the latter measures the ratio of correctly labeled sentence

boundaries over all actual sentence boundaries, as shown in Equations 6.2 and

6.3, respectively.

F −measure(%) = 100× (β2 + 1)× Precision×Recall
β2 × Precision+Recall

(6.1)

Precision =
TP

TP + FP
(6.2)

Recall =
TP

TP + FN
(6.3)

NIST (National Institute Standards and Technology) error rate is one of the

most common used and well-known performance evaluation measures. The NIST

error rate is the ratio of total misclassified examples over total actual sentence

boundaries as shown in Equation 6.4.

NIST (%) = 100× FN + FP

TP + FN
(6.4)

6.2 Baseline Results of Different Feature Sets

Before presenting experimental results of semi-supervised algorithms, baseline

results of the lexical, prosodic, morphological and binary combination models are
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Data Size F-measure (%) NIST (%)

(Words) l m p l+m l+p m+p l m p l+m l+p m+p

1K 26.31 75.22 72.19 75.37 73.20 81.52 91.38 49.81 52.00 48.86 50.38 35.19
3K 42.90 75.51 71.75 76.41 72.65 82.31 92.14 48.74 55.00 48.55 49.33 33.43
6K 54.41 76.30 70.31 77.14 75.21 83.25 73.02 47.43 55.79 45.48 45.00 32.21
10K 59.81 78.05 71.90 78.35 77.41 83.55 68.86 43.47 51.78 42.88 40.86 31.78
30K 66.97 78.81 73.39 80.65 79.89 85.01 56.81 42.90 49.31 38.14 37.09 29.17
60K 69.50 79.36 74.18 81.96 79.64 86.47 52.95 41.55 48.64 36.19 37.79 26.26

Table 6.1: Baseline Results of Different Feature Sets With Different Data Sizes
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Figure 6.1: F-measure Scores of Different Feature Sets With Different Data Sizes
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Figure 6.2: NIST Error Rates of Different Feature Sets With Different Data Sizes
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presented for different training data sizes such as 1K, 3K, 6K, 10K, 30K and 60K

words in Figures 6.1, 6.2 and Table 6.1. The curves in Figures 6.1 and 6.2 shows

that lexical (l), prosodic (p) and morphological (m) information are sufficient

to train binary classifiers for sentence detection problem. Moreover, since total

training data size is 61375 words, baseline results of various models with 60K

words initial data size could considered as a kind of boundary for each model.

Ternary combination of lexical, prosodic, and morphological features has not been

used because comparative results of baseline, self-training, two-view co-training

algorithms (agreement, disagreement, and self-combined), and proposed three-

view co-training and committee-based algorithms has been presented.

6.3 Experimental Setup of the Self-Training and Co-Training

Methods

At the beginning, the data sets are divided into a training set, a development set,

and a test set, which are identically distributed over various speakers and acous-

tical conditions, without any overlap. In other words, the training, development

and test sets has been balanced in terms of speaker variability and acoustical

conditions. This approach helps to prevent the biasing effect because of the bal-

anced distribution of the data into the training, development and test sets while

keeping non-overlapping rather than choosing the bunch of examples randomly.

The details of the experimental setup and evaluation process are illustrated in

Figure 6.3.

Three different orderings of the training set, which shown in the following Figure

6.4 has been used. The training set has divided into a labeled L and unlabeled U

data set, by assigning first L samples with their original labels (i.e., words with

their corresponding features and labels). For Turkish BN data, three different

sizes of L which are 1K, 3K, and 6K has been used. Using three different order-

ings of the training set provides three different initial manually labeled data sets.

For instance, when orderings shown in the Fig 6.4 are considered, there are three
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Figure 6.3: Block Diagram Representation of the Experimental Setup

Figure 6.4: Block Diagram Representation of Three Different Random Orderings
of the Training Set

different 1K initial manually labeled data for each ordering, which consists of a

subset of record 1 in the first ordering, a subset of record 6 in the second ordering,

and a subset of record 18 in the third ordering. Different initial manually labeled

data sets for each ordering provides different baseline initial models at the be-

ginning for each ordering. Therefore, in each ordering, different samples will be

automatically selected from the unlabeled data set U and moved to labeled data

set L, within the processing of semi-supervised learning algorithms. Hence, differ-

ent experimental results will be obtained from three different orderings. In order

to evaluate an average performance within three different orderings, development

and test sets are kept same for consistency.

78



6.4 Experimental Results of the Self-Training and Co-Training

Methods Based on Different Feature Sets

Figures 6.5 - 6.28 present average and extremum results using various semi-

supervised strategies against the baseline based on various feature sets. The

curves in Figures 6.5 - 6.16 illustrate average performance variation on using

individual features (Lexical-only, Morphological-only and Prosodic-only) when

only a small amount of labeled data is available. Moreover, Figures 6.17 - 6.28

presents average performance variation on using binary combinations of the lex-

ical, morphological and prosodic features together. These figures show that not

only semi-supervised methods improved the results of the baseline, but also those

methods improved the results of the self-training.

6.4.1 Experimental Results Based on the Lexical Features

Tables 6.2, 6.3 and Figures 6.5 - 6.8 present improvement of various semi-supervised

methods against the baseline. While analyzing those results, it is assumed that

all features are available for the training set, but only lexical features are avail-

able on the test set. This means, while training multi-view models, morphological

and prosodic views can still contribute in order to improve final binary classifier

(Mlex).

Strategy F (%) NIST (%) Opt. In-

crement

Opt. It-

eration

Opt.

Data Size

Manually Labeled Data Size = 1K

Baseline(l) 26.31 91.38 0 0 0

Self-Training (l) 35.41 96.62 1166.67 21.33 26333.33

Agreement (l+m) 37.17 82.86 1500.00 22.00 34000.00

Agreement (l+p) 34.83 93.57 1333.33 12.00 16666.67

Self-Combined (l+m) 34.85 94.07 1333.33 15.67 14591.00

Self-Combined (l+p) 34.41 96.29 1000.00 15.33 15003.33

Disagreement (l+m) 43.81 81.21 1333.33 18.33 26833.33

Disagreement (l+p) 54.60 72.52 1333.33 25.00 34333.33

Continued on next page

79



Table 6.2 – Continued from previous page

Strategy F (%) NIST (%) Opt. In-

crement

Opt. It-

eration

Opt.

Data Size

Strategy 1 34.71 95.78 1333.33 15.33 20833.33

Strategy 2 36.30 91.60 1333.33 19.34 26611.11

Strategy 3 35.91 97.93 1166.67 20.00 27835.33

Strategy 4 34.81 94.22 1277.78 21.11 25389.33

Strategy 5 37.84 93.09 1277.78 17.56 23055.56

Strategy 6 37.26 90.29 1027.78 16.67 17614.33

Strategy 7 33.77 92.94 777.78 18.11 15055.55

Strategy 8 35.88 88.21 1333.33 19.33 27166.67

Strategy 9 59.30 64.97 1000.00 25.00 26000

Manually Labeled Data Size = 3K

Baseline (l) 42.90 92.14 0 0 0

Self-Training (l) 45.78 89.88 1000.00 17.33 20333.33

Agreement (l+m) 48.95 74.55 1000.00 24.33 27333.33

Agreement (l+p) 46.52 78.12 1333.33 22.33 32666.67

Self-Combined (l+m) 47.29 76.50 1333.33 21.00 27129.00

Self-Combined (l+p) 47.12 77.36 1500.00 20.33 31383.67

Disagreement (l+m) 56.12 68.26 1500.00 23.67 38500.00

Disagreement (l+p) 57.92 70.98 1500.00 24.33 39500.00

Strategy 1 46.93 77.47 1500.00 19.67 32500.00

Strategy 2 49.52 78.59 1333.33 22.22 33055.56

Strategy 3 47.18 77.10 1333.33 20.00 36190.33

Strategy 4 47.16 78.84 1333.33 20.67 29380.33

Strategy 5 53.35 73.58 1277.78 22.89 32666.67

Strategy 6 49.93 75.57 1388.89 21.00 30733.89

Strategy 7 46.74 78.42 1333.33 20.44 29833.33

Strategy 8 49.94 73.98 1500.00 25.00 40500.00

Strategy 9 64.57 58.91 1500.00 25.00 40500

Manually Labeled Data Size = 6K

Baseline (l) 54.41 73.02 0 0 0

Self-Training (l) 55.09 74.09 1166.67 17.33 25166.67

Agreement (l+m) 56.83 68.40 1333.33 21.33 34166.67

Agreement (l+p) 56.86 70.36 1166.67 24.00 33666.67

Self-Combined (l+m) 56.83 68.38 1500.00 22.33 35647.33

Continued on next page
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Table 6.2 – Continued from previous page

Strategy F (%) NIST (%) Opt. In-

crement

Opt. It-

eration

Opt.

Data Size

Self-Combined (l+p) 55.63 73.31 1083.33 22.33 27898.00

Disagreement (l+m) 62.45 61.52 1500.00 21.00 37500.00

Disagreement (l+p) 64.08 62.86 1500.00 24.00 42000.00

Strategy 1 56.93 70.14 1500.00 18.33 33500.00

Strategy 2 58.96 66.55 1444.44 22.56 38833.33

Strategy 3 57.12 69.24 1166.67 23.33 40452.67

Strategy 4 56.72 68.82 1277.78 20.56 31091.78

Strategy 5 59.77 64.61 1388.89 24.00 39555.56

Strategy 6 58.91 65.23 1500.00 23.67 39609.56

Strategy 7 56.84 69.05 1444.44 20.00 34611.11

Strategy 8 57.92 68.12 1500.00 22.33 39500.00

Strategy 9 66.15 57.12 1500.00 24.00 42000

Table 6.2: Average Results of the Different Strategies for the Lexical Features
Only

Man. Labeled Data = 1K Strategy F (%) NIST (%)

Baseline - 26.31 91.38
Self-Training - 35.41 96.62
Co-Training (2-View) Disagreement (l+m) 43.81 81.21
Co-Training (2-View) Disagreement (l+p) 54.60 72.52
Committee-Based (3-View) Strategy 9 (l+m+p) 59.30 64.97

Man. Labeled Data = 3K Strategy F (%) NIST (%)

Baseline - 42.90 92.14
Self-Training - 45.78 89.88
Co-Training (2-View) Disagreement (l+m) 56.12 68.26
Co-Training (2-View) Disagreement (l+p) 57.92 70.98
Committee-Based (3-View) Strategy 9 (l+m+p) 64.57 58.91

Man. Labeled Data = 6K Strategy F (%) NIST (%)

Baseline - 54.41 73.02
Self-Training - 55.09 74.09
Co-Training (2-View) Disagreement (l+m) 62.45 61.52
Co-Training (2-View) Disagreement (l+p) 64.08 62.86
Committee-Based (3-View) Strategy 9 (l+m+p) 66.15 57.12

Table 6.3: Maximum F-measure Scores and Minimum NIST Error Rates of the
Different Strategies for the Lexical Features Only
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Figure 6.5: Average F-measure Scores of Different Strategies for the Lexical Fea-
tures Only
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Figure 6.6: Average NIST Error Rates of Different Strategies for the Lexical
Features Only

82



1000 3000 6000
20

30

40

50

60

70

Data Size [words]

F
−

m
ea

su
re

 (
%

)

 

 

Baseline
Self−training
Opt. 2−view
Strategy 9

Figure 6.7: Maximum F-measure Scores of Different Strategies for the Lexical
Features Only
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Figure 6.8: Minimum NIST Error Rates of Different Strategies for the Lexical
Features Only
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Figures 6.5 - 6.6 and Table 6.2 presents experimental results of Baseline, Self-

training, different strategies of two-view and three-view co-training strategies.

Figures 6.7 - 6.8 and Table 6.3 compares Baseline and Self-training results to

best 2-view results and Strategy 9 (Best 3-view strategy for this case) when dif-

ferent sizes of manually labeled data are available. According to these results,

when only 1000 manually labeled examples are available, Strategy 9 improved F-

measure scores of Baseline, Self-training, Co-Training (l+m), Co-Training (l+p)

with a percentage improvement of 125.3896%, 67.4668%, 35.3572%, 8.6081% re-

spectively. In addition, when only 3000 manually labeled examples are avail-

able, Strategy 9 improved F-measure scores of Baseline, Self-training, Co-Training

(l+m), Co-Training (l+p) with a percentage improvement of 50.5128%, 41.0441%,

15.0570%, 11.4814% respectively, and finally when only 6000 manually labeled

examples are available, Strategy 9 improved F-measure scores of Baseline, Self-

training, Co-Training (l+m), Co-Training (l+p) with a percentage improvement

of 21.5769%, 20.0762%, 5.9247%, 3.2303% respectively.

6.4.2 Experiment Results Based on the Morphological Features

Tables 6.4, 6.5 and Figures 6.9 - 6.12 present improvement of various semi-

supervised methods against the baseline. While analyzing those results, it is

assumed that all features are available for the training set, but only morpholog-

ical features are available on the test set. This means, while training multi-view

models, lexical and prosodic views can still contribute in order to improve final

binary classifier (Mmorp).

Strategy F (%) NIST (%) Opt. In-

crement

Opt. It-

eration

Opt.

Data Size

Manually Labeled Data Size = 1K

Baseline (m) 75.22 49.81 0 0 0

Self-Training (m) 75.52 48.69 1033.33 18.00 22866.67

Agreement (m+l) 75.69 48.76 1000.00 19.67 21666.67

Agreement (m+p) 75.74 48.79 533.33 18.00 11500.00

Continued on next page
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Table 6.4 – Continued from previous page

Strategy F (%) NIST (%) Opt. In-

crement

Opt. It-

eration

Opt.

Data Size

Self-Combined (m+l) 75.10 49.60 233.33 16.33 4358.00

Self-Combined (m+p) 75.90 48.34 700.00 23.33 16838.00

Disagreement (m+l) 75.47 49.10 1083.33 19.67 21333.33

Disagreement (m+p) 75.59 48.81 450.00 8.00 7050.00

Strategy 1 75.77 48.55 1500.00 16.67 26000.00

Strategy 2 75.52 49.27 716.67 7.11 8250.00

Strategy 3 75.88 48.67 916.67 11.33 11131.33

Strategy 4 75.69 49.04 966.67 13.78 13044.78

Strategy 5 75.37 49.40 488.89 9.56 7050.00

Strategy 6 75.52 49.34 483.33 5.11 3337.11

Strategy 7 75.70 48.92 1166.67 18.44 22722.22

Strategy 8 75.73 48.90 916.66 9.00 8916.66

Strategy 9 75.77 48.62 700.42 19.22 12767

Manually Labeled Data Size = 3K

Baseline (m) 75.51 48.74 0 0 0

Self-Training (m) 75.75 49.05 533.33 13.00 13000.00

Agreement (m+l) 75.85 49.19 1033.33 8.67 14133.33

Agreement (m+p) 76.05 47.90 866.67 11.00 14533.33

Self-Combined (m+l) 75.64 49.71 450.00 10.67 5167.67

Self-Combined (m+p) 76.18 47.52 1083.33 18.33 21906.00

Disagreement (m+l) 75.62 49.67 333.33 4.67 5083.33

Disagreement (m+p) 76.45 47.07 1083.33 13.33 19250.00

Strategy 1 76.20 47.67 866.67 13.67 19933.33

Strategy 2 76.21 47.07 811.11 16.67 14366.67

Strategy 3 75.88 48.43 616.67 16.00 11680.00

Strategy 4 76.25 48.03 1011.11 12.67 13751.56

Strategy 5 76.37 46.83 666.67 11.34 13027.78

Strategy 6 76.21 47.66 983.33 12.11 14541.00

Strategy 7 76.11 48.10 800.00 15.78 16488.89

Strategy 8 76.26 48.12 916.66 19.00 18250.00

Strategy 9 78.14 43.76 1333.33 23.33 33833

Manually Labeled Data Size = 6K

Baseline (m) 76.30 47.43 0 0 0

Continued on next page
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Table 6.4 – Continued from previous page

Strategy F (%) NIST (%) Opt. In-

crement

Opt. It-

eration

Opt.

Data Size

Self-Training (m) 76.76 47.05 700.00 13.00 19700.00

Agreement (m+l) 76.70 47.14 1033.33 10.67 19666.67

Agreement (m+p) 77.39 44.31 1166.67 20.67 30833.33

Self-Combined (m+l) 76.92 46.86 616.67 6.33 8419.67

Self-Combined (m+p) 77.26 45.69 1083.33 17.00 25915.33

Disagreement (m+l) 76.69 47.62 283.33 16.00 11500.00

Disagreement (m+p) 77.55 45.02 1000.00 22.00 28000.00

Strategy 1 77.10 45.36 1333.33 22.00 35333.33

Strategy 2 77.70 44.61 1222.22 18.22 29666.66

Strategy 3 77.12 45.69 1166.67 17.67 36104.33

Strategy 4 77.00 46.12 1388.89 15.22 25639.44

Strategy 5 77.66 44.38 1166.66 21.11 31666.67

Strategy 6 77.14 45.59 844.44 18.22 20920.11

Strategy 7 77.41 44.75 1444.44 22.11 37833.33

Strategy 8 77.27 44.78 1333.33 16.00 26333.33

Strategy 9 78.44 42.90 1333.33 22.11 36833

Table 6.4: Average Results of the Different Strategies for the Morphological
Features Only

Figures 6.9 - 6.10 and Table 6.4 presents experimental results of Baseline, Self-

training, different strategies of two-view and three-view co-training strategies.

Figures 6.11 - 6.12 and Table 6.5 compares Baseline and Self-training results

to best 2-view and 3-view results included with Strategy 9, when different sizes

of manually labeled data are available. According to these results, when only

1000 manually labeled examples are available, Strategy 4 with l-m-p view order

improved F-measure scores of Baseline, Self-training, 2-view Agreement (l+m), 2-

view Self-Combined (m+p) with a percentage improvement of 0.9173%, 0.5164%,

0.2907%, 0.0132% respectively. In addition, when only 3000 manually labeled

examples are available, Strategy 9 improved F-measure scores of those strate-

gies with a percentage improvement of 3.4830%, 3.1551%, 3.0191%, 2.2106% re-

spectively, and finally when only 6000 manually labeled examples are available,
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Strategy 9 improved F-measure scores of those strategies with a percentage im-

provement of 2.8047%, 2.1886%, 1.9761%, 1.1476% respectively.
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Figure 6.9: Average F-measure Scores of Different Strategies for the Morpholog-
ical Features Only
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Figure 6.10: Average NIST Error Rates of Different Strategies for the Morpho-
logical Features Only
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Figure 6.11: Maximum F-measure Scores of Different Strategies for the Morpho-
logical Features Only
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Figure 6.12: Minimum NIST Error Rates of Different Strategies for the Morpho-
logical Features Only
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Man. Labeled Data = 1K Strategy F (%) NIST (%)

Baseline - 75.22 49.81
Self-Training - 75.52 48.69
Co-Training (2-View) Agreement (m+l) 75.69 48.76
Co-Training (2-View) Self-Combined (m+p) 75.90 48.34
Co-Training (3-View) Strategy 4 (l-m-p) 75.91 48.60
Committee-Based (3-View) Strategy 9 (l+m+p) 75.77 48.62

Man. Labeled Data = 3K Strategy F (%) NIST (%)

Baseline - 75.51 48.74
Self-Training - 75.75 49.05
Co-Training (2-View) Agreement (m+l) 75.85 49.19
Co-Training (2-View) Disagreement (m+p) 76.45 47.07
Co-Training (3-View) Strategy 5 (l-p-m) 76.91 44.57
Committee-Based (3-View) Strategy 9 (l+m+p) 78.14 43.76

Man. Labeled Data = 6K Strategy F (%) NIST (%)

Baseline - 76.30 47.43
Self-Training - 76.76 47.05
Co-Training (2-View) Self-Combined (m+l) 76.92 46.86
Co-Training (2-View) Disagreement (m+p) 77.55 45.02
Co-Training (3-View) Strategy 2 (l-p-m) 78.11 43.76
Co-Training (3-View) Strategy 5 (l-p-m) 77.91 43.69
Committee-Based (3-View) Strategy 9 (l+m+p) 78.44 42.90

Table 6.5: Maximum F-measure Scores and Minimum NIST Error Rates of the
Different Strategies for the Morphological Features Only

6.4.3 Experimental Results Based on the Prosodic Features

Tables 6.6, 6.7 and Figures 6.13 - 6.16 present improvement of various semi-

supervised methods against the baseline. While analyzing those results, it is

assumed that all features are available for the training set, but only prosodic

features are available on the test set. This means, while training multi-view

models, lexical and morphological views can still contribute in order to improve

final binary classifier (Mpros).

Strategy F (%) NIST (%) Opt. In-

crement

Opt. It-

eration

Opt.

Data Size

Manually Labeled Data Size = 1K

Baseline (p) 72.19 52.00 0 0 0

Self-Training (p) 72.85 50.33 616.67 13.33 13450.00

Agreement (p+l) 72.61 51.28 150.00 8.33 2083.33

Agreement (p+m) 73.32 49.55 1166.67 13.67 20166.67

Continued on next page
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Table 6.6 – Continued from previous page

Strategy F (%) NIST (%) Opt. In-

crement

Opt. It-

eration

Opt.

Data Size

Self-Combined (p+l) 72.96 50.90 200.00 14.33 3628.00

Self-Combined (p+m) 72.51 50.83 583.33 16.33 9943.33

Disagreement (p+l) 72.16 50.78 400.00 9.00 4600.00

Disagreement (p+m) 71.67 52.41 583.33 4.67 3583.33

Strategy 1 72.82 51.21 400.00 11.00 7200.00

Strategy 2 72.11 51.96 611.11 7.11 5694.44

Strategy 3 72.78 50.26 400.00 10.33 5194.33

Strategy 4 72.93 50.40 505.56 9.45 3991.89

Strategy 5 72.31 51.78 616.67 11.56 10127.78

Strategy 6 72.77 50.74 377.78 16.00 6109.78

Strategy 7 72.66 50.65 638.89 12.22 8805.56

Strategy 8 72.80 50.73 100.00 6.33 1633.33

Strategy 9 74.20 47.88 1000.00 18.13 19667

Manually Labeled Data Size = 3K

Baseline (p) 71.75 55.00 0 0 0

Self-Training (p) 72.63 52.05 700.00 8.67 8966.67

Agreement (p+l) 72.70 51.55 1166.67 8.67 11833.33

Agreement (p+m) 72.90 50.91 1083.33 8.33 10500.00

Self-Combined (p+l) 73.24 49.88 833.33 8.33 9131.00

Self-Combined (p+m) 73.33 48.71 700.00 15.33 15859.33

Disagreement (p+l) 72.72 51.29 616.67 6.67 4583.33

Disagreement (p+m) 72.85 51.41 283.33 16.33 8416.67

Strategy 1 72.65 51.43 666.67 19.67 17916.67

Strategy 2 72.90 51.19 461.11 8.56 7722.22

Strategy 3 72.90 52.05 1166.67 10.67 20998.00

Strategy 4 72.97 50.44 761.11 16.11 13499.67

Strategy 5 72.10 52.10 855.56 11.89 11388.89

Strategy 6 72.88 50.47 816.67 10.33 11649.11

Strategy 7 72.52 51.77 827.78 15.78 15888.89

Strategy 8 72.65 50.93 250.00 14.00 6500.00

Strategy 9 72.71 50.38 1803.02 14.33 21833

Manually Labeled Data Size = 6K

Baseline (p) 70.31 55.79 0 0 0

Continued on next page
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Table 6.6 – Continued from previous page

Strategy F (%) NIST (%) Opt. In-

crement

Opt. It-

eration

Opt.

Data Size

Self-Training (p) 71.68 52.02 700.00 13.00 12100.00

Agreement (p+l) 71.84 51.50 1166.67 3.67 10166.67

Agreement (p+m) 71.86 51.95 866.67 9.00 10133.33

Self-Combined (p+l) 72.20 51.95 1083.33 10.33 16160.33

Self-Combined (p+m) 72.59 52.43 1166.67 16.00 21312.67

Disagreement (p+l) 71.54 52.88 1033.33 14.33 16766.67

Disagreement (p+m) 72.18 52.48 916.67 9.33 17416.67

Strategy 1 71.75 51.26 533.33 13.33 10766.67

Strategy 2 71.77 52.28 694.45 11.89 13416.67

Strategy 3 72.26 51.02 1333.33 14.67 33103.67

Strategy 4 72.58 51.52 455.55 16.00 12445.78

Strategy 5 71.93 52.97 1011.11 9.56 14555.56

Strategy 6 72.32 51.64 472.22 15.56 11390.11

Strategy 7 72.07 51.71 522.22 11.89 11400.00

Strategy 8 71.74 52.33 1083.33 8.33 16000.00

Strategy 9 72.29 51.21 1166.67 17.12 25333

Table 6.6: Average Results of the Different Strategies for the Prosodic Fea-
tures Only

Figures 6.13 - 6.14 and Table 6.6 presents experimental results of Baseline, Self-

training, different strategies of two-view and three-view co-training strategies.

Figures 6.15 - 6.16 and Table 6.7 compares Baseline and Self-training results to

best 2-view and 3-view results included with Strategy 9, when different sizes of

manually labeled data are available. According to these results, when only 1000

manually labeled examples are available, Strategy 4 with l-m-p view order im-

proved F-measure scores of Baseline, Self-training, 2-view Self-Combined (p+l),

2-view Agreement (m+p) with a percentage improvement of 2.7843%, 1.8531%,

1.6996%, 1.2002% respectively. When only 3000 manually labeled examples are

available, 2-view Co-Training with Self-Combined Strategy (p+m) improved F-

measure scores of Baseline and Self-Training with a percentage improvement of
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2.2021%, 0.9638% respectively, and finally when only 6000 manually labeled ex-

amples are available, Strategy 4 (l-p-m) improved F-measure scores of Baseline,

Self-Training and 2-view Co-Training with Self-Combined strategy (p+m) with a

percentage improvement of 3.7264%, 1.7439%, 0.4684% respectively.
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Figure 6.13: Average F-measure Scores of Different Strategies for the Prosodic
Features Only
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Figure 6.14: Average NIST Error Rates of Different Strategies for the Prosodic
Features Only
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Figure 6.15: Maximum F-measure Scores of Different Strategies for the Prosodic
Features Only
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Figure 6.16: Minimum NIST Error Rates of Different Strategies for the Prosodic
Features Only
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Man. Labeled Data = 1K Strategy F (%) NIST (%)

Baseline - 72.19 52.00
Self-Training - 72.85 50.33
Co-Training (2-View) Self-Combined (p+l) 72.96 50.90
Co-Training (2-View) Agreement (p+m) 73.32 49.55
Co-Training (3-View) Strategy 6 (l-m-p) 73.29 49.62
Co-Training (3-View) Strategy 4 (l-m-p) 73.19 49.09
Committee-Based (3-View) Strategy 9 (l+m+p) 74.20 47.80

Man. Labeled Data = 3K Strategy F (%) NIST (%)

Baseline - 71.75 55.00
Self-Training - 72.63 52.05
Co-Training (2-View) Self-Combined (p+l) 73.24 49.88
Co-Training (2-View) Self-Combined (p+m) 73.33 48.71
Co-Training (3-View) Strategy 7 (p-m-l) 73.21 51.02
Co-Training (3-View) Strategy 4 (l-m-p) 73.15 49.66
Committee-Based (3-View) Strategy 9 (l+m+p) 72.71 50.38

Man. Labeled Data = 6K Strategy F (%) NIST (%)

Baseline - 70.31 55.79
Self-Training - 71.68 52.02
Co-Training (2-View) Self-Combined (p+m) 72.59 52.43
Co-Training (2-View) Self-Combined (p+l) 72.20 51.95
Co-Training (3-View) Strategy 4 (l-p-m) 72.93 51.17
Co-Training (3-View) Strategy 7 (l-p-m) 72.44 50.88
Committee-Based (3-View) Strategy 9 (l+m+p) 72.29 51.21

Table 6.7: Maximum F-measure Scores and Minimum NIST Error Rates of the
Different Strategies for the Prosodic Features Only

6.4.4 Experimental Results Based on the Combination of Lexical and

Morphological Features

Tables 6.8, 6.9 and Figures 6.17 - 6.20 present improvement of various semi-

supervised methods against the baseline. While analyzing those results, it is

assumed that all features are available for the training set, but only lexical and

morphological features are available on the test set. This means, while training

multi-view models, prosodic view can still contribute in order to improve final

binary classifier (Mlex+morp).

Strategy F (%) NIST (%) Opt. In-

crement

Opt. It-

eration

Opt.

Data Size

Manually Labeled Data Size = 1K

Baseline (l+m) 75.37 48.86 0 0 0

Continued on next page
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Table 6.8 – Continued from previous page

Strategy F (%) NIST (%) Opt. In-

crement

Opt. It-

eration

Opt.

Data Size

Self-Training (l+m) 75.40 49.07 533.33 14.33 8233.33

Agreement (l+m) 75.58 49.09 1033.33 18.67 17800.00

Self-Combined (l+m) 75.59 48.95 700.00 14.67 4884.00

Disagreement (l+m) 75.47 48.86 833.33 10.00 6666.67

Strategy 1 75.57 48.74 1033.33 12.33 17166.67

Strategy 2 75.58 49.13 800.00 11.89 9888.89

Strategy 3 75.88 48.40 700.00 4.67 5242.33

Strategy 4 75.50 49.04 1166.67 17.55 19897.89

Strategy 5 75.67 49.18 861.11 15.33 15194.45

Strategy 6 75.33 49.28 511.11 15.11 9250.44

Strategy 7 75.59 48.89 1083.33 17.34 20361.11

Strategy 8 75.63 48.90 833.33 18.00 16166.67

Strategy 9 76.03 48.00 666.67 18.33 12000

Manually Labeled Data Size = 3K

Baseline (l+m) 76.41 48.55 0 0 0

Self-Training (l+m) 76.38 47.98 866.67 8.33 11933.33

Agreement (l+m) 76.39 47.95 1166.67 9.67 13666.67

Self-Combined (l+m) 76.13 49.14 233.33 13.00 7015.00

Disagreement (l+m) 76.53 47.26 916.67 10.67 10083.33

Strategy 1 76.61 48.00 833.33 15.00 17833.33

Strategy 2 76.58 47.72 927.78 11.44 14055.55

Strategy 3 76.28 48.21 1500.00 11.33 25439.67

Strategy 4 76.64 47.67 1333.33 20.56 29269.11

Strategy 5 76.75 47.01 788.89 14.56 16166.66

Strategy 6 76.65 46.87 1083.33 17.11 22037.67

Strategy 7 76.52 47.76 1122.22 19.44 25755.56

Strategy 8 76.78 46.21 1333.33 13.66 20500.00

Strategy 9 78.45 43.76 1333.33 25.41 35833

Manually Labeled Data Size = 6K

Baseline (l+m) 77.14 45.48 0 0 0

Self-Training (l+m) 77.27 46.88 1333.33 12.00 21666.67

Agreement (l+m) 77.59 45.07 1333.33 16.67 27666.67

Self-Combined (l+m) 77.10 47.40 700.00 19.33 15938.67

Continued on next page
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Table 6.8 – Continued from previous page

Strategy F (%) NIST (%) Opt. In-

crement

Opt. It-

eration

Opt.

Data Size

Disagreement (l+m) 77.37 46.07 1000.00 17.67 26000.00

Strategy 1 77.72 44.74 1333.33 21.00 34500.00

Strategy 2 78.32 43.48 1277.78 20.78 32777.78

Strategy 3 77.79 44.57 1166.67 19.00 33526.00

Strategy 4 77.58 46.19 1277.78 18.22 28932.89

Strategy 5 78.41 42.82 1388.89 20.11 33833.33

Strategy 6 78.30 43.59 1333.33 20.56 32923.67

Strategy 7 78.12 43.38 1500.00 23.55 41333.33

Strategy 8 78.38 42.78 1333.33 24.00 38000.00

Strategy 9 79.36 41.09 1333.33 23.33 36833

Table 6.8: Average Results of the Different Strategies for the Combination
of Morphological and Lexical Features

Figures 6.17 - 6.18 and Table 6.8 presents experimental results of Baseline, Self-

training, different strategies of two-view and three-view co-training strategies.

Man. Labeled Data = 1K Strategy F (%) NIST (%)

Baseline - 75.37 48.86
Self-Training - 75.40 49.07
Co-Training (2-View) Self-Combined (l+m) 75.59 48.95
Co-Training (2-View) Disagreement (l+m) 75.47 48.86
Co-Training (3-View) Strategy 5 (p-m-l) 75.97 48.14
Committee-Based (3-View) Strategy 9 (l+m+p) 76.03 48.00

Man. Labeled Data = 3K Strategy F (%) NIST (%)

Baseline - 76.41 48.55
Self-Training - 76.38 47.98
Co-Training (2-View) Disagreement (l+m) 76.53 47.26
Co-Training (3-View) Strategy 5 (l-m-p) 77.07 46.21
Committee-Based (3-View) Strategy 9 (l+m+p) 78.45 43.76

Man. Labeled Data = 6K Strategy F (%) NIST (%)

Baseline - 77.14 45.48
Self-Training - 77.27 46.88
Co-Training (2-View) Agreement (l+m) 77.59 45.07
Co-Training (3-View) Strategy 6 (l-m-p) 78.76 41.95
Committee-Based (3-View) Strategy 9 (l+m+p) 79.36 41.09

Table 6.9: Maximum F-measure Scores and Minimum NIST Error Rates of the
Different Strategies for the Combination of Morphological and Lexical Features

96



1000 3000 6000
75

76

77

78

79

80

Data Size [words]

F
−

m
ea

su
re

 (
%

)

 

 

Baseline
Self−training
Agreement
Self−Combined
Disagreement
Strategy 5
Strategy 8
Strategy 9

Figure 6.17: Average F-measure Scores of Different Strategies for the Combina-
tion of Morphological and Lexical Features
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Figure 6.18: Average NIST Error Rates of Different Strategies for the Combina-
tion of Morphological and Lexical Features
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Figure 6.19: Maximum F-measure Scores of Different Strategies for the Combi-
nation of Morphological and Lexical Features
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Figure 6.20: Minimum NIST Error Rates of Different Strategies for the Combi-
nation of Morphological and Lexical Features
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Figures 6.19 - 6.20 and Table 6.9 compares Baseline and Self-training results

to best 2-view and 3-view results included with Strategy 9, when different sizes

of manually labeled data are available. According to these results, when only

1000 manually labeled examples are available, Strategy 9 improved F-measure

scores of Baseline, Self-training, 2-view Self-Combined (m+l), 2-view Disagree-

ment (m+l) and Strategy 5 (p-m-l) with a percentage improvement of 0.8757%,

0.8355%, 0.5821%, 0.7420%, 0.0790% respectively. When only 3000 manually

labeled examples are available, Strategy 9 improved F-measure scores of Base-

line, Self-Training, 2-view Disagreement (l+m) and Strategy 5 (l-m-p) with a

percentage improvement of 2.6698%, 2.7101%, 2.5088%, 1.7906% respectively,

and finally when only 6000 manually labeled examples are available, Strategy 9

improved F-measure scores of Baseline, Self-Training and 2-view Agreement (l-

m) and Strategy 6 (l-m-p) with a percentage improvement of 2.8779%, 2.7048%,

2.2812%, 0.7618% respectively.

6.4.5 Experimental Results Based on the Combination of Lexical and

Prosodic Features

Tables 6.10, 6.11 and Figures 6.21 - 6.24 present improvement of various semi-

supervised methods against the baseline. While analyzing those results, it is

assumed that all features are available for the training set, but only lexical and

prosodic features are available on the test set. This means, while training multi-

view models, morphological view can still contribute in order to improve final

binary classifier (Mlex+pros).

Strategy F (%) NIST (%) Opt. In-

crement

Opt. It-

eration

Opt.

Data Size

Manually Labeled Data Size = 1K

Baseline (l+p) 73.20 50.38 0 0 0

Self-Training (l+p) 73.94 48.81 366.67 8.33 3833.33

Agreement (l+p) 73.54 49.17 1166.67 9.67 14166.67

Self-Combined (l+p) 74.44 49.19 500.00 13.00 7358.67

Continued on next page
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Table 6.10 – Continued from previous page

Strategy F (%) NIST (%) Opt. In-

crement

Opt. It-

eration

Opt.

Data Size

Disagreement (l+p) 73.38 50.74 1166.67 7.33 9000.00

Strategy 1 73.90 48.62 1333.33 10.00 15833.33

Strategy 2 73.89 48.59 744.45 13.22 10977.78

Strategy 3 74.22 48.16 366.67 15.00 6622.00

Strategy 4 74.17 48.41 327.78 18.78 6690.78

Strategy 5 73.44 49.30 605.56 7.78 5272.22

Strategy 6 74.25 48.64 666.67 10.22 4983.67

Strategy 7 74.01 48.50 1055.56 11.67 14222.22

Strategy 8 74.20 48.50 916.66 15.33 11583.33

Strategy 9 75.57 46.50 833.33 15.67 14167

Manually Labeled Data Size = 3K

Baseline (l+p) 72.65 49.33 0 0 0

Self-Training (l+p) 74.40 47.14 700.00 9.33 12033.33

Agreement (l+p) 74.10 46.69 833.33 6.00 7500.00

Self-Combined (l+p) 74.62 47.38 700.00 14.00 14241.33

Disagreement (l+p) 74.23 48.45 450.00 4.67 6366.67

Strategy 1 73.86 48.26 616.67 9.67 14950.00

Strategy 2 74.02 47.47 644.45 8.89 9811.11

Strategy 3 75.42 44.86 1166.67 16.67 28852.33

Strategy 4 75.20 46.41 1122.22 19.78 25537.67

Strategy 5 74.38 47.03 855.56 12.11 15611.11

Strategy 6 74.42 47.72 877.78 17.33 17913.44

Strategy 7 74.17 48.00 522.22 7.34 5716.67

Strategy 8 73.57 48.88 450.00 7.66 9116.66

Strategy 9 74.71 46.74 1166.70 20.67 27667

Manually Labeled Data Size = 6K

Baseline (l+p) 75.21 45.00 0 0 0

Self-Training (l+p) 76.54 43.57 450.00 13.33 15233.33

Agreement (l+p) 76.58 42.91 1033.33 1.67 8033.33

Self-Combined (l+p) 77.03 42.74 916.67 10.67 17564.00

Disagreement (l+p) 75.93 44.14 750.00 14.33 20416.67

Strategy 1 75.68 43.76 1033.33 17.00 22166.67

Strategy 2 76.52 43.77 577.78 13.55 14077.78

Continued on next page
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Table 6.10 – Continued from previous page

Strategy F (%) NIST (%) Opt. In-

crement

Opt. It-

eration

Opt.

Data Size

Strategy 3 77.56 41.48 1166.67 14.33 27433.33

Strategy 4 76.86 43.13 1138.89 14.44 21524.00

Strategy 5 76.42 43.56 650.00 16.89 16416.67

Strategy 6 77.31 42.27 1138.89 15.44 22439.45

Strategy 7 76.25 43.46 722.22 14.66 18833.33

Strategy 8 76.71 43.07 666.67 9.00 11000.00

Strategy 9 76.79 42.31 833.33 17.00 22500

Table 6.10: Average Results of the Different Strategies for the Combination
of Prosodic and Lexical Features

Figures 6.21 - 6.22 and Table 6.10 presents experimental results of Baseline, Self-

training, different strategies of two-view and three-view co-training strategies.

Figures 6.23 - 6.24 and Table 6.11 compares Baseline and Self-training results to

Man. Labeled Data = 1K Strategy F (%) NIST (%)

Baseline - 73.20 50.38
Self-Training - 73.94 48.81
Co-Training (2-View) Agreement (l+p) 73.54 49.17
Co-Training (2-View) Self-Combined (l+p) 74.44 49.19
Co-Training (3-View) Strategy 4 (l-m-p) 74.61 47.86
Committee-Based (3-View) Strategy 9 (l+m+p) 75.57 46.50

Man. Labeled Data = 3K Strategy F (%) NIST (%)

Baseline - 72.65 49.33
Self-Training - 74.40 47.14
Co-Training (2-View) Agreement (l+p) 74.10 46.69
Co-Training (2-View) Self-Combined (l+p) 74.62 47.38
Co-Training (3-View) Strategy 4 (m-p-l) 75.51 45.79
Co-Training (3-View) Strategy 3 (AVG) 75.42 44.86
Committee-Based (3-View) Strategy 9 (l+m+p) 74.71 46.74

Man. Labeled Data = 6K Strategy F (%) NIST (%)

Baseline - 75.21 45.00
Self-Training - 76.54 43.57
Co-Training (2-View) Self-Combined (l+p) 77.03 42.74
Co-Training (3-View) Strategy 6 (l-m-p) 77.63 42.12
Co-Training (3-View) Strategy 3 (AVG) 77.56 41.48
Committee-Based (3-View) Strategy 9 (l+m+p) 76.79 42.31

Table 6.11: Maximum F-measure Scores and Minimum NIST Error Rates of the
Different Strategies for the Combination of Prosodic and Lexical Features
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Figure 6.21: Average F-measure Scores of Different Strategies for the Combina-
tion of Prosodic and Lexical Features
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Figure 6.22: Average NIST Error Rates of Different Strategies for the Combina-
tion of Prosodic and Lexical Features
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Figure 6.23: Maximum F-measure Scores of Different Strategies for the Combi-
nation of Prosodic and Lexical Features
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Figure 6.24: Minimum NIST Error Rates of Different Strategies for the Combi-
nation of Prosodic and Lexical Features
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best 2-view and 3-view results included with Strategy 9, when different sizes of

manually labeled data are available. According to these results, when only 1000

manually labeled examples are available, Strategy 9 improved F-measure scores

of Baseline, Self-training, 2-view Agreement (l+p), 2-view Self-Combined (p+l)

and Strategy 4 (l-m-p) with a percentage improvement of 3.2377%, 2.2045%,

2.7604%, 1.5180%, 1.2867% respectively. When only 3000 manually labeled ex-

amples are available, Strategy 4 (m+p+l) improved F-measure scores of Baseline,

Self-Training, 2-view Agreement (l+p) and 2-view Self-Combined (l+p) with a

percentage improvement of 3.9367%, 1.4919%, 1.9028%, 1.1927% respectively,

and finally when only 6000 manually labeled examples are available, Strategy

6 (l-m-p) improved F-measure scores of Baseline, Self-Training and 2-view Self-

Combined (l+p) with a percentage improvement of 3.2177%, 1.4241%, 0.7789%

respectively.

6.4.6 Experimental Results Based on the Combination of Prosodic

and Morphological Features

Tables 6.12, 6.13 and Figures 6.25 - 6.28 present improvement of various semi-

supervised methods against the baseline. While analyzing those results, it is

assumed that all features are available for the training set, but only morphological

and prosodic features are available on the test set. This means, while training

multi-view models, lexical view can still contribute in order to improve final binary

classifier (Mmorp+pros).

Strategy F (%) NIST (%) Opt. In-

crement

Opt. It-

eration

Opt.

Data Size

Manually Labeled Data Size = 1K

Baseline (m+p) 81.52 35.19 0 0 0

Self-Training (m+p) 82.26 34.48 450.00 9.67 4016.67

Agreement (m+p) 82.27 34.60 750.00 16.33 13583.33

Self-Combined (m+p) 82.74 33.45 833.33 10.00 8497.33

Disagreement (m+p) 82.14 34.76 283.33 8.67 3333.33

Continued on next page
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Table 6.12 – Continued from previous page

Strategy F (%) NIST (%) Opt. In-

crement

Opt. It-

eration

Opt.

Data Size

Strategy 1 82.03 34.26 916.67 18.67 16083.33

Strategy 2 82.11 34.50 377.78 10.89 4816.67

Strategy 3 82.42 33.76 333.33 7.33 4203.33

Strategy 4 82.61 33.58 677.78 14.45 6823.78

Strategy 5 82.13 34.80 872.22 10.67 9955.55

Strategy 6 82.37 34.40 466.67 12.89 5658.89

Strategy 7 82.55 33.67 833.33 14.78 12111.11

Strategy 8 82.69 33.45 1166.66 12.33 16000.00

Strategy 9 83.04 32.47 1166.70 18.00 22500.00

Manually Labeled Data Size = 3K

Baseline (m+p) 82.31 33.43 0 0 0

Self-Training (m+p) 82.84 33.12 1000.00 11.00 11666.67

Agreement (m+p) 83.15 32.52 700.00 7.33 9733.33

Self-Combined (m+p) 83.78 31.12 1166.67 12.67 16342.00

Disagreement (m+p) 82.99 32.67 250.00 15.67 6916.67

Strategy 1 83.37 32.41 1000.00 15.67 18000.00

Strategy 2 83.28 32.36 383.33 12.11 7422.22

Strategy 3 82.94 32.59 366.67 20.33 12565.67

Strategy 4 83.24 32.32 761.11 15.78 14021.89

Strategy 5 83.24 32.37 494.44 10.11 6883.33

Strategy 6 83.30 32.19 661.11 13.44 10258.78

Strategy 7 83.20 32.09 722.22 13.22 11222.22

Strategy 8 82.79 32.45 750.00 16.00 14916.67

Strategy 9 83.31 32.19 1033.30 9.67 15633.00

Manually Labeled Data Size = 6K

Baseline (m+p) 83.25 32.21 0 0 0

Self-Training (m+p) 83.53 31.74 450.00 17.67 13216.67

Agreement (m+p) 83.09 32.33 700.00 13.33 14466.67

Self-Combined (m+p) 83.44 31.41 833.33 15.33 19884.33

Disagreement (m+p) 83.22 32.60 533.33 11.00 9566.67

Strategy 1 83.35 32.26 533.33 15.33 11633.33

Strategy 2 83.61 31.44 572.22 11.89 11261.11

Strategy 3 83.73 31.38 1333.33 13.33 28506.33

Continued on next page
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Table 6.12 – Continued from previous page

Strategy F (%) NIST (%) Opt. In-

crement

Opt. It-

eration

Opt.

Data Size

Strategy 4 83.84 31.22 1000.00 16.33 19134.22

Strategy 5 83.57 31.45 505.56 13.22 13216.67

Strategy 6 83.59 31.82 611.11 8.44 11361.44

Strategy 7 83.09 32.57 594.44 12.00 13627.78

Strategy 8 83.25 32.59 1000.00 8.66 14666.67

Strategy 9 83.85 31.09 750.00 14.66 19000.00

Table 6.12: Average Results of the Different Strategies for the Combination
of Prosodic and Morphological Features

Figures 6.25 - 6.26 and Table 6.12 presents experimental results of Baseline, Self-

training, different strategies of two-view and three-view co-training strategies.

Figures 6.27 - 6.28 and Table 6.13 compares Baseline and Self-training results to

best 2-view and 3-view results included with Strategy 9, when different sizes of

manually labeled data are available. According to these results, when only 1000

Man. Labeled Data = 1K Strategy F (%) NIST (%)

Baseline - 81.52 35.19
Self-Training - 82.26 34.48
Co-Training (2-View) Self-Combined (m+p) 82.74 33.45
Co-Training (3-View) Strategy 4 (l-m-p) 82.76 33.19
Co-Training (3-View) Strategy 6 (l-p-m) 82.79 33.69
Committee-Based (3-View) Strategy 9 (l+m+p) 83.04 32.47

Man. Labeled Data = 3K Strategy F (%) NIST (%)

Baseline - 82.31 33.43
Self-Training - 82.84 33.12
Co-Training (2-View) Self-Combined (m+p) 83.78 31.12
Co-Training (3-View) Strategy 4 (l-m-p) 83.40 32.21
Committee-Based (3-View) Strategy 9 (l+m+p) 83.31 32.19

Man. Labeled Data = 6K Strategy F (%) NIST (%)

Baseline - 83.25 32.21
Self-Training - 83.53 31.74
Co-Training (2-View) Self-Combined (m+p) 83.44 31.41
Co-Training (3-View) Strategy 4 (l-p-m) 84.02 30.81
Committee-Based (3-View) Strategy 9 (l+m+p) 83.85 31.09

Table 6.13: Maximum F-measure Scores and Minimum NIST Error Rates of the
Different Strategies for the Combination of Prosodic and Morphological Features
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Figure 6.25: Average F-measure Scores of Different Strategies for the Combina-
tion of Prosodic and Morphological Features
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Figure 6.26: Average NIST Error Rates of Different Strategies for the Combina-
tion of Prosodic and Morphological Features
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Figure 6.27: Maximum F-measure Scores of Different Strategies for the Combi-
nation of Prosodic and Morphological Features
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Figure 6.28: Minimum NIST Error Rates of Different Strategies for the Combi-
nation of Prosodic and Morphological Features
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manually labeled examples are available, Strategy 9 improved F-measure scores

of Baseline, Self-training, 2-view Self-Combined (m+p) and 3-view Strategy 6

(l-p-m) with a percentage improvement of 1.8646%, 0.9482%, 0.3626%, 0.3020%

respectively. When only 3000 manually labeled examples are available, 2-view

Self-Combined strategy (m+p) improved F-measure scores of Baseline and Self-

Training with a percentage improvement of 1.7859%, 1.1347% respectively, and

finally when only 6000 manually labeled examples are available, Strategy 4 (l-p-m)

improved F-measure scores of Baseline, Self-Training and 2-view Self-Combined

(l+p) with a percentage improvement of 3.2177%, 1.4241%, 0.7789% respectively.
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6.5 Average Results Based on Different Strategies

Table 6.14 presents additional information and contributions of different views for

different strategy groups. First column presents initial-view (single-view) cases

which are baseline measurements and self-training. The additional information

to initial view and contributed views of different 2-view combinations are shown

in second and third columns. Note that the strategies do not add any additional

features to initial-views feature set They only provide better example selections.

When first three column of Table 6.14 is compared, nine different initial view,

additional information and contribution combinations are observed. On the other

hand, last two columns of Table 6.14 presents additional information provided

3-view methods to initial view. When this columns are compared to initial-

view column, six different initial-view, additional information and contribution

combinations are observed.

Initial-View 2-view methods 3-view methods

Additional Information Contribution Additional Information Contribution

l m l + m m + p l + m + p
l p l + p m + p l + m + p
m l l + m p + l l + m + p
m p p + m p + l l + m + p
p l l + p l + m l + m + p
p m p + m l + m l + m + p

l+m - l + m p l + m + p
l+p - l + p m l + m + p
p+m - p + m l l + m + p

Table 6.14: Baseline and Additional Information Based on Different Experimental
Sets

The curves in Figures 6.29 - 6.30 and Table 6.15 presents average results of dif-

ferent strategies. These results were also verified using t-test. According to these

results when only 1000 manually labeled examples are available, average results

of 2-view strategies, especially the disagreement strategy, outperform baseline

(8.0879% relative F-measure improvement) and self-training (4.1911% relative

F-measure improvement) results. Moreover 3-view strategies, especially strat-

egy 9 outperform not only baseline (15.3031% relative F-measure improvement)
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Figure 6.29: Average F-measure Scores of Different Strategies
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Figure 6.30: Average NIST Error Rates of Different Strategies

and self-training strategies (11.1462% relative F-measure improvements respec-

tively), but also outperforms the 2-view disagreement strategy (6.6753% rela-

tive F-measure improvement) and Strategy 9 also outperforms 3-view commitee-

based strategy (Strategy 8) (6.4758% relative F-measure improvement). In ad-

dition when only 3000 manually labeled examples are available, average results

of 2-view strategies, especially the disagreement strategy, outperform baseline
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(5.5180% relative F-measure improvement) and self-training (3.7621% relative

F-measure improvement) results. Moreover 3-view strategies, especially strat-

egy 9 outperforms not only baseline (10.8299% relative F-measure improvement)

and self-training strategies (8.9857% relative F-measure improvement), but also

outperforms the 2-view disagreement strategy (5.0342% relative F-measure im-

provement) and Strategy 9 also outperforms 3-view Strategy 5 (3.6039% relative

F-measure improvement). Finally when only 6000 manually labeled examples are

available, average results of 2-view strategies, especially the disagreement strat-

egy, outperform baseline (3.6702% relative F-measure improvement) and self-

training (2.5698% relative F-measure improvement) results. Moreover 3-view

strategies, especially Strategy 9 outperforms not only baseline (7.4958% relative

F-measure improvement) and self-training strategies (6.3547% relative F-measure

improvement), but also outperforms the 2-view disagreement strategy (3.6901%

relative F-measure improvement respectively) and Strategy 9 also outperforms

3-view Strategy 5 (2.0367% relative F-measure improvement).
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Manually Labeled Data = 1000 Words

Algorithm F-measure (%) NIST (%) Avg. # Increment Avg. # Iters Avg. # Added

Baseline 64.17 57.86 0 0 0
Self-Training 66.57 58.18 776 15 14709
Agreement (2-View) 66.75 56.40 959 15 15848
Self-Combined (2-View) 66.50 57.95 676 15 9356
Disagreement (2-View) 69.36 54.68 830 12 11970
Strategy 1 (3-View) 69.13 54.53 1086.11 14.00 17186.11
Strategy 2 (3-View) 69.25 54.18 763.89 11.59 11039.82
Strategy 3 (3-View) 69.52 54.53 647.22 11.44 10038.11
Strategy 4 (3-View) 69.29 54.11 820.37 15.85 12639.74
Strategy 5 (3-View) 69.46 54.59 787.04 12.07 11775.93
Strategy 6 (3-View) 69.58 53.78 588.89 12.67 7825.70
Strategy 7 (3-View) 69.05 53.93 925.93 15.43 15546.30
Strategy 8 (3-View) 69.49 53.12 877.77 13.39 13577.78
Strategy 9 (3-View) 73.99 48.08 894 19 17850

Manually Labeled Data = 3000 Words

Algorithm F-measure (%) NIST (%) Avg. # Increment Avg. # Iters Avg. # Added

Baseline 67.96 58.11 0 0 0
Self-Training 69.11 56.68 781 12 10359
Agreement (2-View) 69.62 53.26 1020 11 12766
Self-Combined (2-View) 69.70 53.03 888 15 13464
Disagreement (2-View) 71.71 51.89 770 13 12411
Strategy 1 (3-View) 71.60 50.87 913.89 15.56 20188.89
Strategy 2 (3-View) 72.08 50.73 760.19 13.32 14405.56
Strategy 3 (3-View) 71.77 50.54 1025.00 15.83 22621.00
Strategy 4 (3-View) 71.91 50.62 1053.70 17.59 20910.04
Strategy 5 (3-View) 72.70 49.82 823.15 13.82 15957.41
Strategy 6 (3-View) 72.23 50.08 968.52 15.22 17855.65
Strategy 7 (3-View) 71.54 51.02 887.96 15.33 17484.26
Strategy 8 (3-View) 72.00 50.10 866.67 15.89 18297.22
Strategy 9 (3-View) 75.32 45.96 1242 19 29217

Manually Labeled Data = 6000 Words

Algorithm F-measure (%) NIST (%) Avg. # Increment Avg. # Iters Avg. # Added

Baseline 70.84 52.79 0 0 0
Self-Training 71.60 52.05 818 14 18228
Agreement (2-View) 72.08 50.44 1089 13 20978
Self-Combined (2-View) 72.11 51.13 998 15 20971
Disagreement (2-View) 73.44 49.46 946 17 23241
Strategy 1 (3-View) 73.76 47.92 1044.44 17.83 24650.00
Strategy 2 (3-View) 74.48 47.02 964.82 16.48 23338.89
Strategy 3 (3-View) 74.26 47.23 1222.22 17.06 33187.72
Strategy 4 (3-View) 74.10 47.83 1089.81 16.80 23128.02
Strategy 5 (3-View) 74.63 46.63 1018.52 17.48 24874.08
Strategy 6 (3-View) 74.59 46.69 983.33 16.98 23107.39
Strategy 7 (3-View) 73.96 47.49 1037.96 17.37 26273.15
Strategy 8 (3-View) 74.21 47.28 1152.78 14.72 24250.00
Strategy 9 (3-View) 76.15 44.29 1153 20 30333

Table 6.15: Average Results of Different Strategies When Only 1000, 3000 and
6000 Manually Labeled Examples are Available
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6.6 Statistical Analysis of the Experimental Results

According to the experimental results that presented in Figures 6.29 - 6.30 and

Table 6.15, Strategy 9 is the most effective strategy. We also apply two tail t-test

over average results of different strategies for different feature sets to show that

Strategy 9 provides significant improvement, statistically. Table 6.16 present av-

erage F-measure scores and NIST error rates of different strategies when different

sizes of manually examples are available for different feature sets. For each fea-

ture set, average results of different strategies in Table 6.16, and average results

of Strategy 9 were considered as sample mean (µ) and the null-hypothesis of the

following two tail t-test, respectively.

• h0 : µ = null hypothesis (Average results of Strategy 9 exists in confidence

interval i.e., Strategy 9 does not provide significant improvement.)

• h1 : µ 6= null hypothesis (Average results of Strategy 9 does not exist in

confidence interval i.e., Strategy 9 provides significant improvement.)

l m p

Algorithm Contribution F (%) NIST (%) Contribution F (%) NIST (%) Contribution F (%) NIST (%)

Baseline l 41.21 85.51 m 75.68 48.66 p 71.42 54.26
Self-Training l 45.43 86.90 m 76.01 48.26 p 72.39 51.47
Agreement l+m 47.65 75.27 m+l 76.08 48.36 p+l 72.38 51.44
Agreement l+p 46.07 80.68 m+p 76.39 47.00 p+m 72.69 50.80
Self-Combined l+m 46.32 79.65 m+l 75.81 48.72 p+l 72.80 50.91
Self-Combined l+p 45.72 82.32 m+p 76.45 47.18 p+m 72.81 50.66
Disagreement l+m 54.13 70.33 m+l 75.93 48.80 p+l 72.23 51.65
Disagreement l+p 58.87 68.79 m+p 76.53 46.97 p+m 72.14 52.10
Strategy 5 l+m+p 50.32 77.09 l+m+p 76.47 47.27 l+m+p 72.11 52.28
Strategy 8 l+m+p 47.91 76.77 l+m+p 76.42 47.27 l+m+p 72.40 51.33
Strategy 9 l+m+p 63.34 60.33 l+m+p 77.45 45.09 l+m+p 73.07 49.80

l and m l and p p and m

Algorithm Contribution F (%) NIST (%) Contribution F (%) NIST (%) Contribution F (%) NIST (%)

Baseline l,m 76.31 47.63 l,p 73.69 48.24 p,m 82.36 33.61
Self-Training l,m 76.35 47.98 l,p 74.96 46.51 p,m 82.88 33.11
Agreement l+m 76.52 47.37 l+p 74.74 46.26 p+m 82.84 33.15
Self-Combined l+m 76.27 48.50 l+p 75.36 46.44 p+m 83.32 31.99
Disagreement l+m 76.46 47.40 l+p 74.51 47.78 p+m 82.78 33.34
Strategy 5 l+m+p 76.94 46.34 l+m+p 74.75 46.63 l+m+p 82.98 32.87
Strategy 8 l+m+p 76.93 45.96 l+m+p 74.83 46.82 l+m+p 82.91 32.83
Strategy 9 l+m+p 77.95 44.28 l+m+p 75.69 45.18 l+m+p 83.40 31.92

Table 6.16: Average Results of Different Strategies When Different Sizes of Man-
ually Examples are Available for Different Feature Sets
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Feature Set Null-Hypothesis N µ σ SE Mean 95% CI T P

l 63.34% F-measure 11 49.72 6.54 1.97 (45.33 - 54.12) -6.90 0.000
l 60.33% NIST 11 76.70 7.82 2.36 (71.44 - 81.95) 6.94 0.000

m 77.45% F-measure 11 76.292 0.484 0.146 (75.967 - 76.617) -7.93 0.000
m 45.09% NIST 11 47.599 1.108 0.334 (46.855 - 48.343) 7.51 0.000

p 73.07% F-measure 11 72.404 0.448 0.135 (72.103 - 72.704) -4.94 0.001
p 49.80% NIST 11 51.518 1.145 0.345 (50.749 - 52.288) 4.98 0.001

l and m 77.95% F-measure 8 76.716 0.563 0.199 (76.246 - 77.186) -6.21 0.000
l and m 44.28% NIST 8 46.932 1.349 0.477 (45.804 - 48.060) 5.56 0.001

l and p 75.69% F-measure 8 74.816 0.593 0.210 (74.320 - 75.312) -4.17 0.004
l and p 45.18% NIST 8 46.730 0.936 0.331 (45.948 - 47.513) 4.68 0.002

p and m 83.40% F-measure 8 82.933 0.324 0.114 (82.663 - 83.204) -4.08 0.005
p and m 31.92% NIST 8 32.854 0.608 0.215 (32.346 - 33.362) 4.35 0.003

Table 6.17: Results of the Two Tail t-test

Figure 6.31: t-distribution With df=10

Figure 6.32: t-distribution With df=7
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Table 6.17 presents the two tail t-test results. The definitions of the variables in

Table 6.17 are as follows: “N” presents the sample size, “µ” presents the sample

mean, “σ” presents the variance, “SE Mean” presents the standard error mean,

“95% CI” presents the 95% confidence interval, “T” presents the t-value, and

finally “P” presents the p-value. When only lexical, prosodic or morphological

features are available, 11 different experimental results are presented in Table 6.16,

which corresponds to degree of freedom (df) equals to 10 and tα=0.025 = ±2.228,

as shown in the Figure 6.31. On the other hand, when binary combinations of

prosodic, lexical and morphological features are available, 8 different experimental

results are presented in Table 6.16, which corresponds to degree of freedom (df)

equals to 7 and tα=0.025 = ±2.365, as shown in the Figure 6.32.

Two tail t-test rejects the null hypothesis (case h1) when P ≤ α/2 = 0.025,

T < tα=0.025 for the negative tail, and the value of the null-hypothesis exceeds

95% CI under α = 0.05 or 95% CI. Otherwise, fails to reject the null hypothesis

(case h0). Minitab has been used as a statistical computation software.

The two tail t-test results that presented in Table 6.17 shows that,

• When only lexical features are available, average F-measure score of Strat-

egy 9 (63.34% F-measure) exceeds 95% CI, and this result provides T =

−6.90 < tα=0.025 = −2.228 and P = 0.000 < 0.025. On the other hand,

average NIST error rate of Strategy 9 (60.33% NIST) is under 95% CI, and

this result provides T = 6.94 > tα=0.025 = 2.228 and P = 0.000 < 0.025.

• When only morphological features are available, average F-measure score of

Strategy 9 (76.292% F-measure) exceeds 95% CI, and this result provides

T = −7.93 < tα=0.025 = −2.228 and P = 0.000 < 0.025. On the other hand,

average NIST error rate of Strategy 9 (47.599% NIST) is under 95% CI, and

this result provides T = 7.51 > tα=0.025 = 2.228 and P = 0.000 < 0.025.
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• When only prosodic features are available, average F-measure score of Strat-

egy 9 (72.404% F-measure) exceeds 95% CI, and this result provides T =

−4.94 < tα=0.025 = −2.228 and P = 0.001 < 0.025. On the other hand,

average NIST error rate of Strategy 9 (51.518% NIST) is under 95% CI, and

this result provides T = 4.98 > tα=0.025 = 2.228 and P = 0.001 < 0.025.

• When the combination of lexical and morphological features are available,

average F-measure score of Strategy 9 (76.716% F-measure) exceeds 95% CI,

and this result provides T = −6.21 < tα=0.025 = −2.365 and P = 0.000 <

0.025. On the other hand, average NIST error rate of Strategy 9 (49.932%

NIST) is under 95% CI, and this result provides T = 5.56 > tα=0.025 = 2.365

and P = 0.001 < 0.025.

• When the combination of lexical and prosodic features are available, average

F-measure score of Strategy 9 (74.816% F-measure) exceeds 95% CI, and

this result provides T = −4.17 < tα=0.025 = −2.365 and P = 0.004 < 0.025.

On the other hand, average NIST error rate of Strategy 9 (46.730% NIST)

is under 95% CU, and this result provides T = 4.68 > tα=0.025 = 2.365 and

P = 0.002 < 0.025.

• When the combination of prosodic and morphological features are available,

average F-measure score of Strategy 9 (82.933% F-measure) exceeds 95% CI,

and this result provides T = −4.08 < tα=0.025 = −2.365 and P = 0.005 <

0.025. On the other hand, average NIST error rate of Strategy 9 (32.854%

NIST) is under 95% CI, and this result provides T = 4.35 > tα=0.025 = 2.365

and P = 0.003 < 0.025.

These results show that the improvement of Strategy 9 is statistically significant.
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6.7 Analysis and Discussion

Table 6.1 and Figures 6.1 - 6.2 present comparative results of different baseline

models. In those results, it has been shown that strongest models are trained

by morphological features and they are followed by prosodic and lexical features,

when the baseline results of lexical-only, prosodic-only and morphological-only

models are compared. The reason is that broadcast news are presented with a

regular grammar and emphasis. Since, the part of speech (POS) structure of

Turkish is Subject + Object + Verb, the Verb POS tag provide important cues

on sentence boundaries. However, some hard examples for the morphological

models, which are wrongly labeled can be corrected by either prosodic or lexi-

cal model. For instance in the first and second cases, the morphological model

estimated a sentence boundary (SB) because the words “toplandi” (assembled)

and “kanitlamiyor” (is not proving) are verbs, but for the lexical view because of

they are followed by conjunctions “ve” (and), “tersine” (in contrast) the lexical

model corrected the decision by hypothesizing as non-sentence boundary (WB).

In addition to the prosodic view, the interested words are preceded by a short

pause without any hidden-speech event related with a sentence boundary.

Similarly, morphological or lexical models may also correct an indecisive decision

of the prosodic model. For instance, in the third case, the prosodic model is

failed because of a self-correction is preceded by a long pause after the word “on-

umuzdeki” (forthcoming) but corrected by the lexical and morphological models.

In the fourth case the sentence boundary is followed by a short pause, in ad-

dition, the acoustical condition of this example is telephone conversation hence

prosodic model failed, but morphological and lexical models hypothesized as sen-

tence boundary with a higher confidence score since the word “yasandi” (hap-

pened) is a verb for the morphological model and the word “yasandi” has a

higher probability to precede a sentence boundary for the lexical model.
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Case 1: ...hastane cevresinde toplandi {WB} ve kendisini oven... (...they as-

sembled near the hospital and commended himself...)

Case 2: ...resmi veriler kanitlamiyor {WB} tersine Alman Istatistik Ensti-

tusu’nun... (...official data do not offer a proof. In contrast Federal Statistical

Office of Germany...)

Case 3: ...aciklama yapti ve tahmin ediyorum onumuzdeki {WB} [pause] [rep-

etition: onumuzdeki] sure icinde... (...made an explanation and I guess in the

forthcoming...)

Case 4: ... oldukca ilginc sahneler yasandi {SB} ornegin ... (...very interesting

events have occured. For instance..)

Another interesting question is whether there is a correlation between initial man-

ually labeled data size with either amount of iteration, the amount of automati-

cally labeled data or amount of automatically added data in one iteration. When

we examine average results of the different strategies for different feature sets in

section 6.4 and Table 6.15 we can not observe such a correlation. By perform-

ing various experiments, it has been observed that amount of either increment,

iterations or added examples are correlated with the distribution of the initial

manually labeled data rather than its size.

6.8 Scenario of Concatenating Trained Models to Online ASR Sys-

tems

This section presents improvement of different semi-supervised learning strategies

in table 6.18 under the following scenario. In this scenario, different lexical models

were trained using different learning strategies such as baseline, self-training, co-

training with disagreement strategy (p+l) and Committee-Based Learning Strat-

egy 9, using 1000 initially manually labeled data. Then it has assumed that those

models were integrated with an ASR system, which also provides lexical features
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and marks sentence boundaries using the models. Since in experiments, test set

used only for performance evaluation, this set also could be considered as output

of this concatenated ASR system. Table 6.18 presents different cases under this

scenario.

In the first case, baseline model marks the word “ismi” as sentence boundary,

however different models trained by using Self-Training, Co-Training with Dis-

agreement Strategy and Committee-Based Learning Strategy 9 corrects the deci-

sion. This case can be considered as a simple example since lexical model corrects

itself by using self-training method. In the second case, the sentence boundary

after the word “aliniyor” could be detected by the models which are trained by

using Co-Training with Disagreement Strategy and Committee-Based Learning

Strategy 9. In this example we observe the contribution of prosodic view on lex-

ical model training process. Finally in the last example the sentence boundary

after the word “dinliyorsunuz” could be detected by using only the model trained

by using Committee-Based Learning Strategy 9. Therefore in this example we

observe contribution of prosodic and morphological view on lexical model training

process.

This scenario shows that proposed learning methods are helpful to train statistical

models to be concatenated with online ASR systems.
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Case 1
WORD Baseline Self-Training Disagreement (L+P) Strategy 9 Original
bu n n n n n
degisimin n n n n n
ilk n n n n n
onemli n n n n n
ismi s n n n n
savunma n n n n n
bakani n n n n n
donald n n n n n

Case 2
WORD Baseline Self-Training Disagreement (L+P) Strategy 9 Original
bolton n n n n n
istifa n n n n n
etti s s s s s
irana n n n n n
yaptirimlar n n n n n
bugn n s n n n
pariste n n n n n
ele n n n n n
aliniyor n n s s s
avrupa n n n n n
birliginin n n n n n

Case 3
WORD Baseline Self-Training Disagreement (L+P) Strategy 9 Original
sesi n n n n n
yayinlarini n n n n n
kisa n n n n n
dalgadan n n n n n
ve n n n n n
ntv n n n n n
radyodan n n n n n
dinliyorsunuz n n n s s
yayinlarimizla n n n n n
ilgili n n n n n
bilgi n n n n n

Table 6.18: Improvements of Different Semi-Supervised Learning Strategies on
Lexical Model
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Chapter 7

Conclusion

In this work, new effective semi-supervised machine learning strategies were pro-

posed for sentence segmentation task when only small sets of sentence boundary-

labeled data are available. Three-view co-training and committee-based strategies

on the sentence boundary classification problem using lexical, prosodic and mor-

phological information, were proposed.

The experimental results on the Voice of America (VOA) Turkish BN data show

the effectiveness of these algorithms for the sentence segmentation task. The

experimental results show that baseline models of lexical, prosodic, morpho-

logical and their binary combinations (lexical+morphological, lexical+prosodic,

prosodic+morphological) are highly improved by using newly proposed three-

view co-training and committee-based learning approaches especially when only

a small set of manually labeled examples are available. For instance Committee-

Based Learning Strategy 9 improved the average baseline F-measure of 64.17%

to 73.99%, 67.96% to 75.32% and 70.84% to 76.15% when only 1000, 3000 and

6000 initial manually labeled examples are available, respectively. This strategy

improved the baseline F-measure of 67.66% to 75.15% on the average when only

small different sizes of initial manually labeled examples are available.
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In addition the experimental results show that the newly proposed strategies

called Three-View Co-Training Strategy 5 and Committee-Based Learning Strate-

gies (Strategy 8 and Strategy 9) outperform not only all the other strategies in-

cluding agreement and self-combined with two-view co-training but also the best

strategy based on disagreement with two-view co-training described in [7]. On

the other hand, in section 6.8 it has been shown that those strategies could be

used to train lexical features based effective models, which can easily integrated

with online ASR systems.
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