
B
E

R
K

E
Ö

Z
E

N
Ç

M
.S

.
T

h
esis

2017

MORPHOLOGICAL ANALYSER FOR TURKISH

BERKE ÖZENÇ

IŞIK UNIVERSITY

2017

MORPHOLOGICAL ANALYSER FOR TURKISH

BERKE ÖZENÇ
B.S., Computer Engineering, IŞIK UNIVERSITY, 2017

Submitted to the Graduate School of Science and Engineering

in

Computer Engineering

IŞIK UNIVERSITY

2017

IŞIK UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

MORPHOLOGICAL ANALYSER FOR TURKISH

BERKE ÖZENÇ

APPROVED BY:

Prof. Dr. Ercan Solak Işık University

(Thesis Supervisor)

Assoc. Prof. Olcay T. Yıldız Işık University

Assoc. Prof. M. Oğuzhan Külekçi Istanbul Technical

University

APPROVAL DATE:/..../....

MORPHOLOGICAL ANALYSER FOR TURKISH

Abstract

Natural Language Processing is one one the fields of work in computer science and

specializes in text summarization, machine translation and many various topics.

Morphology is one of the Natural Language Processing features which analyses the

words with its suffixes. A words meaning can change according to the suffix that it

takes. Turkish is an agglutinative language with rich morphological structure and

set of suffixes. This features of Turkish result in complex morphology structure.

In this study, we present an analyser for Modern Anatolian Turkish which has high

coverage on suffixes and morphological rules of Turkish. Two-Level transforma-

tion method which is convenient to design morphology of a language, consists our

base of approach. We used HFST which is a Finite State Transducer implemen-

tation, as our implementation technique. The analyser covers all morphological

and phonetic rules that exist in Turkish and contains a lexicon which consist of

today’s Turkish words. The analyser is publicly available and can be used on

http://ddil.isikun.edu.tr/mortur.

Keywords: Turkish, Morphology, Analyser, Two-Level Approach, FST, Fi-

nite State Transducer, HFST, Natural Language Processing, NLP

ii

TÜRKÇE İÇİN MORFOLOJİK ANALİZÖR

Özet

Doğal Dil İşleme, bilsayar bilimindeki çalışma alanlarından biridir ve özetleme,

makine çevirisi gibi bir çok alanda özelleşmektedir. Morfoloji, Doğal Dil İşlemede

kullanılan özelliklerden biridir ve bir kelimeyi ekleriyle birlikte analiz eder. Bir

kelimenin anlamı aldığı eklere göre değişebilir. Türkçe, zengin morfolojik yapıları

ve zengin ek kümesi olan eklemeli bir dildir. Turkçenin bu özelliği, kompleks

morfolojik yapıları ortaya çıkartır.

Bu çalışmada Modern Anadolu Türkçesi için bir analizör sunuyoruz. Bir dile

ait morfolojik yapıyı tasarlamak için uygun olan Çift katmanlı dönüşüm metodu,

analizörü hazırlarken kullandığımız yaklaşımın temelini oluşturmaktadır. Analizörün

kodlanması için, bir sonlu durum dönüştürücüsü uygulaması olan HFST kul-

landık. Analizörümüz, Türkçe’de var olan tüm morfolojik ve fonetik kuralları

kapsamaktadır ve güncel Türkçe kelimelerinden oluşan bir sözlük bulundurmak-

tadır. Analizörümüz, halka açık olarak, http://ddil.isikun.edu.tr/mortur adresin-

den kullanılabilir.

Anahtar kelimeler: Türkçe, Morfoloji, Analizör, Çift Katmanlı Yaklaşım,

FST, Sonlu Durum Dönüştürücüsü, HFST, Doğal Dil İşleme, DDİ, NLP

iii

Table of Contents

Abstract ii

Özet iii

List of Tables vi

List of Figures vii

1 Introduction 1

2 Literature Survey 2

3 Approach 4

3.1 Morphotactics . 4

3.2 Phonology . 5

4 Turkish 6

4.1 Lexicon . 6

4.2 Nominal Inflection . 7

4.3 Verbal Inflection . 8

4.3.1 Voice . 9

4.3.2 Ability Polarity Probability (APP) 11

4.3.3 Tense Aspect Modality Person 13

4.4 Nominal Predicate . 19

4.5 Other Classes . 21

4.6 Derivation . 22

4.7 Phonology . 26

5 Implementation 28

5.1 HFST Structure . 28

5.2 HFST Syntax . 30

5.3 MorTur Structure . 33

6 MorAz 34

7 Results and Discussion 36

8 Conclusion 40

Reference 41

List of Tables

4.1 Possessor morphemes for Figure 4.1. Empty cells are undefined. . 9

4.2 Case suffixes for Figure 4.1. 9

4.3 Tense categories and their semantics. 14

4.4 Copula categories and their semantics. 14

4.5 Person paradigms for all verb inflection. 15

4.6 Person paradigms for all verb inflection. 15

4.7 The most productive derivational morpheme sets d1, d2, d3 and d4

used in Figure 4.15. 24

6.1 Person paradigms for all verb inflection in AT. 34

vi

List of Figures

4.1 Slot-based nominal inflection . 8

4.2 Voice paradigm . 10

4.3 Verb classes representing different behavior for Causative and Pas-
sive suffixes for different verb roots. 11

4.4 Ability-polarity-probability sub-paradigm. Note the ambiguity caused
by the identical surface forms of the paths APP-POL3-PROB-
TAMP1 and APP-ABIL-POL1-TAMP1. 12

4.5 Group 1, behaviour of imperative 15

4.6 Group 2, behaviour of Optative 16

4.7 Group 3, behaviour of Conditional 17

4.8 Group 4, behaviour of Past . 18

4.9 Group 5, behaviour of Past . 18

4.10 Group 6 . 19

4.11 Group 7 . 20

4.12 Group 8 . 20

4.13 Nominal Predicate Pt1 . 21

4.14 Nominal Predicate Pt2 . 22

4.15 The derivation FST. 23

4.16 Whole FST of the Turkish Morphology 25

6.1 The nominal predicate for AT. 35

vii

Chapter 1

Introduction

Morphology is an essential part of the Natural Language Processing (NLP). Al-

most all works in NLP starts with decomposition, analysis, of the word. By this,

possible meaning of the word can be acquired. This requires a morphological

analyser.

Turkish is an agglutinative language with rich morphological structures. It is most

spoken one among all Turkic languages. For the clarity, Turkish in this work is

termed Modern Anatolian Turkish. Its alphabet is based on Latin alphabet with

addition of “ı”, “ü”, “ö”, “ç”, “ğ”, “ş” and exclusion of “x”, “q” and “w”. Like

all Turkic languages, Turkish has vowel harmony, consonant drops and changes

as part of its phonology.

In this work, we provided a new description of Modern Anatolian Turkish mor-

phology and implemented its morphological analyser (MorTur). In our imple-

mentation, we used Helsinki FST (HFST) [1]. We published the analyser as a

website on http://ddil.isikun.edu.tr/mortur. It is free to use and its source is

publicly available. The source code is accessible though the web page.

1

Chapter 2

Literature Survey

Finite State Transducer (FST) is a convenient tool for implementing morpholog-

ical structure of an agglutinative language with a two-level transformation ap-

proach. Two-level transformation approach to morphology is explained in Chap-

ter 3. There are several implementations of FST and all implementations are

based on Xerox Finite State tool (XFST) [2]. XFST is a tool that provides finite

state operations along with a regular expression compiler. XFST includes two

types of operations as lookup (analyse) and generation. Helsinki Finite State

Transducer is the FST implementation that we used to implement MorTur. Like

other implementations, it is based on XFST so it inherits all features of XFST in-

cluding analyse and generation modes. Details about HFST are given in Sections

5.1 and 5.2.

FST is popular among morphology researches because of its convenience for the

structure. There are several works that use FST with two-level transformation

approach for several languages. For English, there is [3] with a large lexicon. Large

lexicon provides a large coverage for the analyser. Also, there is a tool to manage

the lexion for further modifications. PC-KIMMO is used for the implementation.

PC-KIMMO is a system that is specially developped for linguistics. The program

is designed for generate or analyse the words. It requires morphological rules and

a lexicon, set of root. For Japanese, there is [4]. Similarly, KIMMO is used for

the implementation with provided Japanese morphological rules. Also, there is a

study that includes Finnish, English, Japanese, Romanian, French, Swedish, Old

Church Slavonic, Greek, Lappish, Arabic, Icelandic Languages [5]. Unlike a single

language analyser, a language independent model is presented in their work.

Unlike other languages, there are not many morphological analyzers for other

Turkic languages. For Turkmen, there is [6]. In this work, XFST is used with

2

two-level morphology approach. For Kazakh, there is [7]. The analyser imple-

mented by using FOMA which is another implementtaiıon of FST, wtih the two-

level transformation approach. In addition to morphological analyser this work

contains a morphological disambiguator. Since there might me more than one

morphological analyses for a word, morphological disambiguator decides which

analyses of the word is valid according to context. For Uighur, there is, [8].

Rather than a complete analyser, their work focuses on nouns. XFST is used for

implementation.

Although, Modern Anatolian Turkish and Azerbaijani Turkish (AT) are close

to each other, there are no Morphological analysers for AT as far as we know.

There are significant differences between Turkish and AT. This prevents an easy

adaptation of available Turkish analyser to AT. So, we implemented the very first

AT morphological analyser (MorAz) with the same approach and implementation

of FST. Details about MorAz are givenwa in Chapter 6.

There are several morphological analyzers for Turkish, [9], [10], [11]. [9] is im-

plemented by Kemal Oflazer. It is the very first morphological analyzer that is

done for Turkish. Two-level morphology is used as approach and PC-KIMMO

environment is used for implementation. [10] is implemented by Çağrı Çöltekin.

Two-level morphological approach is used and Stuttgart Finite State Transducer

(SFST) is used for implementation. Like HFST, SFST is a FST implementation

that is based on XFST. [11] is implemented by Muhammet Şahin, Umut Suluba-

cak and Gülşen Eryiğit. In their work, Flag Diaractics is used for implementation.

Flag Diaractics is an extension of XFST. They used Flag Diaractics to handle

morphological and phonetic exceptions. These analysers have some linguistically

problematic or neglected parts. This is why we implemented a new and complete

analyser in the first place. Differences between MorTur and other analysers are

explained in Chapter 7.

3

Chapter 3

Approach

We used a Two-level representation to represent the morphology of Turkish. First

of these two levels formally describes the morphotactics using a finite state trans-

ducer (FST). Second level consists of sets of rules which using modify the output

of first level FST according to phonological changes. Every set of rule is related

to a different phonological phenomenon. To implement the two-level structure,

we used HFST tool. HFST is a FST implementation developed by Helsinki Uni-

versity. HFST consist of lexc and twol files, which correspond respectively to each

level of two-level representation.

3.1 Morphotactics

A FST is a finite state machine whose transitions have a pair of input/output

strings. A FST consists of state and these states connected to each other with

transitions. Transitions modify the input string that is from origin state of the

transition with a pre-determined string to produce the output string. By its

structure, FST is convenient structure to represent morphotactics of an aggluti-

native language. Input and output string of a transition have special meanings

when FST is used to represent a language like Turkish. In the FST represen-

tation of Turkish, every transition corresponds to a suffix. In these transitions,

while output string is abstract morpheme which is symbolic representations of

the suffix, the input string is the label that corresponds to the abstract meaning

of the suffix.

(1) kalem<NOM><Num:Pl><Poss:1s>

4

(2) kalem-lAr-(I)m

(3) kalemlerim

In these examples, “kalemlerim” (my pens) is a string that is generated by FST.

On (1), morphological class of the word and labels of suffixes are shown respec-

tively, <NOM> shows that the root “kalem” (pen) belongs to the Nominal class,

<Num:Pl> is abstract morpheme of “-lAr” and <Poss:1s> is abstract morphem

of “-(I)m”. abstract morphemes consist of two parts seperated with “:”. First

part denotes the key and second part denotes the value. On (2), suffixes are

shown seperately, -lAr and -(I)m, this is also output of the first level. In this

representation we used “-” as seperator for suffixes. This representation of suf-

fixes called archmorphemes. In this example, “A” and “I” are archiphonemes and

brackets around the “I” denotes that “I” is optional. (3) called surface form. It

will be explained on following sub-section.

3.2 Phonology

In the second level, which implements phonological rules, sets of rules are applied

to the output of the first level. As a result, surface form of the word is generated.

These rules clean suffix seperator and, if necessarry, optional characters. Also,

change archiphonemes into their correct versions according to big vowel harnomy

of Turkish. The following example (3) is surface form of (2).

Among the three strings (1), (2) and (3), only (1) and (3) are considered as pure

input and result. This has two work mode, generation and analysis. In generation

mode, (1) is given as input and two-level structure produces the surface form as

a result. In analysis mode, (3) surface form is given as input and (1) the analysis

is produced.

5

Chapter 4

Turkish

Turkish is an agglutinative language. It has rich morphological structure for nom-

inal and verbal words. Every word class has it’s own inflectional class. Moreover,

it is also possible to derive new words, with same or different word classes, from

the root or stem. These derived words may undergo further inflection. After

the inflection, they may derive again. It depends on the suffix that causes the

derivation. All derivational suffixes and their functionalities will be explained in

4.6 section. Such rich inflection and derivation result in a single surface form

having many distinct analyses.

4.1 Lexicon

In Turkish there are 4 main word classes; Verbs, Adverbs, Nouns and Adjectives.

In all Turkic languages, distinction of Nouns and Adjectives is rather fuzzy. In a

noun phrase having an adjective that modifies the noun, the noun can be dropped.

When it happens, dropped noun is indicated by the context. For example,

(1) mavi bardak kırık

blue glass is broken

mavi kırık

blue is broken

When an adjective modifies a noun, it become the subject so that they can take

place of the noun and act as noun in the absence of noun. This means an adjective

can be inflected and derived as a noun. In addition to that, nouns also can be

6

used as adjectives. So we merged Nouns and Adjectives under a new category

Nominal.

Normally, POS tags are determined by the context and morphology is independent

from context. Thus It is not correct to represent a root with its POS tag in

morphological analysis. So, we used morphological categories instead of POS

tags. Nominal is one the categories and nouns, pronouns and adjectives are in

this category. Other than Nominal, there are Adverb and Verb categories. Some

nouns can be used as adverbs but there are also words that are used only as

adverbs thus adverb category is necessary.

4.2 Nominal Inflection

Nominal inflection of Turkish has fixed order of suffixes. The order is

(2) Nominal root/stem-Number suffix-Possession suffix-Case suffix

When a suffix has obligatory part in the inflection, it is called as slot. In this

structure, all suffixes are slots. So this can be called slot based nominal inflection.

Number suffix gives the word meaning of singularity or plurality. The slot can

have Singular (Sg) or Plural (Pl) values. Surface form of this suffixes are in Figure

4.1. Possessor suffix gives the word meaning of being possessed. The slot has 7

values, one for each person type and also for the case no possessor. Surface form

of possessor suffixes are in Table 4.1. Case suffix indicates the state of the word.

The slot can have 7 values of Nominal (Nom), Accusative (Acc), Dative (Dat),

Locative (Loc), Ablative (Abl), Genetive (Gen) and Instrumental (Ins). Surface

form of Case suffixes are in table 4.2. The whole FST of nominal inflection is on

Figure 4.1.

In slot based nominal inflection, all suffixes must be present. So Case states are

the only final states in the FST. As an example, anaylsis of the word “araba”

(car) is

(3) araba<NOM><Num:Sg><Poss:None><Case:Nom>

7

Nom
<NOM>

Pl Sg

Poss2Poss1
Poss1LAR

Case

CaseNom

Case3 Case1 Case2 Case3

<Num:Pl>:-lA
r <Num:Sg>:-φ

sn
1 sn2

sn
4

sn3

<
C

as
e:

N
om
>

:-φ

<
C

ase:D
at>

:-(y
)A

<
C

ase:A
b
l>

:-D
A

n

<
C

ase:In
s>

:-(y
)lA <

C
as

e:
N

om
>

:-
φ

<
C

as
e:

D
at
>

:-
(y

)A
<

C
as

e:
A

b
l>

:-
D

A
n

<
C

as
e:

In
s>

:-
(y

)l
A

<
C

as
e:

A
cc
>

-(
y
)I

<
C

ase:L
oc>

-D
A

<
C

ase:G
en
>

-(n
)In

<
C

ase:N
om
>

:-φ

<
C

ase:D
at>

:-(y)A

<
C

ase:A
b
l>

:-D
A

n

<
C

ase:In
s>

:-(y)lA

Figure 4.1: Slot-based nominal inflection

In Figure 4.1, Case state is just a dummy state to group some transactions.

In some cases, nominal inflection can be interrupted by derivation. Details of

derivation is in section 4.6. This Case state also helps to handle the derivation

that occurs right after the possession suffix. sn’s on the figure are custom suffix

groups of possessor suffixes. We used sn to not to clutter the diagram. Suffixes

of sn groups can be found on Table 4.1

4.3 Verbal Inflection

Verb inflection has more suffixes than nominal inflection. But unlike Nominal

inflection, Verb inflection doesn’t have slot based structure. The general structure

8

Table 4.1: Possessor morphemes for Figure 4.1. Empty cells are undefined.
Abstract morpheme First level output

sn1 sn2 sn3 sn4

<Poss:No> -φ -φ -φ
<Poss:1s> -Im -(I)m -(I)m
<Poss:2s> -In -(I)n -(I)n
<Poss:3s> -I(n) -(s)I(n)
<Poss:1p> -ImIz -(I)mIz
<Poss:2p> -InIz -(I)nIz
<Poss:3p> -I(n) -lArI

Table 4.2: Case suffixes for Figure 4.1.
Case Abstract morpheme First level output
Nominal <Case:Nom> -φ
Dative <Case:Dat> -(y)A
Locative <Case:Loc> -DA
Accusative <Case:Acc> -(y)I
Ablative <Case:Abl> -DAn
Genitive <Case:Gen> -(n)In
Instrumental <Case:Ins> -(y)lA

of verb inflection is

(4) Verb root/stem-Voice suffixes-Ability-Polarity-Probability-Tense Aspect

Modality (TAM) Person suffixes

In this structure, Voice and TAM are group of suffixes. Full verbal paradigm

is complex. For the clarity in explanation, it is partitioned into sub-paradigms.

These sub-paradigms are, Voice, Ability-Polarity-Probability, TAM and Person.

Parts are same as in the structure shown in (4). Details about sub-paradigms are

given in the following subsections in the order they appear.

4.3.1 Voice

Voice group has 5 suffixes; Active, Reflexive, Reciprocal, Causative and Passive.

Among 5 suffixes of Voice, only Active has zero surface form. Surface form of

other Vocie suffixes can be found in figure 4.2. A root or stem can have multiple

Voice suffixes according to following order

9

(5) Root/Stem-Reciprocal or Reflexive-Causative-Passive

As seen in the order, there is a restriction for Reciprocal and Reflexive. They can

not exist at the same time.

For the Passive, there are two archmorphemes; -(I)l and -(I)n. Selection of Passive

morpheme depends on the phonology. -(I)n morpheme comes after a word anding

with l or a vowel.

For causative there are achmorphemes; -dIr, -(I)t, -(A)r and -(Ir). Selection of

Causative morpheme also depends on phonology. !!!Eklere göre kurallara bak!!!

In the figure 4.2, Causative states are summarized as one state for the sake of

simplicity.

VC
<VERB>

VR R/R

Passv

Caus APP

<Psv>:-(I)l
<Psv>:-(I)n

<
C

aus>
:-(I)t

<
C

aus>
:-D

Ir

<
C

aus>
:-A

r

<
C

aus>
:-Ir

<
C

au
s>

:-
(I

)t
<

C
au

s>
:-

D
Ir

<Rflx>:-(I)n
<Rcpr>:-(I)ş

<Psv>
:-Il

<
C

au
s>

:-D
Ir

<
P

sv
>

:-
(I

)l

Figure 4.2: Voice paradigm

To implement this phonological suffix selection, we need to create a classing sys-

tem with FST. Including the No Passive and No Causative situations, there are 5

Causatives and 3 Passives in total. Each Causative can come after each passive,

so there are 15 Passive-Causative pairs. We labelled each pair as a verb class.

Each class correspond a state that determines the Passive and Causative suffix

10

that roots will take in our approach. To make this classifying work, all verb root

must be directed, this can also be called labelling, to corresponding state.

Passv

IlIt In DIr Il

CausB CausA

ya
p
<

V
E

R
B
>

<
P

sv
>

:-
(I

)ly
ıka<

V
E

R
B
>

<
P
sv
>

:-(
I)

n

<
C

au
s>

:-(I)t

at<
V

E
R

B
>

<
P
sv>

:-(I)l

<
C

au
s>

:-d
Ir

<Caus>:-dIr

<Caus>:-(I)t

Figure 4.3: Verb classes representing different behavior for Causative and Passive
suffixes for different verb roots.

In the figure 4.3, three class states are shown as examples with one input example

for each. Caus states of this figure is the expanded version of the Caus state in

figure 4.2.

4.3.2 Ability Polarity Probability (APP)

Order of these three suffixes is as following

(6) Ability-Polarity-Probability

The Figure 4.4 shows the FST of APP part. In here, APP state is just a transition

state that exist to organize incoming transitions from Voice part to Ability Polar-

ity Probability part. Tamp states are also has same functionality, in difference,

Tamps states connects Ability Polarity Probability to Tense Aspect Modality

11

APP

AbilAbil-

Pol1Pol2 Pol3

Prbl

TAMP2

TAMP1

TAMP3

<
A

b
il>

:-(y
)A

b
il

<
A
bi

l>
:-(

y)
A

<
P

ol
:N

eg
>

:-
m

A <
P

ol:P
os>

:-φ

<
P

ol:P
os>

:-φ

<
P

ol:N
eg>

:-m
A

<Prbl>:-yAbil

<Prb
l>

:-y
Abil

Figure 4.4: Ability-polarity-probability sub-paradigm. Note the ambiguity caused
by the identical surface forms of the paths APP-POL3-PROB-TAMP1 and APP-
ABIL-POL1-TAMP1.

Person and there is three different TAMP states with different purpose. Details

of TAMP states will be explained in following section. For he APP part, Polarity

has a slot in structure while Ability and Polarity are optional.

Although Ability and Probability has different meaning, ’be able to’ and ’might’

respectively, they have same surface form. So the surface forms prevent construc-

tions like koş-abil-abil (might be able to run). To solve this problem, the meaning

of both suffixes is given on a structure like “koş-abil” (may run). This Turkish

12

word means both ’might run’ and ’be able to run’ but not at the same time. This

is an ambiguous situation and can only be solved with context. For the analyzer,

there 2 analyses for the word koş-abil.

(7) koş<VERB><Active><Abil><Pol:Pos><Tns:Imp><Prsn:3s>

koş<VERB><Active><Pol:Pos><Prbl><Tns:Imp><Prsn:3s>

When the verb has negative meaning, the situation changes. Positive value of

Polarity, <Pol:Pos>, suffix has zero surface form. Although it is slot based,

its existence has no effect on surface level. But the Negative value of Polarity,

<Pol:Neg> has a surface form “-mA”. When “-mA’ morpheme comes between

Ability and Probability, both suffixes can be usedbut Ability change its surface

form to “-(y)A”. For example, analysis of the word “koş-a-ma-yabil” (might not

be able to run) is

(8) koş<VERB><Active><Abil><Pol:Neg><Prbl><Tns:Imp><Prsn:3s>

The “-(y)A” furface form of Ability is only used when Polarity slot has the value

of Negative, <Pol:Neg>. Analyse of the “koş-a-ma” is

(9) koş<VERB><Active><Abil><Pol:Neg><Tns:Imp><Prsn:3s>

4.3.3 Tense Aspect Modality Person

The general structure of this paradigm is

(10) Tense - Copula1 - Person - Copula2 - Question

In this structure, Tense and Person suffixes has slots, all others are optional. The

structure in (10) is a general structure. In some cases, order of Copula suffixes and

person suffix change. These cases depends on the Copula and Person values. You

can find all possible cases in TAMP FST. The whole TAMP FST is too big so we

divided it into three pieces for the convenience of explanation and understanding.

13

In verb inflection of Turkish, the time that action takes place is denoted by Tense

and Copula. Among two, Tense has major part and Copula has supportive role.

So, While Tense is obligatory, Copula is optional. There are 10 Tenses with 12

morphemes. These are, Aortive, Imperative, Optative, Conditional, Evidential,

Present, Past, Necessitive, and Future tenses. Amog these, Future is divided

into two as Future and Imperfective, and Past is divided into two as Past and

Narrative. Imperfective and Narrative has slightly different meaning from their

parental group. Exceptionally Aortive tense, <Tns:Aor>, has four morphemes.

Tenses with their group and surface form are given in Table 4.3.

Table 4.3: Tense categories and their semantics.
Group Semantics Abstract morpheme First level output
1 Aortive <Tns:Aor> -Ir, -Ar, -z, -φ
2 Imperative <Tns:Imp> -φ
3 Optative <Tns:Opt> -(y)A
4 Conditional <Tns:Cond> -sA
5 Present <Tns:Pres> -(I)yor
6 Past <Tns:Past> -DI
6 Narrative <Tns:Narr> -mIş
7 Neccessitive <Tns:Necc> -mAlI
8 Future <Tns:Fut> -(y)AcAk
8 Imperfective <Tns:Iprf> -mAktA

Beside the Tenses, there are 4 Copula groups and morphemes in total. These are,

Aortive, Conditional, Narrative and Past. Copulas are divided into two levels.

Although all copulas can exist in the First level, only Conditional and Narrative

Copulas exist in second level. These Copulas are also can come after inflected

nouns to build Nominal Predicates which will be explained in section 4.4. All

Copulas with their group and surface form are given in Table 4.4.

Table 4.4: Copula categories and their semantics.
Semantics Abstract morpheme First level output
Aortive <Cpl:Aor> -DIr
Past <Cpl:Past> -(y)DI
Narrative <Cpl:Narr> -(y)mIş
Conditional <Cpl:Cond> -(y)sA

In our approach, we grouped tenses according to copula and person behaviours

and prepared our FST according to these groups. In the following, all groups will

14

be explained individually. First group is the most simple group which contains

only Imperative tense, <Tns:Imp> with zero morpheme. Imperative tense only

accepts person suffixes of group 1. All groups of Person suffix can be found on

Tables 4.5 and 4.6 . FST of first group is in Figure 4.5.

TAMP1 TAM1 P1
<Tns:Imp>:- PG1

Figure 4.5: Group 1, behaviour of imperative

Table 4.5: Person paradigms for all verb inflection.
Abstract morpheme PG1 PG2 PG3 PG4 PG5 PG6

<Prsn:1s> -Im -m -(y)Im -yIm
<Prsn:2s> -φ -sIn -n -sIn -sIn
<Prsn:3s> -sIn -φ -φ -φ -φ
<Prsn:1p> -Iz -k -(y)Iz -yIz
<Prsn:2p> -(y)In -sInIz -nIz -sInIz -sInIz
<Prsn:2p> -(y)InIz
<Prsn:3p> -sInlAr -lAr -lAr -lAr -lAr -lAr

Table 4.6: Person paradigms for all verb inflection.
Abstract morpheme PG7 PG8 PG9 PG10 PG11

<Prsn:1s> -yIm -m -yIm
<Prsn:2s> -sIn -sIn -sIn
<Prsn:3s> -φ -φ -φ -φ
<Prsn:1p> -lIm -yIz -yIz
<Prsn:2p> -sInIz -sInIz -sInIz
<Prsn:3p> -lAr -lAr -lAr

The second group consist of only Optative Tense, <Tns:Opt> with surface form

of “-(y)A”. Optative tense can accept three copulas and person suffix changes

according to existence of copula. Optative tense can get a question suffix. Like

person states, question can be a final state. FST of this group is in Figure 4.6.

Note that FST in Figure 4.6 shares some states with the FST in Figure 4.5.

The third group includes only Conditional tense, <Tns:Cond> with surface from

“-sA”. Like Optative tanse, it takes same two copulas of first level but person suf-

fixes that comes right after the tense are belong to different group. Additionally,

Conditional tense may have copula after the question suffix. Because of these

15

TAMP1

TAM2 P3 Q1

Ca2 Ca1 Cb1

P1

<
T

n
s:O

p
t>

:-(y
)A

PG7 <Q>:-mI

<
C

p
l:P

ast>
:-y

d
I

<
C

pl:N
arr>

:-ym
Iş

<Cpl:Narr>:-ymIş

P
G

2

PG2
PG

3

Figure 4.6: Group 2, behaviour of Optative

differences, conditional tense required a new group. Figure 4.7 shows the FST of

third group. In this figure, to make the figure clear, states come after Ca1 and

Ca2 are not shown because they are same as in the Figure 4.6. This reduction is

applied on all tense group figures.

The fourth group consists of only Past Tense, <Tns:Past> with first level output

“-DI”. Past tense accepts two copulas and all person suffixes are in group three.

FST of this part is in Figure 4.8.

The fifth group is created to handle exceptional behaviour of Aortive copula. So

all tenses accept the copula, <Tns:Necc>, <Tns:Pres>, <Tns:Iprf>, <Tns:Fut>,

16

TAMP1

TAM3

P3

Q1

Ca1 Ca2 Ca3 P1
<

T
n
s:C

on
d
>

:-sA

<Q>:-mI

P
G
3

<
C

pl:P
ast>

:-ydI <
C

pl
:P

as
t>

:-
yd

I<
C

p
l:N

arr>
:-y

m
Iş

<
C

p
l:N

arr>
:-y

m
Iş

PG2

Figure 4.7: Group 3, behaviour of Conditional

<Tns:Narr>, are in this group. Normally, person suffixes come before Present

copula with the exception of <Prsn:3p>. This suffix also can come after the

copula. Figure 4.9 shows the FST of this part.

The sixth group contains <Tns:Necc>, <Tns:Pres>, <Tns:Iprf>, <Tns:Fut>

and <Tns:Aor> tenses. This group handle all behaviours of these tenses exclud-

ing Present copula. It has slightly complex FST with all possible combinations

of copula, person and question suffixes. In contrast with other groups, Group 6

originated from 2 different states TAMP1 and TAMP3. In total, there are 3 dif-

ferent TAMP states, TAMP1, TAMP2 and TAMP3. TAMP2 and TAMP3 only

exist to handle unusual behaviour of Aortive tense. Unlike other tenses, Aortive

tense changes surface form when it comes right after the <Pol:Neg> suffix. This

condition creates the TAMP2 and TAMP3. Else, it just act as other tenses in

group six with the surface forms “-Ir”, “-Ar”. Figure 4.10 shows the FST of sixth

group.

17

TAMP1

TAM4

Ca2

P3

<
T

n
s:P

asr>
:-D

I

PG4

<
Cpl

:P
as

t>
:-y

dI

<
Cpl

:C
on

d>
:-s

A

Figure 4.8: Group 4, behaviour of Past

TAMP1

TAM5

Ca7 P1

P2 Ca4

<
T

n
s:N

ecc>
:-m

A
lI

<
T

n
s:P

res>
:-(I)yor

<
T

n
s:Ip

rf>
:-m

A
k
tA

<
T

n
s:F

u
t>

:-(y
)A

cA
k

<
T

n
s:N

arr>
:-m

Iş

PG5

<
C
pl

:P
re

s>
:-D

Ir

PG4

<Cpl:Pres>:-DIr

Figure 4.9: Group 5, behaviour of Past

The seventh group handles the behaviour of Narrative tense. FST of this part is

in Figure 4.11

Aortive tense has four different surface forms of “-Ir”, “-Ar”, “-z” and zero mor-

pheme. Aortive tense change its surface form into “-z” or zero morpheme when it

comes right after the negative polarity suffix. Groups eight and nine handles these

surface forms of the aortive suffix. We divided two forms into two groups because

of the different behaviours. While zero morpheme accepts no suffix other than

person first singular and plural, “-z” form gets copula and others. The Figure

4.12 shows the FST of these two groups.

18

TAMP1 TAMP3

TAM6

Ca5

Ca2

Q2

Q4

Cb1 Cb2

P1

P4

Q3

Ca6

<Tns:Necc>:-m
AlI

<Tns:Pres>:-(I)yor

<Tns:Iprf>:-m
AktA

<Tns:Fut>:-(y)AcAk <
T

ns
:A

or
>

:-
Ir

<
T

ns
:A

or
>

:-
A

r

<Cpl:Past>:-ydI
<Cpl:Cond>:-sA

<Cpl:Narr>:-(y)mIş
<Q>:-mI

<
Q
>

:-m
I

<
C

pl
:N

ar
r>

:-(
y)

m
Iş <

C
p
l:C

on
d
>

:-sA

P
G

2

P
G

5

PG
3

P
G

6

P
G

4

<
Q
>

:-m
I

<Cpl:Past>:-ydI

<Cpl:Cond>:-sA

Figure 4.10: Group 6

4.4 Nominal Predicate

In Turkish sentences, inflected Nominals can serve as predicate in sentence. These

sentences are called Nominal sentences. The following is a Nominal sentence

example with the analysis of predicate word.

(11) Bu araba mavidir

(12) Bu araba mavi<NOM><Num:sg><Poss:None><Case:Nom><Cpl:Aor><Prsn:3s>

(13) This car is blue

19

TAMP1 TAM7

Q2

Ca2

Ca3

Q4 P1

<Tns:Narr>:-mIş
<Cpl:Past>:-ydI
<Cpl:Cond>:-sA
<Cpl:Narr>:-(y)mIş

P
G

2

<
Q
>

:-
m

I

<Q>
:-m

I

Figure 4.11: Group 7

TAMP2 TAM8

TAM9 P1

Ca2

Ca1

Q2 Q4
P4

<Tns:Aor>:-z

<
T

n
s:A

or>
:-φ

P
G
8

PG9

<Cpl:Past>:-ydI
<Cpl:Cond>:-sA
<Cpl:Narr>:-ymIş<

Q
>

:-m
I

<
Q
>

:-m
I

PG
4

Figure 4.12: Group 8

Except Accusative Case, all Cases can be inflected to be predicate. To handle this,

we separate the Accusative Case from others. When a nominal becomes predicate,

it is treated like a verb in Section 4.3.3 with the exclusion of the Tenses. This

means Copulas, Person suffixes and question suffix comes after predicate. We

give the all possible structures in Figures 4.13 and 4.14. Nominal predicate FST

has common states with verbal inflection FST.

The “-lAr” complication that occurs in Nominal Inflection also exist here. It

appears when Present Copula, <Cpl:Pres>, with zero morpheme comes before

the Third person plural, <Prsn:3p>, with surface form “-lAr” suffix. To handle

this situation, we divide Predicate into two part as Pred1 and Pred2. Input of

Pred2 is guaranteed to have any kind of “-lAr” in it. This is given in Nominal

Inflection FST in Figure 4.1.

20

Pred1

Ca2 Q7

Ca3

Ca10

Q5 Ca11

Ca9 Cb2

P1

Ca5

P5

Q6

Ca12

<
Q
>

:-m
I

<Q>:-mI

<
Q
>

:-
m

I

<
C

p
l:P

res>
:-φ

<
C

p
l:P

ast>
:-y

D
I

<Cpl:Past>:-yDI

<
C

p
l:N

arr>
:-(y

)m
Iş

<Cpl:Narr>:-(y)mIş

<Cpl:Cond>:-(y)sA

<Cpl:Pres>:-DIr

<Cpl:Pres>:-DIr

<Cpl:Pres>:-φ

<Cpl:Pres>:-φ

PG
5

P
G

1
0

PG 4

P
G

1
1

Figure 4.13: Nominal Predicate Pt1

4.5 Other Classes

Other than nominals and verbs, there are 5 more classes. These are: adverbs,

punctuations, conjunctions, interjections and postpositions.

Among them, punctuations are not words but they should still be analysed. Punc-

tuations are ‘.’, ‘,’, ‘:’, ‘;’, ‘!’, ‘”’, ‘(’, ‘)’, ‘”’, ‘?’. Punctuations don’t undergo any

kind of inflection or derivation so it’s FST is only consist of an single accepting

state.

Like punctuations, postposition, conjunctives and interjections don’t undergo any

inflections and derivation in general. Postposition and interjections might be used

as predicates.

21

Pred2

Ca2 Q7

Ca3

Ca10

Q5

Ca8 Cb2

P1

Ca5

<
Q
>

:-m
I

<Q>:-mI

<
C

p
l:P

ast>
:-y

D
I

<Cpl:Past>:-yDI

<
C

p
l:N

arr>
:-(y

)m
Iş

<Cpl:Narr>:-(y)mIş

<Cpl:Cond>:-(y)sA

<Cpl:Pres>:-DIr

<Cpl:Pres>:-DIr

<Cpl:Pres>:-φ

PG
11

P
G

1
0

Figure 4.14: Nominal Predicate Pt2

Adverbs don’t undergo any kind of inflection or derivation but still they can

undergo Nominal Predicate inflection given in Figures 4.13 and 4.14. Also there

are Nominals that can serve as adverb.

4.6 Derivation

Turkish has strong derivational structure. Almost every morphological class can

derived into another one. Not all derivational suffixes are as productive as others.

Non-productive suffixes are used as embedded into stem word. This approach

is used in this project and derived words with non-productive suffixes are added

into the lexicon. So, the derivation FST is based on only productive derivational

suffixes. You can find the derivation FST on figure 4.15. As you can see, some

22

states of derivation FST, is part of inflectional FSTs. That is because of the

derivation can occur only spesific parts of inflections.

CASENOM

NUM

CASE2

Case

Pn

DIr Il Case3

NOM

NOM′

ADV

TAMP2

TAMP3

TAMP1

Poss2 Sg

DIr Il

<Bec>:-lAş

d 4

d
4

d
4

<Bec>:-lAş

<Fam>:-lAr

<Tuple>:-Iz
<Ord>:-(I)ncI

<Rel>:-kI

<Equ>:-cA

<Fam>
:-gil

<AsIf>:-cAsInA

d
1

<
IsW

h
en
>

:-(y
)ken

<agtA>:-z

<agtA>:-(A)r

d
2

d3

<
B
fr
1>

:-m
A
dA

n

Figure 4.15: The derivation FST.

In nominal inflection, derivation may occur just before the inflection with sev-

eral suffixes for example in Case states. In Section 4.4, Case is divided into two.

Similar situation occurs here. Accusative Case doesn’t undergo any derivational

operation. We could use just two states but every case doesn’t take every deriva-

tional suffix. To solve this, we divided Case states again. The Figure 4.1 shows

all Case states and Figure 4.15 shows which Case state takes which derivational

suffixes.

In Verbal Inflection, Derivation comes after the Probability in APP but there is

one exception and that is the “-CAsInA” suffix. This derivation requires a tense

23

Table 4.7: The most productive derivational morpheme sets d1, d2, d3 and d4

used in Figure 4.15.

Set Semantics Key First level output
d1 Diminutive of N <Dim1> -CIk
d1 Diminutive of N <Dim2> -CAğIz
d1 Occupation of N making, selling <Occup> -CI
d1 With N, having N <With> -lI
d1 Without N <Without> -sIz
d1 State of being N <State> -lIk
d1 Like N <Like1> -(I)msI
d1 Like N <Like2> -(I)mtrak
d2 Agent who regularly does V <AgtR> -(y)IcI
d2 Agent who did V <AgtP> -mIş
d2 Agent who will do V <AgtF> -(y)AcAk
d2 Agent who does V <AgtA> -(y)An
d2 Agent who likely does V <AgtL> -(y)AsI
d2 Agent who is doing V <AgtI> -(I)yor
d2 Action V, past or aortive <InfA> -dIk
d2 Action of V <Inf1> -mA
d2 Action of V <Inf2> -mAk
d2 Action of V <Inf3> -(y)Iş
d2 Action of V, future <InfF> -(y)AcAk
d3 While doing V <While> -(y)ArAk
d3 After doing V <After1> -(y)IncA
d3 Since doing V <Since> -(y)AlI
d3 Until doing V <Until> -(y)IncAyA
d3 After doing V <After2> -(y)p
d4 Keep doing V <KeepDo> -(y)Adur
d4 Easy doing V <EasyDo> -(y)Iver
d4 Almost done V <AlmostDo> -(y)Ayaz

and a person suffix before it. The derivation FST in Figure 4.15, “-CAsInA”

starts from a state named PN. This PN stands for all Person states like P1, P2

and etc.

To represent the derivation in analyses, the same format used for suffix and tag

pairs is used. Additionally, new morphological class of the word is showed right

after the derivation suffix.

(14) ev<NOM><Less><NOM>

24

In this example, you see the analysis of the word “evsiz” (homeless). The word is

derived from the nominal root “ev” (home) to nominal stem “evsiz” (homeless)

with the suffix of “-sIz”. In the analysis, morphological class of the root comes

right after the root and morphological class of the derivation result comes right

after the derivation suffix tag.

Figure 4.16: Whole FST of the Turkish Morphology

25

4.7 Phonology

There are several phonological rules in Turkish and almost all rules depend on

the phonological context of the root or other, previous, suffixes.

In the first level output of several suffixes, “(y)” exists. In Chapter 3 this character

named as optional y. In Turkish, two vowels of different suffixes can’t get together.

This optional y exist to solve this problem, like other optional consonants. If a

suffix that have optional consonant at the beginning comes after a suffix or root

that ends with a vowel, the optional consonants is preserved. Otherwise it is

dropped. For example Dative Case, <Case:Dat>. It’s surface form is “-(y)A”. If

this suffix come at the end of a word like “araba”, car, it’s surface form become “-

yA”. If it comes at the end of a word like “okul”, school, it’s surface form become

“-A”. In some cases, it is guaranteed that “(y)” is going to preserved or dropped.

For example when Future Tense, “-(y)AcAk”, is followed by Narrative Copula,

“-(y)mIş”, it is certain that “(y)” is preserved because previous suffix has “k” at

the end. So we changed the Narrative Copula’s surface form from “-(y)mIş” to

“-ymIş”. With this, a phonological rule is implied on the morphology level.

Similar phonological rule exist for some certain vowels, like (I). In this situation

the vowel is both optional and archphoneme. These two are independent from

each other. For example, First Person Singular Possesivity suffix, <Poss:1s>, has

surface form “-(I)m”. If this suffix follows a word like “masa”, table, the surface

form become “-m”. If it follows a word like “telefon”, telephone, it become “-Im”.

Another rule is deciding what will an archphoneme change into. Or with it’s

formal name, Big Vowel Harmony. There are two different archphoneme and

both has different rule. For the archphoneme “A” the rule implies that back

vowels are followed only by back vowels and fron vowels followed by only front

vowels. So archphonemes change accorsing to previous vowels. “A” archphoneme

can change into “a” or “e”. For the archphoneme “I”, being Flat or Round gets

involved into situation in addition to Front and Back. The archphoneme “I” can

change into “ı”, “i”, “u” or “ü”. Following two examples are given for this rule.

my pen, kalem-(I)m, kalem-im

to school, okul-(y)A, okul-a

Similar simple rule exist for the archphonemes C, D and K. If C or D comes after

one of the consonants of “f”, “s”, “t”, “k”, “ç”, “ş”, “h”, “p”, C become “ç”

26

and D become “t”. Otherwise they remain as “c” and “d” respectively. For the

archphoneme K, rule is different. If K is followed by any vowel, it becomes “ğ”.

Otherwise it remains as “k”. Following three examples are given for this three

phonological rules.

from tree, ağaç-DAn, ağaç-tan

I will do, yap-(y)AcAK-Im, yap-acağ-ım

book seller, kitap-CI, kitap-çı

There are some phonetic rules that occur in the word root. The first rule called

doubling and occurs on some significant roots like “hak”, right. When this root

gets a suffix starts with a vowel, last consonant of the root copies itself. For

example, when “hak” gets <Poss:3s> suffix, it becomes “hakk-ı”, his/her right.

In the second level of HFST, it is not possible to add a new character to the

string, so implementing this rule directly is not possible. To solve this problem,

we stored all roots that doubling occurs in their double consonant form and with

an additional symbol, {DOUB}, that indicates the doubling. The rule deletes the

symbol and if necessary, doubled consonant.

Another phonetic rule that occurs on root is penultimate drop. In this rule some

specific roots, for example “akıl”, mind, drops their last “i”, “ı”, “ü” or “u” when

it gets a suffix starts with a vowel. When the root “akıl” get the suffix ¡Poss:1s¿,

it becomes “akl-ım”. There is no specific root pattern for this rule to occur, so

it is completely lexicon dependent. To implement this rule, we marked necessary

roots’ the last “i”, “ı”, “ü” or “u” with a special symbol for each and wrote a

rule to drop or change these special symbols.

27

Chapter 5

Implementation

To implement the two level approach, we used HFST of Helsinki University. HFST

stands for Helsinki Finite-State Transducer. HFST is designed for the implemen-

tation of morphological analysers. Also, it can be used for other systems that

are based on transducers. HFST has a feature supporting weighted transducers

which is not used in this project.

5.1 HFST Structure

A HFST structure consist of four different type of files which are “.lexc”, “.twol”,

“.hfst” and “.ol” files. Code is written into “.lexc” and “.twol” files. In general,

these two files are text files and can be modified by any text editor. Content of

these files will be explained in Section 5.2.

“.lexc” files correspond to the first level which is morphotactics. There can be

more than one lexc file but they work as one. Lexc files must be compiled into

a single structure. This is done by the command “hfst-lexc”. This command

gathers all lexc files into one file and creates a “.hfst” file which is the output of

the compilation process. Following example shows usage of hfst-lexc command.

(1) hfst-lexc words.lexc ninfl.lexc -o lex.hfst

Twol files correspond to the second level which is phonological layer. Each twol

file must contain at least one rule. Compilation of twol files are done by the

command “hfst-twolc -R”. A hfst file is created as result of compilation. There

can be several twol files and compiled versions, hfsts, of them are combined to

28

create an intersection between them. With this, all rules are applied to second-

level inputs as one file. This intersection is done by the command “hfst-compose-

intersect”. As a result of this command an hfst file is created. Following examples

are given for “hfst-twolc -R” and “hfst-compose-intersect”.

(2) hfst-twolc -R -i dropLetter.twol -o dropLetter.hfst

(3) hfst-compose-intersect -1 dropLetter.hfst -2 penult.hfst -o phon1.hfst

(4) hfst-compose-intersect -1 phon1.hfst -2 doub.hfst -o phon2.hfst

(5) hfst-compose-intersect -1 phon2.hfst -2 changeA.hfst -o phon3.hfst

(6) hfst-compose-intersect -1 lex.hfst -2 phon7.hfst -o tr.hfst

Order of the files is important while combining them. Especially, when there are

some rules affecting other rules. In the examples (3), (4) and (5) shows 4 different

HFST files combined in specific order. These files are part of MorAz. “dropLet-

ter.hfst” consists of rules that deciding whether optional letter, like “(y)”, will

be preserved or be dropped. “changeA.hfst” consists of rules that deciding what

form will the archphoneme “A” take. “dropLetter.hfst” file affects “changeA.hfst”

because there is optional archphoneme “(A)”. Before deciding its form, must de-

cide to preserve or drop the archphoneme. To implement this, “dropLetter.hfst”

file must come before “changeA.hfst” in the order.

“hfst-compose-intersect” command can also combine HFST of morphotactics and

phonetics as shown in the example (6). This hfst file, tr.hfst in the example (6),

is morphotactics and phonetic rules together. There are two more steps to create

the analyzer.

First, this hfst file needs to be inverted. Due to HFST’s two way structure, both

analyzer and generator can be created. Generator is created from the main HFST

file, “tr.hfst” in example (6). And analyser is created from its inverse. Inversion

is done by the command “hfst-invert”. A HFST file is created as result. Following

example shows the usage of this command

(7) hfst-invert -i tr.hfst -o tr.inv.hfst

29

Lastly, to create runnable analyser and generator files, the “hfst-fst2fst -O” com-

mand is used. This command turns hfst file into a “.ol” file. This command is

same for both generator and analyser. Following examples shows usage of this

command.

(8) hfst-fst2fst -O -i tr.hfst -o generate.ol

(9) hfst-fst2fst -O -i tr.inv.hfst -o analyze.ol

These two files can be executed on terminal by the command “hfst-lookup”.

When files executed, user input words are required. The result is shown right

after the input and new input is waited. Following example shows the usage of

this command.

hfst-lookup analyze.ol

5.2 HFST Syntax

A lexc file has basic syntax. On the very first line of the file “Multichar Symbols”

to indicated defined multichar symbols. It allows to create any kind of symbol

to use later. “ % ” character is used as escape character and can be used in

multichar symbols.

After declaration of multichar symbols is done, definition of states starts. Each

state is called as Lexicon here. Definition of a state starts with the word “LEX-

ICON” after that, name of the comes with a white space. This line indicates

that, a state, lexicon, code is starting from here. A state code contains several

transitions and ends with start of another lexicon. A transition contains two

parts: a mapping between two strings, these strings both can be defined multi-

char symbols or ordinary characters, and the destination of the transition which is

a state. Every transition line terminated with a “;”. mapping in the transition is

represented by the character “:” and it is possible to use white space in mapping.

Also, absence of mapping is possible. If the state is a final state than a transition

of the state must include “#” which indicates the end. Following examples shows

possible lexicon definition.

30

(10) LEXICON Nom’

%<number%:pl%>:%-l%{A%}r NumPl;

%<number%:sg%>:% NumSg;

(11) LEXICON Case2

#;

Pred1 ;

Case2Deriv ;

Syntax of twol files are a bit more complex. The code consist of three sections.

First, alphabet comes. In here, all symbols, ordinary symbols and multichar

symbols that we defined in the lexc files, are written. Alphabet section starts

with the “Alphabet” and all symbols are separated by white space and can be

written line by line. Alphabet section is terminated with “;”. Example (12) shows

the alphabet that is defined in “changeA.hfst” file.

(12) Alphabet

A B C Ç D E F G Ğ H I İ J K L M N O Ö P R S Ş T U Ü V Y Z

a b c ç d e f g ğ h ı i j k l m n o ö p r s ş t u ü v y z

%{A%}
%{I%}
%{D%}
%{C%}
%{K%}
%{SPC%}
%-

;

After the alphabet, Sets section is defined. This section is optional and contains

custom created sets of symbols. These sets are used in the rules. Syntax starts

with “Sets” word. Every set has a name and list of symbols. These name and

lists connected to each other with “=”. Every set section terminates with “;”.

Example (13) shows the sets that are defined in “changeA.hfst” file.

31

(13) Sets

Vow = A E I İ O Ö U Ü

a e ı i o ö u ü ;

Cons = B C Ç D F G Ğ H J K L M N P R S Ş T V Y Z

b c ç d f g ğ h j k l m n p r s ş t v y z ;

Back = A I O U

a ı o u ;

Front = E İ Ö Ü

e i ö ü ;

beforeBackA = B C Ç D F G Ğ H J K L M N P R S Ş T V Y Z

b c ç d f g ğ h j k l m n p r s ş t v y z

A I O U

a ı o u

%{A%} %{I%} %{D%} %{C%} %{K%} %- ;

beforeFrontA = B C Ç D F G Ğ H J K L M N P R S Ş T V Y Z

b c ç d f g ğ h j k l m n p r s ş t v y z

E İ Ö Ü

e i ö ü

%{A%} %{I%} %{D%} %{C%} %{K%} %- ;

Last part is rules part. Rules of the twol file are defined here. After writing

“Rules”, every rule is defined with a name, name is written between quotation

marks, and rule itself. Rule starts with the mapping of symbols. This mapping

indicated with “:” again. After that “<=>” is written. This symbol connects the

mapping and the regular expression part of the rule. Regular expression is written

to catch the conditions when mapping occurs. Location of the mapping is deter-

mined with underscore character in the regular expression. Rule line is terminated

with “;”. Example (14) shows the rules that are defined in “changeA.hfst” file.

(14) Rules

“A to a”

%{A%}:a <=> Back: [Cons:] [%:] [beforeBackA:] ;

“A to e”

%{A%}:e <=> Front: [Cons:] [%:] [beforeFrontA:] ;

32

5.3 MorTur Structure

MorTur consist of 6 Lexc files and 8 twol files. These 14 files and an additional

make file are enough to create a runnable version of the analyser and generator.

All commands required to compile and create the program are executed by make-

file. This is the hfst part of the program and it is described in sections 5.1 and

5.2 with the examples from the MorTur’s source code.

The analyser can run on terminal if there is no custom created interface. Using

it on the terminal is not convenient so we designed a web page as an interface for

the analyser. Web page is reachable from the hppt://ddil.isikun.edu.tr/mortur.

It is a simple interface with one input and one output pane. One or more words

can be given as input. In multi-word input situation, words need to be separated

by new line character. The result is shown in same order as the input.

On the background, Django server runs the analyser. The server also does some

post processing on analyser result. As we described in section 3.2, we handled

some phonetic rule by editing the roots in the lexicon. In hfst, analyser result

includes exact form of the root in the lexicon. So in default output, a marked root

in the lexicon is seen as marked. Server code does a post-processing on outputs

to change any marked roots into their original form.

33

Chapter 6

MorAz

During the implementation of MorTur, we implemented another analyser which is

for Azerbaijani Turkish, [12]. Analyser is publicly available on http://ddil.isikun.edu.

tr/moraz/, [13]. Azerbaijani Turkish is one of the Turkic languages and it is sim-

ilar to Anatolian Turkish. By this simultaneous implementation, we could clearly

see the differences and similarities between these two Turkic languages.

In broad perspective, they are similar. This similarity can seen by comparing

the FST diagrams of both languages. For example Nominal inflections are nearly

identical. The significant difference is on suffixes. There are suffixes of same class

but different surface forms. Naturally, dialect difference cause this. An example,

is the <Prsn:1s> suffix of verbal inflection. In Azerbaijani Turkish it’s surface

form is “-(y)Am”. Also, paradigms in person suffixes of AT are quite different

from Turkish Person suffixes of AT are given in Table 6.1.

Table 6.1: Person paradigms for all verb inflection in AT.

Abstract morpheme p1 p2 p3 p4 p5 p6 p7 p8

<Prsn:1s> -Am -m -(y)Im -m -Am -(y)Am
<Prsn:2s> -sAn -n -φ -sAn -sAn sAn
<Prsn:3s> -φ -φ -sIn -φ -φ -φ
<Prsn:1p> -IQ -Q -(y)AQ -Q -IQ -(y)IQ
<Prsn:2p> -sInIz -nIz (y)In -sInIz -sInIz sInIz
<Prsn:3p> -lAr -lAr -sInlAr -lAr -lAr -lAr

Other than dialectal difference, there is another deeper difference. Complexity of

languages. From east to west, while the language evolved, morphologies seem to

have become more complex. For example, the ways of handling Nominal predicate

34

of Azerbaijani Turkish is simpler than Anatolian Turkish. In Azerbaijani Nominal

Predicates, Copulas and Persons have fixed location. By this, the problem caused

by “-lAr” and <Cpl:Pres> is handled or never existed. Figure 6.1 shows the

Nominal Predicate FST of AT to indicate difference clearly.

PRED

C4 C8 C6C9

P3

<
Cpl

:A
or
>
:-φ

<
C

p
l:
A

or
>

:-
d
Ir

<
Cpl:N

arr>
:-(y)m

Iş

<
C

p
l:P

ast>
:-

Id
I

p
8 p 2

p
7

Figure 6.1: The nominal predicate for AT.

35

Chapter 7

Results and Discussion

There are two different implementation of morphological analyser of Turkish. Tr-

Morp [10] and Morphological Analyzer of ITU NLP Group (ITU-MA) [11]. They

are both publicly available. Both have some linguistic problems. We implemented

MorTur hopefully free from these problems.

Both of the analysers are implemented using FSTs. Stuttgart Finite State Trans-

ducer (SFST) is used to implement TrMoph and flag diacritics which are an

extension of Xerox Finite State Transducer is used to implement morphological

analyser of ITU NLP. Below we provide examples of linguistic problems for the

TrMorph and ITU analyser.

Family suffix is a significant derivational of Turkish morphology. It has two

abstract morphemes as “-gil” and “-lAr” and gives the meaning of plurality in a

special way. For example, the word “annemgil” or “annemler” mean “my mother

and my siblings if there any, my father or just whoever is with my mother”. Both

of the analysers neglect this suffix in different ways. TrMorph recognizes only the

abstract morpheme “-gil”, so “lAr” is neglected. ITU-MA pretends like there is

no family suffix. Analyses of ITU-MA does not include family suffix. Following

examples shows analyses of the words “annemler” and “annemgil” by both two

analyzers.

(1) Analyses of “annemgil” by TrMorph

anne<N><p1s><gil><N>

anne<N><p1s><gil><N><0><V>

anne<N><p1s><gil><N><0><V><cpl:pres><3p>

anne<N><p1s><gil><N><0><V><cpl:pres><3s>

36

(2) Analyses of “annemler” by TrMorph

anne<N><p1s><0><V><cpl:pres><3p>

anne<N><p1s><pl><0><V><cpl:pres><3p>

anne<N><p1s><pl>

anne<N><p1s><pl><0><V>

anne<N><p1s><pl><0><V><cpl:pres><3p>

anne<N><p1s><pl><0><V><cpl:pres><3s>

(3) Analyses of “annemgil” by ITU NLP

annemgil+Guess+Noun+A3sg+Pnon+Nom

(4) Analyses of “annemler” by ITU NLP

anne+Noun+A3pl+P1sg+Nom

In our implementation, we considered Family suffix in all of its form. Following

examples show the analyses of “annemler” and “annemgil” by MorTur.

(5) Analyses of “annemgil” by MorTur

anne<NOM><Num:Sg><Poss:1s><Fam><NOM>

<Num:Sg><Poss:No><Case:Nom>

anne<NOM><Num:Sg><Poss:1s><Fam><NOM>

<Num:Sg><Poss:No><Case:Nom><PRED><Cpl:Aor><Prsn:3s>

(6) Analyses of “annemler” by MorTur

anne<NOM><Num:Sg><Poss:1s><Case:Nom>

<PRED><Cpl:Aor><Prsn:3p>

anne<NOM><Num:Sg><Poss:1s><Fam><NOM>

<Num:Sg><Poss:No><Case:Nom>

anne<NOM><Num:Sg><Poss:1s><Fam><NOM>

<Num:Sg><Poss:No><Case:Nom><PRED><Cpl:Aor><Prsn:3s>

Another problem is absence of Probability suffix. In the section 4.3.2 we explained

the Ability and Probability suffixes. Analyses of these analysers don’t contain

Probability suffix. In TrMorph, Probability suffix is not separated from Ability

suffix. In the ITU NLP analyser, any suffix that corresponds to the Probability

37

suffix does not exist. Following examples shows analyses of “gelmeyebilirim” and

“gelemeyebilirim” in both two analysers.

(7) Analyses of “gelmeyebilirim” in TrMorph

gel<V><neg><abil><V><aor><1s>

gel<V><neg><abil><V><aor><Adj><0><N><0><V>

<cpl:pres><1s>

gel<V><neg><abil><V><aor><Adj><0><N><p1s>

gel<V><neg><abil><V><aor><Adj><0><N><p1s><0><V>

gel<V><neg><abil><V><aor><Adj><0><N><p1s><0><V>

<cpl:pres><3p>

gel<V><neg><abil><V><aor><Adj><0><N><p1s><0><V>

<cpl:pres><3s>

gel<V><neg><abil><V><aor><Adj><0><V><cpl:pres><1s>

gel<V><neg><abil><V><aor><Adj><p1s><Prn>

gel<V><neg><abil><V><aor><Adj><p1s><Prn><0><V>

gel<V><neg><abil><V><aor><Adj><p1s><Prn><0><V>

<cpl:pres><3p>

gel<V><neg><abil><V><aor><Adj><p1s><Prn><0><V>

<cpl:pres><3s>

(8) Analyses of “gelemeyebilirim” in TrMorph

gel<V><abil><V><neg><abil><V><aor><Adj><0><N>

<0><V><cpl:pres><1s>

gel<V><abil><V><neg><abil><V><aor><Adj><0><N>

<p1s>

gel<V><abil><V><neg><abil><V><aor><Adj><0><N>

<p1s><0><V>

gel<V><abil><V><neg><abil><V><aor><Adj><0><N>

<p1s><0><V><cpl:pres><3p>

gel<V><abil><V><neg><abil><V><aor><Adj><0><N>

<p1s><0><V><cpl:pres><3s>

gel<V><abil><V><neg><abil><V><aor><Adj><0><V>

<cpl:pres><1s>

gel<V><abil><V><neg><abil><V><aor><Adj><p1s><Prn>

gel<V><abil><V><neg><abil><V><aor><Adj><p1s><Prn>

<0><V>

38

gel<V><abil><V><neg><abil><V><aor><Adj><p1s><Prn>

<0><V><cpl:pres><3p>

gel<V><abil><V><neg><abil><V><aor><Adj><p1s><Prn>

<0><V><cpl:pres><3s>

gel<V><abil><V><neg><abil><V><aor><1s>

(9) Analyses of “gelmeyebilirim” in ITU NLP

gel+Verb+Able+Neg+Aor+A1sg

(10) Analyses of “gelemeyebilirim” in ITU NLP

gel+Verb+Able+Neg+Aor+A1sg

In our implementation, despite having same surface form, Probability suffix must

be separated from Possibility because of their different meaning and different

locations in the structure. In our implementation, we considered Probability

suffix in all ways. Following examples shows the analyses of “gelmeyebilirim”

and “gelemeyebilirim” by MorTur.

(11) Analyses of “gelmeyebilirim” in MorTur

gel<VERB><Actv><Pol:Neg><Prbl><Tns:Aor><Prsn:1s>

(12) Analyses of “gelemeyebilirim” in MorTur

gel<VERB><Actv><Abil><Pol:Neg><Prbl><Tns:Aor><Prsn:1s>

39

Chapter 8

Conclusion

In this paper we present an approach and an implementation for morphological

analysis of Turkish language. The approach is based on Finite State Transducers

and two-level transformation. We used HFST for the implementation of the anal-

yser. Other publicly available analysers have linguistic problems. We implement

our analyser to be free from these problems so there can be an Turkish Morpho-

logical Analyser that is complete and publicly available. As result, an analyser

is implemented. To make it more convenient to use, a web site is designed and

published. Now it is publicly available on http://ddil.isikun.edu.tr/mortur. As

future work, we plan to provide the analyser as pluggable library to be used in

any desired application.

40

References

[1] K. Lindén, E. Axelson, S. Hardwick, M. Silfverberg, and T. Pirinen, “HFST–

framework for compiling and applying morphologies,” pp. 67–85, 2011.

[2] K. R. Beesley and L. Karttunen, Finite State Morphology. Stanford, CA:

CSLI Publications,, 2003.

[3] D. Karp, Y. Schabes, M. Zaidel, and D. Egedi, “A freely available wide cover-

age morphological analyzer for english,” in Proceedings of the 14th conference

on Computational linguistics-Volume 3. Association for Computational Lin-

guistics, 1992, pp. 950–955.

[4] Y. S. Alam, “A two-level morphological analysis of japanese,” in Texas Lin-

guistic Forum, vol. 22, no. 229-252, 1983, p. 14Although.

[5] L. Karttunen, R. M. Kaplan, and A. Zaenen, “Two-level morphology

with composition,” in Proceedings of the 14th conference on Computational

linguistics-Volume 1. Association for Computational Linguistics, 1992, pp.

141–148.

[6] A. C. Tantug, E. Adali, and K. Oflazer, “Computer Analysis of the Turkmen

Language Morphology.” FinTAL, vol. 4139, pp. 186–193, 2006.

[7] G. Kessikbayeva and I. Cicekli, “A Rule Based Morphological Analyzer and

a Morphological Disambiguator for Kazakh Language,” Linguistics and Lit-

erature Studies, vol. 4, no. 1, pp. 96–104, 2016.

[8] M. Orhun, A. C. Tantug, and E. Adali, “Rule based analysis of the uyghur

nouns.” Int. J. of Asian Lang. Proc., vol. 19, no. 1, pp. 33–44, 2009.

[Online]. Available: http://dblp.uni-trier.de/db/journals/jclc/jclc19.html#

OrhunTA09

[9] K. Oflazer, “Two-level description of turkish morphology,” Literary and Lin-

guistic Computing,, vol. 9, no. 2, pp. 137–148, 1994.

41

http://dblp.uni-trier.de/db/journals/jclc/jclc19.html#OrhunTA09
http://dblp.uni-trier.de/db/journals/jclc/jclc19.html#OrhunTA09

[10] c. Çöltekin, “A freely available morphological analyzer for Turkish,” in

Proceedings of the 7th International Conference on Language Resources

and Evaluation (LREC 2010), 2010, pp. 820–827. [Online]. Available:

http://www.lrec-conf.org/proceedings/lrec2010/summaries/109.html

[11] M. Şahin, U. Sulubacak, and G. Eryiğit, “Redefinition of turkish morphology

using flag diacritics,” in Proceedings of The Tenth Symposium on Natural

Language Processing (SNLP-2013), Phuket, Thailand, October 2013.

[12] R. Ehsani, B. Özenç, and E. Solak, “A fst description of noun and verb

morphology of azarbaijani turkish,” pp. 62–68, 2017. [Online]. Available:

http://www.aclweb.org/anthology/W17-4008

[13] R. Ehsani, B. Özenç, and E. Solak, “Moraz: Morphological analyzer for

azarbaijani turkish,” http://ddil.isikun.edu.tr/moraz, 2017, accessed: 2017-

09-30.

42

http://www.lrec-conf.org/proceedings/lrec2010/summaries/109.html
http://www.aclweb.org/anthology/W17-4008
http://ddil.isikun.edu.tr/moraz

	Abstract
	Özet
	List of Tables
	List of Figures
	1 Introduction
	2 Literature Survey
	3 Approach
	3.1 Morphotactics
	3.2 Phonology

	4 Turkish
	4.1 Lexicon
	4.2 Nominal Inflection
	4.3 Verbal Inflection
	4.3.1 Voice
	4.3.2 Ability Polarity Probability (APP)
	4.3.3 Tense Aspect Modality Person

	4.4 Nominal Predicate
	4.5 Other Classes
	4.6 Derivation
	4.7 Phonology

	5 Implementation
	5.1 HFST Structure
	5.2 HFST Syntax
	5.3 MorTur Structure

	6 MorAz
	7 Results and Discussion
	8 Conclusion
	Reference

