
E
R

E
N

Y
IL

D
IZ

M
.S

.
T

h
esis

2017

AUTOMATIC COMMENT GENERATION USING THE

SOURCE CODE

EREN YILDIZ

IŞIK UNIVERSITY

2017

AUTOMATIC COMMENT GENERATION USING THE

SOURCE CODE

EREN YILDIZ
B.S., Software Engineering, IŞIK UNIVERSITY, 2015

Submitted to the Graduate School of Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

IŞIK UNIVERSITY

2017

AUTOMATIC COMMENT GENERATION USING THE

SOURCE CODE

Abstract

In this study, automatic comment generation for Java methods is described. It

is sufficient that the codes conform to the syntax rules of the Java programming

language, and it is not expected to be runnable. In order to generate comments,

source code is examined syntactically. At this stage, only the method signature

and its return type is needed. By working on open source Java projects, different

templates have been developed for different method types. Using the compiled

information which is the result of the examining source code that is currently

being developed, the most suitable template is chosen and texts are created.

These texts explain the aim of the method. Created texts are added to source

code as a comment.

Keywords: source code summarization, documentation generation, program

comprehension

ii

KAYNAK KOD KULLANARAK OTOMATİK YORUM

OLUŞTURMA

Özet

Bu çalışmada, kaynak kodlara metot seviyesinde yorum ekleme işinin otomatikleş-

tirilmesi anlatılmaktadır. Kodların, Java programlama dilinin sözdizim kural-

larına uygun olması yeterli olup, çalışabilir durumda olması beklenmemektedir.

Yorum üretmek için kaynak kod biçimsel açıdan incelenir. Bu aşamada ilgili

metodun sadece imzasına ve geri döndürdüğü veri tipine ihtiyaç duyulur. Açık

kaynak kodlu Java projeleri üzerinde yapılan çalışmayla farklı metot türleri için

farklı şablonlar geliştirilmiştir. Yazılımcının geliştirdiği kodun incelenmesi sonucu

derlenen bilgi ile bu şablonlardan en uygun olanı seçilir ve metinler oluşturulur.

Bu metinler metodun amacını açıklar. Oluşturulan metinler yorum olarak kaynak

koda eklenmektedir.

Anahtar kelimeler: kaynak kodun özetlenmesi, dökümantasyon üretme, pro-

gram anlama

iii

Acknowledgements

iv

To My Family. . .

Table of Contents

Abstract ii

Özet iii

Acknowledgements iv

List of Tables viii

List of Figures ix

List of Abbreviations x

1 Introduction 1

1.1 Syntax, Grammar and AST Definition and Utilization 2

1.2 Code Conventions for Java . 3

1.3 Aims and Benefits . 4

1.4 Thesis Organization . 6

2 Literature Survey 7

3 Approach 10

3.1 Analysis of Methods . 12

3.1.1 Culling the methods . 13

3.1.2 Extraction of components in method signature 14

3.1.3 Tokenizing the components by CamelCase and snake case
notations . 14

3.1.4 Simplifying the data types 15

3.1.5 POS tagging the words . 16

3.2 Analysis of EUnits . 18

3.2.1 Identifying the EUnits . 18

3.2.2 Extraction of EUnits . 20

3.2.2.1 Extracting the Ending EUnits 20

3.2.2.2 Extracting the Void Return EUnits 20

3.2.2.3 Extracting the Same Action Sequence EUnits . . 20

3.2.2.4 Extracting the Data Facilitator EUnits 21

3.2.2.5 Extracting the Controlling EUnits 21

3.3 Comment Templates . 21

3.3.1 Summary templates . 22

3.3.2 Important statement templates 25

3.3.3 Effects on comments . 28

3.3.3.1 POS tags . 28

3.3.3.2 Method return types 34

3.3.3.3 Parameters . 36

3.4 Comment Examples . 37

4 Evaluation 42

5 Conclusion 54

Appendix 55

Reference 110

List of Tables

3.1 Penn Treebank POS Tags[18] . 17

3.2 Important statement templates 26

3.3 Important statement condition templates 28

viii

List of Figures

1.1 Abstract Syntax Tree Representation of If statement 3

3.1 Overview of comment generation process 10

3.2 Abstract Syntax Tree Representation in SPOON of Java 11

3.3 Simplified AST of Animal Class 12

3.4 Overview of summary comment generation process 12

3.5 Example of postagging a method’s name 16

3.6 Overview of important statements comment generation process . . 18

3.7 Summary templates for all methods except boolean methods . . . 30

3.8 Templates for CtInvocation statement’s string representations . . 31

3.9 Summary template for boolean methods 35

3.10 Parameter string generation process 36

4.1 Result of the first question of survey 43

4.2 Second question of survey . 43

4.3 Result of the second question of survey 44

4.4 Third question of survey . 44

4.5 Result of the third question of survey 45

4.6 Fourth question of survey . 46

4.7 Result of the fourth question of survey 46

4.8 Fifth question of survey . 47

4.9 Result of the fifth question of survey 47

4.10 Sixth question of survey . 48

4.11 Result of the sixth question of survey 48

4.12 Seventh question of survey . 49

4.13 Result of the seventh question of survey 49

4.14 Eighth question of survey . 50

4.15 Result of the eighth question of survey 50

4.16 Result of the ninth question of survey 51

4.17 Result of the tenth question of survey 51

ix

List of Abbreviations

API Application Program Interface

AST Abstract Syntax Tree

IDE Integrated Development Environment

POS Part Of Speech

BNF Backus-Naur Form

LHS Left Hand Side

RHS Right Hand Side

x

Chapter 1

Introduction

Comments are needed for developers to adapt to the code that they have never

seen before or worked on it for a long time ago. It is essential to capture the most

important parts of the source code and then translate them to proper English

sentences to give developer hints about what the related method does without

even skimming it. This thesis proposes a new framework named Autocomment

to create comments using the source code.

Autocomment is a framework to create comments using the method signature

and the source code in their body. In other words, Autocomment is a translator

which translates source code to a natural language sentence.

All previous works on automatic comment generation, aim to replace hand written

javadocs with automatically generated ones unlike Autocomment. As will be

explained in section 1.3, Autocomment does not only aim to create comments

which can only be read by developers but all other people who are just started

to programming or working in programming industry such as managers, project

leaders, researchers, etc. Autocomment achieves this by adding new techniques

to literature such as; simplified data types, more dense comments which hosts

multiple code lines that do the same work, simpler comments to inform non-

programmers about the project, a recursive structured algorithm to achieve the

ability to generate comment for every element in syntax and etc. Survey results

in the Chapter 4 justifies that Autocomment is able to achieve these goals.

1

Autocomment utilizes Abstract Syntax Tree(AST) to extract information from

source code to use in comment generation process. In the section 1.1, how Au-

tocomment utilizes AST is given alongside with the definitions of syntax and

grammar.

Autocomment assumes developers to name their variables, methods and classes

meaningfully and intuitively to be able to generate informative comments and

tokenize the given strings. In the section 1.2, code conventions in Java, mainly

the naming convention is explained.

After that, aims and benefits of Autocomment is explained in detail and finally

how this thesis is organized is given.

1.1 Syntax, Grammar and AST Definition and Utilization

Syntax is the set of all rules to specify which combinations of symbols in given

order is accurate for the language. Grammar on the other hand, is a representa-

tion of how syntax for a particular language should be formed. In Code block 1.1,

an example rule is given for Java grammar[1, 2] which specifies how conditional

statements should be written by a developer.

1 IfThenStatement: if (Expression) Statement

Code Block 1.1: IfThenStatement rule in Java grammar

Rules get their name from the variable from left hand side(LHS). Since LHS can

only have one variable, rule’s name always will come from the variable on the

LHS. On the right hand side(RHS), there can be variables or terminals. In Code

block 1.1, there is a rule named “IfThenStatement”. Terminals are “if”, “(” and

“)”. Variables are “IfThenStatement” on LHS, “Expression” and “Statement” on

RHS which have their own rules for productions.

2

Figure 1.1: Abstract Syntax Tree Representation of If statement

In order to use information that lies in grammar, an implementation of it is

needed. Abstract Syntax Tree(AST) is the implementation for grammars of pro-

gramming languages to represent syntactic structure of the source code in a tree.

In Figure 1.1, an example AST representation of Code block 1.1 is given to show

how AST may look like. In AST, each node in tree represents a symbol in gram-

mar. For example, an if statement in the body of a method would imply that if

statement is actually a child node of the method’s body statement. AST doesn’t

have to show everything like in the language’s syntax as the term “abstract” that

is used in AST implies it. Autocomment utilizes AST to get data from source

code such as; such as method’s name, method’s body, parameters, statements

and etc. to be used in comment generation process.

1.2 Code Conventions for Java

Code conventions are the guidelines which help developers to ensure for code to

be efficient, consistent and clear. For example, in Java, variable and method

names should follow CamelCase notation as convention. Other convention rules

are including but not limited to[3];

� Class and Interface names starts with a capital letter

� Letters in package names are written in lower case

� Method names contain at least one verb

3

Code conventions are important because [3]:

� It makes maintenance easier

� It makes it convenient for a team of developers to work on same project

� It increases readability

� Make sure the product followed a standard and it’s well-packaged and clean

One of the code convention types is the naming convention. Naming convention

consists the guidelines to help developers to name their identifiers consistently

such as; classes, interfaces, methods, variables and constants. By the naming

conventions in Java, developers are expected to use CamelCase notation as much

as possible except for constants(which should be all capital letters) and commonly

used abbreviations(like URL, HTML, etc.).

1.3 Aims and Benefits

This thesis’s main aim is to generate comprehensible and informative comments

as natural language sentences. There are also more specific aims which are being

used in the way of completion of the main aim.

One of the aims is to be able to use method signature to generate summary com-

ments by extracting and tokenizing the necessary components out of the method

signature. Summary comment is the first comment type that Autocomment can

generate. It has various benefits and will be explained further in this section.

Another aim is to be able to find the most influential code lines in the method

body and generate important statements comment out of it. Important state-

ments comment is the second comment type that Autocomment can generate.

As summary comments, important statements comment’s benefits will also be

explained further in this section.

4

Achieving the aims, users may benefit from Autocomment in several ways.

One of the benefits is that, it provides a quick glimpse of what the project is

capable of without tracing, running or debugging the code itself. By doing so, even

without the technical skills to understand the source code, these new developers

would get the basic idea of project’s capabilities and objectives. Autocomment’s

“summary” comments are for this basic need.

Another benefit is that, it provides natural language sentences to students, new-

comers and people who just started to learn programming and at beginner level

to let them learn what the code does by themselves. By doing so, instructor

doesn’t always need to explain the code every bit of the code, in fact, this will

let the students experiment the code by themselves. Therefore, Autocomment

doesn’t only help students by providing simple comments, but also give instruc-

tor an advantage of preparing lecture notes, homeworks and projects quickly as

the source code will be more explanatory by itself with auto generated comments

which follows a pattern.

Programmers who are more experienced can also get benefit of Autocomment by

reading “important statements” comments. This type of comments are indeed has

more depth than the summary comments and having technical skills is necessary

to understand it. Generally, experienced developers are tend to trace the code

over comment reading but when it comes to methods with long body which means

lots of lines of code, even the experienced developers have to spend too much time

to detect the important statements. Thus, providing an in-depth explanations of

the source code to experienced developers is also one of the main purposes of

Autocomment.

Another benefit is that, it provides lazy developers who doesn’t spend the time

needed to write comments. Sometimes developers are tend to be lazy or forgetful

which leads to projects with lack of comments and documentation. Especially

in the projects which is developed by a group of programmers would need their

5

source code commented to follow the objectives and finish the project without ex-

ceeding the dead line. Autocomment solve this problem by generating comments

automatically which makes developers to have more time on writing the source

code rather than writing comments.

Last but not least, Autocomment’s auto generated comments can be used to

create an API documentation. Although Autocomment’s major audience is de-

velopers, it is not limited to that. Managers and project leaders who have the

role of leading and managing rather than writing the source code would need

a detailed structure of the source code which explains what project does in its

current state to further help to developers. For example, a collection of summary

comments can be given to managers and a collection of important statements

with summary comments can be given to project leaders. This makes them fol-

low developers actions in an much more quick and efficient way as Autocomment’s

comment can be updated as the code changes automatically.

Besides the main benefits, Autocomment has lots of small benefits such as leading

developers to write a better and cleaner code which includes better variable names

and method names, providing leaders a documentation which always have the

same standard which also makes it more understandable and intuitive in time.

1.4 Thesis Organization

This thesis is organized as follows. In Chapter 2 the necessity of comments will

be explained by surveys and then, the state-of-art techniques which are being

used in comment generation will be introduced. The approach will be detailed

in Chapter 3. Survey results will be presented in Section 4 and work will be

concluded within Section 5.

6

Chapter 2

Literature Survey

Understanding the source code and generating natural language summaries for

the source code is a problem that has been studied over a long time.

Although it is not a work about comment generation, in 2006, Zhang et al. has

proposed an approach to identify use cases in source code [4]. This is one of the

early steps of how one can understand what the source code does as the very

first step towards generating comments using the source code is to understand

what the source code does. Their main is that branch statements are the most

important structures to distinguish one use case from another in source code.

They have designed a static representation of software systems which means it

uses design elements instead of run time elements. They also have used call graphs

which is an representation of which function calls another function. The software

system they have designed incorporates branch information into the traditional

call graph, which is named Branch-Reserving Call Graph. As a result, their

approach produces combinations of use cases rather than individual use cases

occasionally and still needs a human involvement.

Comments are valuable as they contains design decisions and intentions which

is delivered to developer and maintainers. [5]. Comments are critical in order

to give developers to get to know the source code as fast and accurate as they

can. In 2009, Fluri et al. have analysed the co-evolution of comments and source

code[5]. They have studied the question whether developers write comments and

7

at what level developers add comments throughout the lifetime of the developing

process. They have presented an approach to associate comments with entities

which is created using source code to track comments’ co-evolution over multiple

versions to answer that question. They have found that amount of source code

and comments grows nearly at the same rate; source code entity’s type, such as

a method declaration or an if statement, has big influence on whether or not it

has comments; in six out of the eight systems, comments and source code co-

evolve in 90% of the cases; and API changes and comments do not co-evolve but

they are re-documented in a later revision. As a result, their approach enables a

quantitative assessment of the commenting process in a software system.

In 2010, Sridhara et al. have presented a novel technique to automatically gener-

ate descriptive summary comments for Java methods. Their automatic comment

generator uses method signature and its body to identify the content and gen-

erate summary text that summarizes the method’s overall actions [6]. In 2011,

Sridhara et al. have extended their work by presenting an automatic technique

for identifying code fragments which finds the most informative code lines and

express them as a natural language sentences. [7]. Sridhara et al. also have

presented heuristics to generate comments that provide a high-level overview of

the role of a parameter in a method [8]. Their aim was to generate parameter

comments and integrate them with method summaries.

In 2010, Haiduc et al. have presented a study that investigates the suitability

of various techniques for generating source code summaries based on position of

words or sentences and techniques based on text retrieval[9]. They have imple-

mented text retrieval techniques; one based on Vector Space Model and the other

one on Latent Semantic Indexing to create descriptions out of source code.

In 2013, Moreno et al. have created an Eclipse plug-in for automatically gener-

ating natural language summaries of Java classes named JSummarizer [10]. The

tool uses a set of predefined heuristics to choose which information will be used

8

in the summary, and it uses NLP and generation techniques to build up the sum-

mary. In 2014, Moreno also has proposed an approach to generate summaries of

complex code artifacts, such as, classes and change sets [11].

In 2014, McBurney et al. have proposed a technique that includes context by

analyzing how the Java methods are invoked [12]. They have used PageRank

to choose contextual information to summaries which they compute for the pro-

gram’s call graph. They then build a natural language generation system to

interpret the keywords and infer meaning from the context.

This thesis extends our previous work [13] by improving summary comments and

adding important statement comments. In our previous work, Autocomment was

only able to generate summary comments which is also beneficial to developers

but summary comments’ main purpose is to help non-developers to track the

project besides providing a quick glimpse to developers to inform them what the

method does. By adding important statements, developers are now able to learn

“how” method works instead of just “what” method does by picking the most

critical code lines in method body and representing them as natural language

sentences.

9

Chapter 3

Approach

Autocomment is a framework to generate comments automatically. An overview

of the comment generation process can be seen in given Figure 3.1. In order to

accomplish this task, it first gets the source code and then preprocess it by ex-

tracting, tokenizing, simplifying and postagging the necessary components. After

that, Autocomment analyzes method signature and chooses the proper template

to generate summary type comments. All of these analysis of methods will be

explained in detail in the section 3.1. On the other hand, Autocomment also ana-

lyzes the method body and extracts the most important code lines which also be

called as EUnits to generate most important statements comments for the given

method. All of these analysis of EUnits will be explained in detail in section 3.2.

Get Source Code Preprocess

Analyze the Method

Signature

Analyze the Method Body

Choose template Generate Summary Comments

Generate Important Statement

Comments
Merge Comments

Figure 3.1: Overview of comment generation process

Autocomment uses a rule based approach by utilizing the AST of source code

to generate comments for methods. In order to make the most out of the AST,

an open-source library called SPOON is used. Spoon enables Java developers to

write a large range of domain-specific analyses and transformations in an easy

and concise manner [14]. Figure 3.2 shows how SPOON represents AST.

10

Figure 3.2: Abstract Syntax Tree Representation in SPOON of Java

For example, in the Code block 3.1, a Java class named “Animal” containing a

single method is given. Autocomment uses SPOON here to extract AST out of

the code in order to use in further comment generation processes. In Figure 3.3,

a simplified version of Animal class’s AST is given.

1 public class Animal{

2 public void eat(Animal e){

3 if (e instanceof Edible){

4 this.weight += e.getWeight();

5 e.sendToGraveyard();

6 System.out.println(this.toString() + " ate " + e.toString());

7 } else {

8 System.out.println(e.toString() + " is not edible");

9 }

10 }

11 }

Code Block 3.1: A class example in Java

11

Figure 3.3: Simplified AST of Animal Class

3.1 Analysis of Methods

In order methods to be used in comment generation process, they first needed

to be preprocessed. In this section, how Autocomment prepares the methods

is explained. This is mainly for summary comments and in the Figure 3.4, the

process for summary comment generation process is shown.

Get Source Code

Cull the methods

Preprocess

Extract the components

Simplify the data types

POS tag the words

Choose the template

Generate summary comments

Tokenize the components

Figure 3.4: Overview of summary comment generation process

12

3.1.1 Culling the methods

Comments are mandatory for developers to both understand, maintain and imple-

ment future releases of project.However, generating comments for every methods

is not necessary as some of the methods are comprehensible without comments.

In the list below, method variations which are excluded for comment generation

process are given:

� Accessors & Mutators(a.k.a getters & setters)

Accessors and mutators are the methods that controls access to related

class’s private fields. Nowadays, most of the IDE’s such as Eclipse, Intelli-

jIDEA, NetBeans etc. have an option to generate accessors and mutators

automatically. Having the same formula syntactically for accessors and mu-

tators relatively makes IDE’s possible to generate them accurately. In fact,

they always have only one line of code in body and have same formula,

makes them understandable intuitively. Thus, accessors and mutators are

excluded from comment generation process.

� Methods that inherited from Object class(e.g. toString(), equals())

� Interface methods(e.g. compareTo())

Interface methods and the methods like toString(), equals() etc. that in-

herited from Object class, although may have different code in their body,

the purpose of the implementation of these methods is always same. Thus,

these variety of methods are not part of the comment generation process

and will not be commented by Autocomment.

� Unit test methods

Unit test methods are the methods that tests a method, process or system

to check whether the system is robust and works properly or not. Having

the same purpose of writing unit methods, makes them insignificant to be

commented. Therefore, they are excluded.

13

� Methods with empty body

Methods with empty body are the methods are not yet completed. It is

better for Autocomment to skip these methods as skipping them makes

Autocomment to finish the job faster. Therefore, they are excluded.

3.1.2 Extraction of components in method signature

Two of the components of a method declaration comprise the method signature

the method’s name and the parameter types[15]. An example of method signature

is given in Code block 3.2.

1 equalsIgoreCase(java.lang.CharSequence, java.lang.CharSequence){...}

Code Block 3.2: Example of a method signature

In this state, method’s components which are method name and parameters are

extracted from method’s signature. For the method signature that is given above,

method name is “equalsIgnoreCase” and the parameters are “java.lang.CharSequ-

ence, java.lang.CharSequence”. These components will be further processed as

explained in the following subsections.

3.1.3 Tokenizing the components by CamelCase and snake case nota-

tions

In programming, CamelCase and snake case notations are the most frequently

used naming conventions. CamelCase notation is an naming convention that

works in a way that the first word consists of lower case letters and the other

words has an uppercase letter as first letter and lower case letters until the end

of each word(e.g. equalsIgnoreCase). snake case notation is an another naming

convention that follows the rule of having all lower case letters with the words

of splitted by underscore. In order to components be used in commments, they

must be tokenized by the notation of CamelCase and snake case. As an example,

14

for the method signature that is given in Code block 3.2 both method name and

parameter components needs to be tokenized. The method name “equalsIgnore-

Case”will be tokenized as “equals”, “ignore”, “case”words and the parameters

will be tokenized as “char”, “sequence”and the parameter name that doesn’t ex-

ist in method’s signature by definition. Parameter’s name also will be used as

it may make the comment more informative. For the parameter “CharSequence

old char”, the parameter name “old char”will be tokenized as “old”and “char”

words. All the words that is acquired by the process of tokenization will be used

both as a word in comments and in the next subsections as they possess many

more information like POS tags which also has an important role for comment

template selection.

3.1.4 Simplifying the data types

Main aim of the Autocomment is to provide comprehensible comments to devel-

opers. However, it is also critical to make comments informative. So as to keep

the balance of comments between informative and comprehensible, a simplifica-

tion process is required. There are 2 types of simplifications in Autocomment;

simplifying the collections and maps data types and removing the package names

at the start of data type.

A collection -sometimes called a container- is simply an object that groups mul-

tiple elements into a single unit[16]. Collections are used to store, retrieve, ma-

nipulate and communicate aggregate data[16]. Collections are frequently used in

programming but to give developers easy to ready comments, a simplification is

required. An array list initialization code with the name of “usernames” is given

in Code block 3.3.

In order to simplify it, its punctuations are removed. Moreover, to make it looks

even simpler, all data types that inherited from collection framework will be

simplified as “Collection of usernames”.

15

1 ArrayList<String> usernames = new ArrayList<>();

Code Block 3.3: ArrayList initialization example in Java

In addition, if it has more than one dimension, as the ArrayList with the name

of “userAddresses” given in Code block 3.4, its comment will also have the in-

formation about its dimension as its comment would be “2D Collection of user

addresses”. Simplification process for the map types and the types that is inher-

ited from map class follows the same convention as collections.

1 ArrayList<ArrayList<String>> userAddresses = new ArrayList<>();

Code Block 3.4: Two dimensional ArrayList initialization in Java

Removing the package names is the other simplification for data types. For

example, “java.util.String” will be transformed to “string”.

3.1.5 POS tagging the words

Autocomment uses Stanford’s CoreNLP which uses Penn Treebank POS tags that

is given in Table 3.1 to postag the words. The process of setting the postags for

word is called pos tagging. Stanford CoreNLP is a framework that covers most

of the common natural language operations.[17]. In Figure 3.5, an example of

postagging a method’s name process is given.

isOnline(Server main) is online VBZ NNP

Figure 3.5: Example of postagging a method’s name

Postags will be used to choose which comment template will be used to generate

comments.

16

Number Tag Description
1 CC Coordinating Conjunction
2 CD Cardinal number
3 DT Determiner
4 EX Existential there
5 FW Foreign word
6 IN Preposition or subordinating conjunction
7 JJ Adjective
8 JJR Adjective, comparative
9 JJS Adjective, superlative
10 LS List item marker
11 MD Modal
12 NN Noun, singular or mass
13 NNS Noun, plural
14 NNP Proper noun, singular
15 NNPS Proper noun, plural
16 PDT Predeterminer
17 POS Possessive ending
18 PRP Personal pronoun
19 PRP$ Possessive pronoun
20 RB Adverb
21 RBR Adverb, comparative
22 RBS Adverb, superlative
23 RP Particle
24 SYM Symbol
25 TO to
26 UH Interjection
27 VB Verb, base form
28 VBD Verb, past tense
29 VBG Verb, gerund or present participle
30 VBN Verb, past participle
31 VBP Verb, non-3rd person singular present
32 VBZ Verb, 3rd person singular present
33 WDT Wh-determiner
34 WP Wh-pronoun
35 WP$ Possessive wh-pronoun
36 WRB Wh-adverb

Table 3.1: Penn Treebank POS Tags[18]

17

3.2 Analysis of EUnits

EUnits are the most important statements to be used in comment generation

process. In Figure 3.6, overview of important statements comment generation

process is shown. Although type names of EUnits are same (except for Same

Action Sequence EUnit, they are stated as Same Action SUnit in [6]), their ca-

pabilities and how Autocomment selects them varies. Those differences will be

stated in the following subsections.

Get method body

Preprocess

Extract the components

Simplify the data types

POS tag the words

Generate important statement comments

Tokenize the components

Figure 3.6: Overview of important statements comment generation process

3.2.1 Identifying the EUnits

There are 5 type of EUnits; Ending EUnits, Void Return EUnits, Same Action

Sequence EUnits, Data Facilitator EUnits and Controlling EUnits. Autocomment

uses SPOON to take advantage of AST to acquire statements in order to create

EUnits.

18

1 public Component buildMainWindow(List<Component> components){

2 Component mainComponent = new Component("Main Window");

3 mainComponent.addComponent(new Button("Yes"));

4 mainComponent.addComponent(new Checkbox("I accept terms"));

5 mainComponent.addAllComponents(components);

6 if (mainComponent.hasParent()){

7 Component parent = mainComponent.getParent();

8 return parent;

9 } else

10 return mainComponent; }

Code Block 3.5: A method example in Java

Ending EUnits are basically the statements that breaks the flow of code such as;

return statements, exception throws or if the method has a void return type then

the last statement would be ending statement. In the Code block 3.5, 8. and 10.

code lines are Ending EUnits.

Void Return EUnits are the statements that doesn’t return anything or assign

anything. They are mainly inherited from CtInvocation class which can be seen

in Figure 3.2. In the Code block 3.5, 5. code line is a Void Return EUnit. 3. and

4. code lines can also be as Void Return EUnit but they are already identified as

Same Action Sequence EUnits, thus they aren’t Void Return EUnits.

Same Action Sequence EUnits are the statements that uses methods but the

parameters are different. In other words, it is the group of the same Void Return

EUnits with different arguments. In Code block 3.5, 3. and 4. code lines are

identified as Same Action Sequence EUnits.

Data Facilitator EUnits are the statements that changes the value of a parameter,

variable or a field that is used in the other EUnits. In Code block 3.5, 2. and 7.

code lines are Data Facilitator EUnits.

Controlling EUnits are the statements such as; if, while, do-while, for, switch and

have control on the other EUnits. In other words, if an EUnit is in the some if

19

statement, that if statement will be stated as Controlling EUnit of the related

EUnit. In Code block 3.5, 6. code line is a Controlling EUnit.

3.2.2 Extraction of EUnits

In the following subsections, how Autocomment extracts the EUnits from Java

source code will be explained in depth. Extracted EUnits will later be used in

comment generation as they will be used to inform developer about the important

statements which are critical to know before further changing the related method.

3.2.2.1 Extracting the Ending EUnits

Ending EUnits are the flow breaker statements in a method. They are one of the

critical EUnits to inform developer that there is a statement which can end the

method execution process. Sridhara et al observed that methods often perform

a set of actions to accomplish a final action, which is the main purpose of the

method[6]. In addition, Autocomment also considers the statements that throws

exception or returns something as Ending EUnits and uses them in comment

generation process.

3.2.2.2 Extracting the Void Return EUnits

Void Return EUnits are the statements that doesn’t return or assign anything.

The intuition is that when a method call doesn’t return anything, it is called

because of its side effects[6]. On the other hand, method calls that return a value

will probably be used in building an important action.[6].

3.2.2.3 Extracting the Same Action Sequence EUnits

Same Action Sequence are the statements that has the same method call, does

exactly same action but with a different parameter, variable or a field. Although

20

using a method call can decrease its importance rate as unique methods are

intuitively has a bigger role on what the method does, they still have an effect

and may contain critical information. Thus, they will be considered as only one

statement and will be treated as one Void Return EUnit. One of the benefits of

this to keep comments simple and short. Other benefit is that treating them as

Void Return EUnits simplifies the comment generation process and require less

code as they will be pushed down into same templates to create comments.

3.2.2.4 Extracting the Data Facilitator EUnits

Data Facilitator EUnits are the statements that changes the value of a parameter,

variable or a field that is used in the other EUnits. Data Facilitator EUnits aren’t

used in comments directly but they rather be used in the selection of Controlling

EUnits to create much more informative comments.

3.2.2.5 Extracting the Controlling EUnits

Controlling EUnits are the statements such as; if, while, do-while, for, switch

and have control on the other EUnits. In order to be Controlling EUnits to be

selected, the other EUnits must be selected first to choose the Controlling EUnits

of them.

3.3 Comment Templates

Autocomment has 2 types of templates; summary templates and important state-

ment templates.

Summary templates are used for summary comments which gives the developer

a hint about what the method does. In order to select the template that suits

the related method, a custom grammar is created using ANTLR4. ANTLR (AN-

other Tool for Language Recognition) is a powerful parser generator for reading,

21

processing, executing, or translating structured text or binary files[19]. The gram-

mar that is created using ANTLR4 will be used to choose the summary comment

template.

Important statement templates are used for important statement comments which

gives the developer a detailed info about what the method does. It contains

critical statements which are converted to proper English sentences for developers

to read.

3.3.1 Summary templates

The grammar that is being used in Autocomment with the rules is given in Code

block 3.6 and the variables is given in Code blocks 3.7 to 3.11 to choose the best

template.

We have created these templates by looking at the postag sequences in method

names. By reviewing more than 5000 methods of open source projects, we have

generalized the postag sequences by creating patterns which fits most of the

postag sequences. As a result, summary templates are born.

In grammar, V is the variable for verbs, NPR is the variable for noun phrases

but it’s recursive so that it can have as much as postag next to it starting with

NN like NNS, NN etc. , PP is the variable for prepositions, WS is for the white

space used in rules and EOF is the end of rule indicator. Some of the variable

have question mark next to them which means, that variable is optional, in other

words, not required for rule to apply.

The process for Autocomment to use ANTLR to choose appropriate comment

summary template goes as follows;

� Method name component is extracted from method signature

� Method name component is tokenized

22

� Method name component is pos-tagged

� Pos-tag sentence is sent to ANTLR grammar as an input

� ANTLR tries to choose which rule given in Code block 3.6 fits the given

pos-tag sentence best

� Accepted rule is selected for comment generation process

In order to generate the given methodś comment, its postag sentence must fit

one of the rules in the parser. For instance, for the method with tokenized name

component of “create nodes” which has a postag sentence of “VB NNS” would

apply to “one verb rule”.

All of the summary comments starts with “This method” string and continues

with depending on the effects that will be explained in the subsection 3.3.3.

1 // Defining grammar for comment titles

2 grammar CommentTitle;

3

4 one_verb_rule

5 : V NPR? EOF

6 ;

7

8 two_verb_rule

9 : V NPR v NPR? EOF

10 ;

11

12 first_prp_rule

13 : PP NPR? V? NPR? EOF

14 ;

Code Block 3.6: Grammar Rules

23

1 // Recursive noun phrase variable

2 NPR

3 : ’NN’

4 | ’NNS’

5 | ’NNP’

6 | ’NNPS’

7 | ’JJ’

8 | ’NN’ ’ ’ NPR

9 | ’NNS’ ’ ’ NPR

10 | ’NNP’ ’ ’ NPR

11 | ’NNPS’ ’ ’ NPR

12 | ’JJ’ ’ ’ NPR

13 ;

Code Block 3.7: NPR variable in grammar

1 // Recursive verb variable

2 VR

3 : ’VB’

4 | ’VBD’

5 | ’VBG’

6 | ’VBN’

7 | ’VBP’

8 | ’VBZ’

9 | ’VB’ ’ ’ VR

10 | ’VBD’ ’ ’ VR

11 | ’VBG’ ’ ’ VR

12 | ’VBN’ ’ ’ VR

13 | ’VBP’ ’ ’ VR

14 | ’VBZ’ ’ ’ VR

15 ;

Code Block 3.8: VR Variable in grammar

24

1 // Non-recursive verb variable

2 V

3 : ’VB’

4 | ’VBD’

5 | ’VBG’

6 | ’VBN’

7 | ’VBP’

8 | ’VBZ’

9 ;

Code Block 3.9: V Variable in grammar

1 // Preposition variable

2 PP

3 : ’IN’

4 ;

Code Block 3.10: PP Variable in grammar

1 // Skip spaces, tabs and new lines

2 WS

3 : [\t\r\n]+ -> skip

4 ;

Code Block 3.11: WS Variable in grammar

3.3.2 Important statement templates

Important statement templates are used for important statement comments which

gives the developer a detailed info about what the method does. Important state-

ments are the comments that generated using EUnits. In other words, important

statement comments are the EUnits which converted to English sentences for

developers to read.

All important statement comment templates are given in Table 3.2

25

CtElement Type Active Form Passive Form

CtReturn returns the [CtElement]
expression that is returned
as [CtElement]

CtThrow throws [CtElement]
exception that is thrown as
[CtElement]

CtConstructorCall creates new [CtElement]
new instance that is created
as [CtElement]

CtAssignment
[assigned CtExpression] is
assigned to [assignment Ct-
Expression]

which [assigned CtExpres-
sion] is assigned by [assign-
ment CtExpression]

CtVariableAccess variable’s type -
CtLiteral literal itself -

Table 3.2: Important statement templates

In order to extract EUnits from source code, Autocomment utilizes a recursive

approach using the AST of SPOON given in Figure 3.2. Almost for every class

that is inherited from CtElement has a method convert the given CtElement to

English sentence. In other words, they have a string representation to be used

as important statement comment. It has to work recursively as CtElements may

have other CtElements in their representation. For example, as given in Code

block 3.12, a return statement may have a constructor call which also needs to

be converted to English sentence.

1 // Returns new instance that is created as Student

2 return new Student();

Code Block 3.12: Return statement with comment

All the CtElements that have a string representation also have an option to that

representation to be either active or passive sentence. When comment starts to be

prepared, the first CtElement is always have an active form and all other CtEle-

ments will have passive form. For example in Code block 3.12, the comment has an

active return statement comment and inside, there is a constructor call comment

as its in passive form. So that, “new instance that is created as [CtElement].type”

is Contstructor Call’s passive form whereas “creates new [CtElement]” is its ac-

tive form. “[CtElement]” is the related element’s comment which will be used in

26

to get element’s comment. In given Code block 3.12, given CtElement is CtVari-

able which doesn’t have active or passive form but just returns element’s type as

string to be used in comments.

CtInvocation is different from other CtElements because it contains a method call

in its body. Therefore, its comment can not be generated as the other CtElements.

Generating comments using method signature has already done in summary com-

ments in subsection 3.3.1, so using the same methodology, Autocomment can cre-

ate comments for CtInvocation elements but without the prefix “this method”.

Another problem is that method calls in CtInvocation statements is not limited to

one. For example, in the CtInvocation element like“student.getType().toString()”

there are two method calls which are “getType()” and “toString()” which “get-

Type()” is being the first method call and “toString()” is the second method call.

That’s why, it also needs to be recursive in itself. Autocomment approaches this

problem as follows;

� If CtInvocation statement is not in another statement such as CtIf and it’s

the first method call, then use its active form

� If CtInvocation statement is not in another statement and it is not the first

method call, then use its passive form

� Otherwise, use its passive form

Finally, if the EUnit element has a parent Controlling EUnit, then related ele-

ment’s passive string representation will be used in the Controlling EUnit ele-

ment’s active form sentence. In order to build the string representation for Con-

trolling EUnit, its conditions have to be put together recursively as conditions

can be more than just one condition. Autocomment approaches this problem as

it gets the parent condition of Controlling EUnit element which contains all other

conditions of related Controlling EUnit element, then extracts other conditions

recursively until no conditions can be extracted any more. It does this by extract-

ing both left and right operand of condition, then does the same thing for both

27

Condition Type Template
NOT [left operand] is not true
NOT EQUAL TO [left operand] is not equal to [right operand]
EQUAL TO [left operand] is equal to [right operand]
AND [left operand] and [right operand]
OR [left operand] or [right operand]
GREATER THAN [left operand] is greater than [right operand]
LESS THAN [left operand] is less than [right operand]
GREATER or
EQUAL TO

[left operand] is greater than or equal to [right operand]

LESS or EQUAL
TO

[left operand] is less than or equal to [right operand]

INSTANCE OF [left operand] is instance of [right operand]
ADDITION [left operand] plus [right operand]
SUBTRACTION [left operand] minus [right operand]
MULTIPLICATION [left operand] multiplied by [right operand]
DIVISION [left operand] divided by [right operand]
MOD [left operand] mod [right operand]

Table 3.3: Important statement condition templates

left and right condition in their respective operands. In Table 3.3 all condition

templates for important statements is given.

3.3.3 Effects on comments

In this subsection, effects that changes the templates will be explained in detail.

These changes affects summary comments and CtInvocation comments.

3.3.3.1 POS tags

As given in Figure Code block 3.6 postags are primary reason to change template.

There are 3 rules which utilize postags and its order; one verb rule, two verb rule

and first preposition rule.

The flow of generating summary comments except for boolean methods is given

in Figure 3.7, for only boolean methods is given in Figure 3.9 and for CtInvoca-

tion statement’s string representation templates which will be used in important

28

statement comments is given in Figure 3.8. All of this processes will be explained

in detail in this section.

Firstly, regardless of summary comment template, Autocomment starts active

summary comment with the string “This method”, then depending on rules,

summary comment is got appended different string combinations.

For one verb rule, Autocomment firstly checks either the first verb has the postag

“VBZ” or “VB”. If it has the first verb with postag “VBZ” and has parameters,

summary comment is appended with parameters string which will be explained

in detail in subsection 3.3.3.3. Then, the verb and noun phrase is appended

respectively to summary comment. Finally, a comment phrase is prepared for

parameters is appended to summary comment. This comment will be used as

summary type comment for related method. This is an active form of comment.

This comment’s passive form will be used for CtInvocation of important statement

comments as most of the process is same but the combination of strings and verbs

tenses differs. For the passive form of one verb rule with “VBZ” postagged verb,

it firstly gets the CtInvocation method with its all of the child CtInvocation

statements. For example, “object.getType().toString()” is a statement which

has 2 CtInvocation statements in it which are “getType()” and “toString()” and

has the target “object”. As in the example, all CtInvocation statements go for

the same preprocesses which is mentioned in section 3.1. Then, if it is the first

CtInvocation statement, its verb is appended to important statement comment

with its noun phrase, moreover if it isn’t first CtInvocation statement and if

it has noun phrase, its noun phrase and verb with 3rd form is appended to

important statement comment respectively, if doesn’t have a noun phrase, then

only verb with 3rd form and appropriate preposition of related verb is appended

to comment. This processes for important statement comment for CtInvocation

statement continues until the last CtInvocation statement of the current code line

is found. After that, if there is a target object, its appended to comment, if not,

then “this instance” string is appended.

29

st
ar

t
w

it
h

"T
hi

s
M

et
ho

d"
 s

tr
in

g

Tw
o

ve
rb

ru
le

Fi
rs

t
pr

ep
os

it
io

n
ru

le

O
ne

 v
er

b
ru

le

ch
an

ge
se

co
nd

 v
er

b'
s

po
st

ag
 t

o
N

N

ap
pe

nd
ve

rb
's

 t
ex

t

ap
pe

nd
no

un
ph

ra
se

's
te

xt

pr
ep

ar
e

an
d

ap
pe

nd
pa

ra
m

et
er

s
st

ri
ng

ap
pe

nd
 "

co
nv

er
ts

 t
hi

s
in

st
an

ce
"

ap
pe

nd
 "

is
 c

al
le

d
w

he
n

th
is

in
st

an
ce

 is
"

ap
pe

nd
 v

er
b'

s
te

xt
 in

 s
ec

on
d

fo
rm

fir
st

 p
re

po
si

ti
on

su
m

m
ar

y
co

m
m

en
t

ha
s

pa
ra

m
et

er
s

ha
s

no
un

ph
ra

se

ru
le

on

to

V
B
 o

r
V
B
Z

YE
S

N
OYE

S

F
ig

u
re

3.
7:

S
u
m

m
ar

y
te

m
p
la

te
s

fo
r

al
l

m
et

h
o
d
s

ex
ce

p
t

b
o
ol

ea
n

m
et

h
o
d
s

30

G
et

 a
ll

ch
ild

 C
tI

nv
oc

at
io

n
st

at
em

en
ts

 if
 e

xi
st

ap
pe

nd
 C

tI
nv

oc
at

io
n'

s
ve

rb
's

 t
ex

t

ap
pe

nd
no

un
ph

ra
se

's
 t

ex
t

ge
t

ne
xt

ch
ild

C
tI

nv
oc

at
io

n
st

at
em

en
t

ap
pe

nd
 t

hi
s

ch
ild

C
tI

nv
oc

at
io

n
st

at
em

en
t'
s

ve
rb

's
 t

ex
t

in
 3

rd
 f
or

m

ap
pe

nd
no

un
ph

ra
se

's
 t

ex
t

ap
pe

nd
 t

ar
ge

t
ob

je
ct

C
tE

le
m

en
t'
s

st
ri

ng
re

pr
es

en
ta

ti
on

ap
pe

nd
"t

hi
s

in
st

an
ce

"
st

ri
ng

ch
an

ge
 a

ll
ve

rb
s

po
st

ag
 t

o
N

N
 e

xc
ep

t
fir

st
on

e

G
et

 a
ll

ch
ild

 C
tI

nv
oc

at
io

n
st

at
em

en
ts

if
ex

is
t

ap
pe

nd
 f

ir
st

 v
er

b'
s

te
xt

 in
pr

es
en

t
fo

rm

ap
pe

nd
no

un
ph

ra
se

's
te

xt

ap
pe

nd
 "

th
e"

st
ri

ng

ge
t

ne
xt

 c
hi

ld
C
tI

nv
oc

at
io

n
st

at
em

en
t

ap
pe

nd
no

un
ph

ra
se

's
 t

ex
t

ap
pe

nd
 t

hi
s

ch
ild

C
tI

nv
oc

at
io

n
st

at
em

en
t'
s

ve
rb

's
te

xt

in
 3

rd
 f

or
m

 a
nd

 s
tr

in
g

"i
ns

ta
nc

e"

ap
pe

nd
 t

hi
s

ch
ild

C
tI

nv
oc

at
io

n
st

at
em

en
t'
s

ve
rb

's
te

xt

in
 3

rd
 f
or

m

ap
pe

nd
ap

pr
op

ri
at

e
pr

ep
os

it
io

n
of

ve
rb

ap
pe

nd
ta

rg
et

ob
je

ct
C
tE

le
m

en
t'
s

st
ri

ng
re

pr
es

en
ta

ti
on

ap
pe

nd
 "

th
is

in
st

an
ce

"
st

ri
ng

ap
pe

nd
ap

pr
op

ri
at

e
pr

ep
os

it
io

n
of

ve
rb

ge
t

al
lc

hi
ld

C
tI

nv
oc

at
io

n
st

at
em

en
ts

 if
ex

is
t

ge
t

al
l c

hi
ld

C
tI

nv
oc

at
io

n
st

at
em

en
ts

 if
ex

is
t

ap
pe

nd
 "

co
nv

er
ts

th
e"

st
ri

ng

ap
pe

nd
s

"t
o"

st
ri
ng

ap
pe

nd
no

un
ph

ra
se

's
te

xt

ap
pe

nd
"i

s
ca

lle
d

w
he

n
th

is
in

st
an

ce
 is

"
st

ri
ng

ap
pe

nd
ve

rb
 in

 2
nd

fo
rm

ap
pe

nd
 "

th
at

 is
co

nv
er

te
d

fr
om

"
st

ri
ng

ge
t

an
d

ap
pe

nd
ch

ild
 C

tI
nv

oc
at

io
n

st
at

em
en

t'
s

st
ri

ng
re

pr
es

en
ta

ti
on

s

is
 it

 f
ir
st

 C
tI

nv
oc

at
io

n
S
ta

te
m

en
t?

fir
st

pr
ep

re
po

si
ti
on

C
tI

nv
oc

at
io

n
S
tr

in
g

re
pr

es
en

ta
ti
on

ha
s

ta
rg

et
 o

bj
ec

t?

is
 t

hi
s

la
st

 c
hi

ld
 C

tI
nv

oc
at

io
n

S
ta

te
m

en
t?

ha
s

no
un

ph
ra

se
?

ha
s

ch
ild

C
tI

nv
oc

at
io

n
S
ta

te
m

en
t?

ha
s

no
un

ph
ra

se
?

fir
st

 v
er

b'
s

po
st

ag
ru

le

C
tI

nv
oc

at
io

n
S
tr

in
g

re
pr

es
en

ta
ti
on

ha
s

ta
rg

et
ob

je
ct

?

is
 t

hi
s

la
st

 c
hi

ld
 C

tI
nv

oc
at

io
n

S
ta

te
m

en
t?

ha
s

no
un

ph
ra

se
?

ha
s

ch
ild

C
tI

nv
oc

at
io

n
S
ta

te
m

en
t?

ha
s

no
un

ph
ra

se
?

C
tI

nv
oc

at
io

n
S
ta

te
m

en
t

N
O

YE
S

to

on

N
O

N
O

YE
S

YE
S

N
O

YE
S

YE
S

N
O

N
O

YE
S

V
B

tw
o

ve
rb

on
e

ve
rb

V
B
Z

N
O

YE
S

YE
S

N
O

YE
S

YE
S

N
O

YE
S

F
ig

u
re

3.
8:

T
em

p
la

te
s

fo
r

C
tI

n
vo

ca
ti

on
st

at
em

en
t’

s
st

ri
n
g

re
p
re

se
n
ta

ti
on

s

31

For one verb rule with the postagged verb of “VB”, comment starts with “This

method” string again on its active form. It continues with appending verb in

present tense and noun phrase if exists. Finally prepares and appends string for

parameters. For passive form for CtInvocation statements, it appends the first

verb in its present form and noun phrase if it exists, if noun phrase doesn’t exist,

then it appends the string “the”. After the first CtInvocation statement, it ap-

pends noun phrase firstly, then verb in its third form and appropriate preposition

of verb. If the noun phrase doesn’t exist, then it appends verb in third form, then

the string “instance” and appropriate preposition of verb. This process continues

until the last CtInvocation statement on that code line. Finally, for the final

CtInvocation statement, if target exists, it appends the target object, if not, then

it appends the string “this instance”.

Two verb rule is actually has the same process and strings for appending as Au-

tocomment expects only one verb in method signature. In [20], there is a saying

that “It is often tempting to create functions that have multiple sections that

perform a series of operations. Functions of this kind do more than one thing,

and should be converted into many smaller functions, each of which does one

thing.”. It also says “Choose names that make the workings of a function or

variable unambiguous.”. One can conclude that using only one verb would in-

crease readability which is one of the necessary steps towards automatic comment

generation ambiguous method names.

For first preposition rule, it firstly appends the string “This method” for active

form. If the first preposition is “to”, then appends “converts this instance” and

if noun phrase exists, it appends “to”, the noun phrase respectively, if not, then

it only prepares and appends the string for parameters. If the first preposition is

“on”, it appends the string “is called when this instance is” and verb in second

form. For the CtInvocation statement comment, if it is the first CtInvocation

statement and the first preposition is “to” then it appends “converts the”. If it

also has noun phrase and has more CtInvocation statements in the current code

line, it gets the comments that is generated for those CtInvocation statements

32

and appends those comments, then appends the preposition “to” and noun phrase

respectively. This part is recursive in the middle of comment since Autocomment

has to know what this method converts to. If the first preposition is “on”, then it

appends “is called when this instance is” and verb in second form respectively. If

it is the first CtInvocation statement and has noun phrase, it appends the noun

phrase and the string “that is converted from”, if not, then appends “to”. Then,

if it is the last CtInvocation statement and has target, it appends the target

object, if it doesn’t have a target, then it appends the string “this instance”.

Autocomment also considers all other words with the postags that doesn’t exist

in rules such as “RB”, “JJ” etc. as “NN” in order to keep using one of rules. By

doing so, all method names become valid and has a summary comment template

which can be used in summary comment generation process.

In Code block 3.13, an auto-generated comment for a boolean method with NN

postag is given. This method has the postag sequence of “VBZ NN” for the words

“is online”.

1 // This method checks whether this instance is online or not

2 boolean isOnline() { ... }

Code Block 3.13: Generated comment for a boolean method with NN postag

In Code block 3.14, an auto-generated comment for a boolean method with “JJ”

postag is also given. This method has the postag sequence of “VBZ JJ” for the

words “is dynamic”. Replacing the postag “JJ” with “NN” for the “isDynamic()”

method makes it possible to use the same comment template. This example shows

that replacing “JJ” postag with “NN” makes the comment templates usable for

postags which are not in comment template grammar without any information

loss in comments.

1 // This method checks whether this instance is dynamic or not

2 boolean isDynamic() { ... }

Code Block 3.14: Generated comment for a boolean method with JJ postag

33

3.3.3.2 Method return types

Autocomment approaches method types whether it’s boolean or not. Another

approach would be whether the method has a return type or not but since Au-

tocomment puts important statements such as return statement in important

statement comments, there is no need to put return statement info to summary

comment as well. Summary comment generation process for boolean methods is

given in Figure 3.9 and will be explained in this subsection.

For methods with the return type of boolean, summary comment starts as “This

method checks whether the” string and then, there are two options to choose

from; if the method has verb with postag “VB”, then verb with “ing” suffix and

then, if it doesn’t have parameters “this instance” string is appended. Finally, if

it has noun phrase, it is appended, then string for parameters and “is successful

or not” string is appended. If the verb has the postag “VBZ”, then the same

process as “VB” verb applies but verb doesn’t get “ing” suffix and the end string

is just “or not” rather than “successful or not”.

Return types doesn’t affect the comment generation process for important state-

ments therefore whether boolean or not, important statements would all be the

same for all methods.

Two verb rule and first preposition is not supported for boolean methods due to

boolean methods’ naming convention. Boolean methods should start with a verb

rather than preposition which means that developer should change method’s name

with a one that applies convention rules. One solution for this problem would

be recommending a better name to developers but it is beyond the scope of the

current Autocomment right now and will be further implemented in the future.

34

st
ar

t
w

it
h
 "

T
h
is

 m
et

h
od

ch
ec

ks
"

st
ri

n
g

Tw
o

ve
rb

ru
le

O
n
e

ve
rb

ru
le

Fi
rs

t
p
re

p
os

it
io

n
ru

le

ap
p
en

d
 v

er
b
's

 t
ex

t
w

it
h

"i
n
g
"

af
fi
x

ap
p
en

d
 "

ch
ec

ks
w

h
et

h
er

 t
h
e"

 s
tr

in
g

ap
p
en

d
 "

th
is

cl
as

s"
st

ri
n
g

ap
p
en

d
 "

th
is

in
st

an
ce

"
st

ri
n
g

ap
p
en

d
n
ou

n
p
h
ra

se
's

te
xt

p
re

p
ar

e
an

d
ap

p
en

d
p
ar

am
et

er
s

st
ri

n
g

ap
p
en

d
 "

is
su

cc
es

sf
u
l
or

n
ot

"
st

ri
n
g

ap
p
en

d
"t

h
is

cl
as

s"
 s

tr
in

g

ap
p
en

d
 "

th
is

in
st

an
ce

"
st

ri
n
g

ap
p
en

d
n
ou

n
p
h
ra

se
'

s
te

xt

p
re

p
ar

e
an

d
ap

p
en

d
p
ar

am
et

er
s

st
ri

n
g

ap
p
en

d
"o

r
n
ot

"
st

ri
n
g

ru
le

fi
rs

t
p
re

p
os

it
io

n

fi
rs

t
ve

rb
's

p
os

ta
g

h
as

p
ar

am
et

er
s?

is
m

et
h
od

st
at

ic
?

h
as

n
ou

n
p
h
ra

se
?

b
oo

le
an

 s
u
m

m
ar

y
co

m
m

en
t

h
as

 p
ar

am
et

er
s?

is
 m

et
h
od

 s
ta

ti
c?

h
as

n
ou

n
p
h
ra

se
?

n
ot

 s
u
p
p
or

te
d

n
ot

 s
u
p
p
or

te
d

N
O

YE
S

YE
S

N
OYE

S

N
O

N
O

N
O

YE
S

YE
S

YE
S

N
O

V
B
Z

V
B

F
ig

u
re

3.
9:

S
u
m

m
ar

y
te

m
p
la

te
fo

r
b

o
ol

ea
n

m
et

h
o
d
s

35

3.3.3.3 Parameters

In summary templates, it is mentioned that a string for parameters is prepared

and appended to summary comment. In this subsection, that string will be

explained. In Figure 3.10, parameter string generation process is given.

Firstly, Autocomment checks whether there are parameters or not. If there isn’t

any parameters, then it checks whether the method is static or not. If it is static,

then only “this class” string will be returned and appended to summary. If it

isn’t static, then only “this instance” will be returned and appended to summary.

If there are parameters, Autocomment firstly gets the appropriate preposition

for the given verb. For example, if the verb is “add” then the preposition for

the verb would be “to” and if the verb is “find”, then the preposition would be

“from”. If the given verb is not in Autocomment’s list of verbs, then default

preposition which is “using” will be used. After that, it appends the string “the

given” and the parameters one by one. If there are multiple parameters, then

those parameters will be separated by the string “and”.

append "this class"

append "this instance"

get appropriate
preposition for verb

and "the given" string

append parameter's
name

append "and"

has more parameters?

is method static?

has parameters?

YES

NO

NO

YES

NO

Figure 3.10: Parameter string generation process

36

3.4 Comment Examples

In this section, comments which are generated by Autocomment are given with

their source code.

1 /**

2 * Summary: This method gets search from this class

3 *

4 * Important Statements:

5 * 1-) if isConfigured is not true, then throws Exception

6 * 2-) if searchHandler is not null, then throws StackOverflowError

7 * 3-) returns the new instance that is created as Search using the search

8 * Handler

9 */

10 public static Search getSearch(){

11 SearchHandler searchHandler = getSearchHandler();

12 if (!(isConfigured))

13 throw new Exception(("This JDisc does not have ’search’ " +

"configured."));

14

15 if (!(searchHandler == null))

16 throw new StackOverflowError();

17

18 return new Search(searchHandler);

19 }

Code Block 3.15: get search method with comments

37

1 /**

2 * Summary: This method converts this instance to xml string using the given

3 * object

4 *

5 * Important Statements:

6 * 1-) returns the xml that is converted from xstream

7 */

8 public String toXMLString(Object object){

9 return xstream.toXML(object);

10 }

Code Block 3.16: toXMLString method with comments

1 /**

2 * Summary: This method finds best match from the given versionSpec and

3 * versions

4 *

5 * Important Statements:

6 * 1-) returns the bestMatch

7 */

8 protected static Version findBestMatch(VersionSpecification versionSpec,

Set<Version> versions){

9 Version bestMatch = null;

10 for (Version version : versions){

11 if((version == null) || (!(versionSpec.matches(version))))

12 continue;

13 if((bestMatch == null) || ((bestMatch.compareTo(version)) < 0))

14 bestMatch = version;

15 }

16 return bestMatch;

17 }

Code Block 3.17: findBestMatch method with comments

38

1 /**

2 * Summary: This method registers using the given id and component

3 *

4 * Important Statements:

5 * 1-) if frozen , then throws IllegalStateException

6 * 2-) if componentVersionsByName is null , then put instance into

7 * componentsByNameByNamespace

8 * 3-) put instance into componentVersions

9 * 4-) put instance into componentsById

10 * 5-) if componentVersions is null , then put instance into

11 * componentVersionsByName

12 */

13 public void register(ComponentId id, COMPONENT component){

14 if(frozen)

15 throw new IllegalStateException("Cannot modify a frozen component

registry");

16 Map<String, Map<Version, COMPONENT>> componentVersionsByName =

componentsByNameByNamespace.get(id.getNamespace());

17 if(componentVersionsByName == nul){

18 componentVersionsByName = new LinkedHashMap();

19 componentsByNameByNamespace.put(id.getNamespace(),

componentVersionsByName);

20 }

21 Map<Version, COMPONENT> componentVersions =

componentVersionsByName.get(id.getName());

22 if(componentVersions == nul){

23 componentVersions = new LinkedHashMap();

24 componentsByNameByName.put(id.getName(), componentVersions);

25 }

26 componentVersions.put(id.getVersion(), component);

27 componentsById.put(id, component);

28 }

Code Block 3.18: register method with comments

39

1 /**

2 * Summary: This method checks whether deleteing the given page is

* successful or not.

3 *

4 * Important Statements:

5 * 1-) if key deleteed using configKeys is equal to E_OK , then infoed

6 * instance using logger

7 * 2-) unless page is deleteed equal to E_OK , returns the E_ERROR

8 * 3-) returns the E_OK

9 */

10 public boolean delete(Page page) {

11 if ((deletePage(page)) == (E_OK)) {

12 if ((registry.deleteReference(page.name)) == (E_OK)) {

13 if ((configKeys.deleteKey(page.name)) == (E_OK)) {

14 logger.info("page deleted");

15 }else {

16 logger.info("configKey not deleted");

17 }

18 }else {

19 logger.info("deleteReference from registry failed");

20 }

21 }else {

22 logger.info("delete failed");

23 return E_ERROR;

24 }

25 return E_OK;

26 }

Code Block 3.19: delete method with comments

40

1 /**

2 * Summary: This method is called when this instance is createed

3 *

4 * Important Statements:

5 * 1-) calls when super is created

6 * 2-) gets int from the mPrefs is assigned to mCurViewMode

7 */

8 protected void onCreate(Bundle savedInstanceState){

9 super.onCreate(savedInstanceState);

10 SharedPreferences mPrefs = getSharedPreferences();

11 mCurViewMode = mPrefs.getInt("view-mode", DAY_VIEW_MODE);

12 }

Code Block 3.20: oncreate method with comments [21]

41

Chapter 4

Evaluation

In order to find out how viable the Autocomment’s auto-generated comments are,

a survey with 50 participants with 10 questions has been done. There wasn’t any

time limit to answer all questions and all questions were required to be answered

to finish the survey. Participants have finished the survey in 3 minutes and

17 seconds on average. Participants who have finished the survey less than 90

seconds(6 participants) are excluded from the results as the intuition is that those

participants haven’t filled the survey carefully. Participants haven’t be informed

in anyway except the survey description which says “Autocomment is a tool to

generate comments for methods only using source code. This survey results will

be used in my master thesis. Thank you for participating. -Eren YILDIZ” to

keep the participants unbiased and to get the most accurate feedback from them.

Survey has been done in a survey website SurveyMonkey[22].

First question was the work experience in programming in months. In the result

given in Figure 4.1, average work experience of 50 participants is 47 months which

is almost 4 years. This means the survey answers and the results are dependable.

Second question was given in Figure 4.2. The question “Do you do code review?

If so, then do you think that comments are helpful for code review?” was asked

to participants.

42

Figure 4.1: Result of the first question of survey

Figure 4.2: Second question of survey

As in Figure 4.3, results says that 41 out of 50 people in programming industry

do code review and find comments helpful. This implies that comments are

important and needed. This also justify the Autocomment’s aims and objectives

as it stated in the section 1.3. It was also asked to 8 people who do code reviews

but why don’t find the comments helpful to get a better feedback. Most of them

stated that they actually like good quality comments but most of the developers

write it poorly. They also says that sometimes it is better not to have any

comments rather than ambiguous comments which lead the other developers who

follow the related project write buggy codes unintentionally. This means that they

actually find comments helpful but they need to be descriptive and unambiguous.

43

Figure 4.3: Result of the second question of survey

Third question was given in Figure 4.4. The question “Which areas you have

experience on?” was asked to participants. Question was multiple-choice which

means that a participant can choose more than one option. For example, a

participant can be tester, developer and researcher at the same time and choose

accordingly. This question is asked to find out whether the comments are only

helpful or not for the developers who write comment.

Figure 4.4: Third question of survey

As in Figure 4.5, people with wide range of roles have participated.

44

Figure 4.5: Result of the third question of survey

Questions from fourth to eighth were the rating questions of comments quality.

All comment rating questions are given below in Figures 4.6, 4.8, 4.10, 4.12, 4.14

and the results are given in Figures 4.9, 4.11, 4.13, 4.15 respectively. Also in

ninth question overall summary comments’ quality and in tenth question, over-

all important statements comments’ quality were asked and results are given in

Figures 4.16, 4.17 respectively.

45

Figure 4.6: Fourth question of survey

Figure 4.7: Result of the fourth question of survey

46

Figure 4.8: Fifth question of survey

Figure 4.9: Result of the fifth question of survey

47

Figure 4.10: Sixth question of survey

Figure 4.11: Result of the sixth question of survey

48

Figure 4.12: Seventh question of survey

Figure 4.13: Result of the seventh question of survey

49

Figure 4.14: Eighth question of survey

Figure 4.15: Result of the eighth question of survey

50

Figure 4.16: Result of the ninth question of survey

Figure 4.17: Result of the tenth question of survey

51

Results say that, with average rating of 6.58 for summary comments and 6.14 for

important statement comments, people actually care about comments and want

them in the projects. Although there isn’t any question about “What can be

done to improve Autocomment?” or “Why did you rate low for that question

specifically or overall?” but some of them sent their feedback regardless. One of

the participant says that summary comments are not necessary as they give very

little information about how the code does its work. When it is explained to the

participant that the purpose of the summary comments is to explained to reader

“what” the method does instead of “how” method does it. Moreover, summary

comments designed to be straightforward to be readable for non-developers as

well. After the explanation, participant agreed and find summary comments ac-

ceptable and appropriate for its purpose. Another participant asked that “Why

comment format does not look like javadoc?”. Participant wanted the comments

to be in javadoc format yet Autocomment’s target audience doesn’t limited to

developers but it is much more broader than that. Thus, it needs a new and

different format than javadoc. When it is explained, participant loved the idea

of having a comment that also can be readable by non-developers such as cus-

tomers. Another participant asked “What does the statement mean?”. Like all

other answers to feedbacks, the answer was not told to the participant before

finishing the survey. After participant has finished it, it is explained that state-

ment actually means “a code line”. Participant says that “code line” is more

explanatory than just “statement”. Participant’s feedback is noted to improve

Autocomment’s comment quality. Another participant asked “Why there isn’t

any information about object like its class rather than just its name?”. Auto-

comment’s comments are designed to be simple but informative as possible. In

this regard, only the variable name’s are used in comments yet sometimes, as in

the Figure 4.14, variable names don’t really provide any useful information about

its context like variable “mCurViewMode”. This is due to the fact that not all de-

velopers follow the clean code rules as in the book [20] so in order the participant’s

request to be included in Autocomment, there needs to be another research about

variable names informativeness so that if it is informative enough, it can be used

52

in comment, if not, then its class name also needs to be included in comment.

In addition, participant says that, whether the variable name is informative or

not, there needs to be an option to toggle class names on and off as reader may

want to look at the class name regardless due to the polymorphism. This feature

request is noted to be researched and added to Autocomment in the future. Some

of the participants reasoned that they gave low rating due to typos. Autocom-

ment depends on Stanford’s NLP toolkit heavily to overcome problems like this.

As in the Figure 4.14, eighth question has typo in the word “createed”. Reason

behind thist is that Stanford’s NLP toolkit doesn’t have a feature to change form

of given verb. Therefore Autocomment uses a local dictionary to change word’s

form but it’s capacity isn’t enough. One of the Stanford’s NLP toolkit’s developer

say that this feature will be available in the future release so when this feature

is available, Autocomment will not have typos any more. Another participant,

who is a project leader, researcher and also developer said that “Autocomment

is a lovely project which does the comment writing for me. I like comments as

it let me follow the developers who work under me yet developers are tend to

forget to write comment often, or they are just being lazy. Autocomment gives

those people opportunity to write comments as with Autocomment, they don’t

have to write comment from scratch, but if necessary, they can just edit or add

new information about the context into comment.” This is one of the aims of

Autocomment and getting this kind of feedback from a project leader makes it

viable.

One important thing to note that, none of the participants find the comments

untrustworthy. In fact, some of the participant stated that Autocomment’s com-

ments were able to captured critical and only the critical statements. This proves

that Autocomment is reliable.

Results are also grouped by their roles and given in appendix.

53

Chapter 5

Conclusion

In this paper, an automatic comment generation framework named Autocomment

is presented. Autocomment is able to generate 2 types of comments; summary

comments which answers the question of ”what does this method do?” and impor-

tant statement comments which answers the question of ”how does this method

accomplish its tasks?”. By utilizing the AST and using a rule based approach,

Autocomment is able to generate those comments automatically.

As the survey results imply, Autocomment is able to find the most important

statements in the method and create reliable comments for readers including de-

velopers, managers, testers, designers, project leaders, researchers and the people

who are working in programming industry.

For future works, Autocomment can be extended with many other features such

as; ambiguous variable name detection, method and variable name recommenda-

tion, use of call graphs to enrich the contextual information of comments etc.

54

Appendix

Survey Results of Designers

Result of the first question of survey of only designers

55

Result of the second question of survey of only designers

56

Result of the third question of survey of only designers

57

Result of the fourth question of survey of only designers

58

Result of the fifth question of survey of only designers

59

Result of the sixth question of survey of only designers

60

Result of the seventh question of survey of only designers

61

Result of the eighth question of survey of only designers

62

Result of the ninth question of survey of only designers

63

Result of the tenth question of survey of only designers

64

Survey Results of Developers

Result of the first question of survey of only developers

Result of the second question of survey of only developers

65

Result of the third question of survey of only developers

66

Result of the fourth question of survey of only developers

67

Result of the fifth question of survey of only developers

68

Result of the sixth question of survey of only developers

69

Result of the seventh question of survey of only developers

70

Result of the eighth question of survey of only developers

71

Result of the ninth question of survey of only developers

72

Result of the tenth question of survey of only developers

73

Survey Results of Managers

Result of the first question of survey of only managers

Result of the second question of survey of only managers

74

Result of the third question of survey of only managers

75

Result of the fourth question of survey of only managers

76

Result of the fifth question of survey of only managers

77

Result of the sixth question of survey of only managers

78

Result of the seventh question of survey of only managers

79

Result of the eighth question of survey of only managers

80

Result of the ninth question of survey of only managers

81

Result of the tenth question of survey of only managers

82

Survey Results of Project Leaders

Result of the first question of survey of only project leaders

Result of the second question of survey of only project leaders

83

Result of the third question of survey of only project leaders

84

Result of the fourth question of survey of only project leaders

85

Result of the fifth question of survey of only project leaders

86

Result of the sixth question of survey of only project leaders

87

Result of the seventh question of survey of only project leaders

88

Result of the eighth question of survey of only project leaders

89

Result of the ninth question of survey of only project leaders

90

Result of the tenth question of survey of only project leaders

91

Survey Results of Researchers

Result of the first question of survey of only researchers

Result of the second question of survey of only researchers

92

Result of the third question of survey of only researchers

93

Result of the fourth question of survey of only researchers

94

Result of the fifth question of survey of only researchers

95

Result of the sixth question of survey of only researchers

96

Result of the seventh question of survey of only researchers

97

Result of the eighth question of survey of only researchers

98

Result of the ninth question of survey of only researchers

99

Result of the tenth question of survey of only researchers

100

Survey Results of Testers

Result of the first question of survey of only testers

Result of the second question of survey of only testers

101

Result of the third question of survey of only testers

102

Result of the fourth question of survey of only testers

103

Result of the fifth question of survey of only testers

104

Result of the sixth question of survey of only testers

105

Result of the seventh question of survey of only testers

106

Result of the eighth question of survey of only testers

107

Result of the ninth question of survey of only testers

108

Result of the tenth question of survey of only testers

109

References

[1] “Chapter 2. grammars,” 2017. [Online]. Available: https://docs.oracle.com/

javase/specs/jls/se7/html/jls-2.html

[2] “Chapter 18. syntax,” 2017. [Online]. Available: https://docs.oracle.com/

javase/specs/jls/se7/html/jls-18.html

[3] “Code conventions for the java programming language,” 2017. [Online].

Available: http://www.oracle.com/technetwork/java/codeconvtoc-136057.

html

[4] L. Zhang, T. Qin, Z. Zhou, D. Hao, and J. Sun, “Identifying use cases in

source code,” Journal of Systems and Software, vol. 79, no. 11, pp. 1588–

1598, 2006.

[5] B. Fluri, M. Würsch, E. Giger, and H. C. Gall, “Analyzing the co-evolution

of comments and source code,” Software Quality Journal, vol. 17, no. 4, pp.

367–394, 2009.

[6] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,

“Towards automatically generating summary comments for java methods,”

in Proceedings of the IEEE/ACM International Conference on Automated

Software Engineering, ser. ASE ’10. New York, NY, USA: ACM, 2010, pp.

43–52. [Online]. Available: http://doi.acm.org/10.1145/1858996.1859006

[7] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically detecting

and describing high level actions within methods,” Proceeding of the 33rd

international conference on Software engineering - ICSE ’11, 2011.

110

https://docs.oracle.com/javase/specs/jls/se7/html/jls-2.html
https://docs.oracle.com/javase/specs/jls/se7/html/jls-2.html
https://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
https://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html
http://doi.acm.org/10.1145/1858996.1859006

[8] ——, “Generating parameter comments and integrating with method sum-

maries,” 2011 IEEE 19th International Conference on Program Comprehen-

sion, 2011.

[9] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of auto-

mated text summarization techniques for summarizing source code,” 2010

17th Working Conference on Reverse Engineering, 2010.

[10] L. Moreno, A. Marcus, L. Pollock, and K. Vijay-Shanker, “Jsummarizer: An

automatic generator of natural language summaries for java classes,” 2013

21st International Conference on Program Comprehension (ICPC), 2013.

[11] L. Moreno, “Summarization of complex software artifacts,” Companion Pro-

ceedings of the 36th International Conference on Software Engineering -

ICSE Companion 2014, 2014.

[12] P. W. Mcburney and C. Mcmillan, “Automatic documentation generation

via source code summarization of method context,” Proceedings of the 22nd

International Conference on Program Comprehension - ICPC 2014, 2014.

[13] E. Yildiz and E. Ekin, “Automatic comment generation using only source

code,” in 2017 25th Signal Processing and Communications Applications

Conference (SIU), May 2017, pp. 1–4.

[14] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier,

“Spoon: A library for implementing analyses and transformations of java

source code,” Software: Practice and Experience, vol. 46, pp. 1155–1179,

2015. [Online]. Available: https://hal.archives-ouvertes.fr/hal-01078532/

document

[15] “Defining methods, the java tutorials learning the java language classes

and objects,” 2017. [Online]. Available: https://docs.oracle.com/javase/

tutorial/java/javaOO/methods.html

111

https://hal.archives-ouvertes.fr/hal-01078532/document
https://hal.archives-ouvertes.fr/hal-01078532/document
https://docs.oracle.com/javase/tutorial/java/javaOO/methods.html
https://docs.oracle.com/javase/tutorial/java/javaOO/methods.html

[16] “Introduction to collections the java tutorials collections,” 2017. [Online].

Available: https://docs.oracle.com/javase/tutorial/collections/intro/index.

html

[17] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and

D. McClosky, “The Stanford CoreNLP natural language processing toolkit,”

in Association for Computational Linguistics (ACL) System Demonstrations,

2014, pp. 55–60. [Online]. Available: http://www.aclweb.org/anthology/P/

P14/P14-5010

[18] 2017. [Online]. Available: https://www.ling.upenn.edu/courses/Fall 2003/

ling001/penn treebank pos.html

[19] T. Parr, The Definitive ANTLR 4 Reference, 2nd ed. Pragmatic Bookshelf,

2013.

[20] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship,

1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2008.

[21] “Android documentation of activity class,” 2017. [Online]. Available:

https://developer.android.com/reference/android/app/Activity.html

[22] “Surveymonkey,” San Mateo, California, USA, 2017. [Online]. Available:

https://www.surveymonkey.com

112

https://docs.oracle.com/javase/tutorial/collections/intro/index.html
https://docs.oracle.com/javase/tutorial/collections/intro/index.html
http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://developer.android.com/reference/android/app/Activity.html
https://www.surveymonkey.com

	Abstract
	Özet
	Acknowledgements
	List of Tables
	List of Figures
	List of Abbreviations
	1 Introduction
	1.1 Syntax, Grammar and AST Definition and Utilization
	1.2 Code Conventions for Java
	1.3 Aims and Benefits
	1.4 Thesis Organization

	2 Literature Survey
	3 Approach
	3.1 Analysis of Methods
	3.1.1 Culling the methods
	3.1.2 Extraction of components in method signature
	3.1.3 Tokenizing the components by CamelCase and snake_case notations
	3.1.4 Simplifying the data types
	3.1.5 POS tagging the words

	3.2 Analysis of EUnits
	3.2.1 Identifying the EUnits
	3.2.2 Extraction of EUnits
	3.2.2.1 Extracting the Ending EUnits
	3.2.2.2 Extracting the Void Return EUnits
	3.2.2.3 Extracting the Same Action Sequence EUnits
	3.2.2.4 Extracting the Data Facilitator EUnits
	3.2.2.5 Extracting the Controlling EUnits

	3.3 Comment Templates
	3.3.1 Summary templates
	3.3.2 Important statement templates
	3.3.3 Effects on comments
	3.3.3.1 POS tags
	3.3.3.2 Method return types
	3.3.3.3 Parameters

	3.4 Comment Examples

	4 Evaluation
	5 Conclusion
	Appendix
	Reference

