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Abstract
Let S denote the class of functions f(z) = z + a2z

2 + ... analytic
and univalent in the open unit disc D = {z ∈ C||z| < 1}. Consider
the subclass and S∗ of S, which are the classes of convex and starlike
functions, respectively. In 1952, W. Kaplan introduced a class of an-
alytic functions f(z), called close-to-convex functions, for which there
exists φ(z) ∈ C, depending on f(z) with Re(f ′(z)

φ′(z)) > 0 in , and prove
that every close-to-convex function is univalent. The normalized class
of close-to-convex functions denoted by K. These classes are related by
the proper inclusions C ⊂ S∗ ⊂ K ⊂ S.
In this paper, we generalize the close-to-convex functions and denote
K(λ) the class of such functions. Various properties of this class of
functions is alos studied.
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1 Introduction

Let be the family of functions p(z) = 1 +
∑∞

n=1 pnz
n which are analytic in D

and satisfy the conditions p(0) = 1, Rep(z) > 0 for all z ∈.
Let S denote the class of functions f(z) of the form f(z) = z +

∑∞
n=2 anz

n

which are analytic and univalent in D.
We recall here the definition of the well-known classes of starlike, convex and
close-to-convex functions [3], respectively,

S∗ =
{
f ∈ S|Rezf

′(z)
f(z)

> 0, z ∈ D
}
, (1)

C =
{
f ∈ S|(1 +Re

zf ′′(z)
f ′(z)

) > 0, z ∈ D
}
, (2)

K =
{
f ∈ S|∃ψ ∈ C,Re

f ′(z)
ψ(z)

> 0, z ∈ D
}
. (3)

When considering these definitions above, in general, the functions belonging
to them can be represented as the functions of .
Alexander’s Theorem says us ”if φ(z) is convex, then ψ(z) := zφ′(z) is starlike”.
Hence, we can rewrite K as follows:

K =
{
f ∈ S|∃ψ ∈ S∗ � Re(z

f ′(z)
ψ(z)

) > 0, forallz ∈ D
}
. (4)

A fairly complete treatment, wtih applications of the fractional calculus, is
given in the books [6] by Oldham and Spanier, and [5] by Miller and Ross. We
refer to [10] for more insight into the concept of the fractional calculus. For
further details on the materials in this paper see [4].
For convenience, we shall remind some definitions of the fractional calculus
(i.e, fractionla integral and fractional derivative).
The fractional integral of order λ for ana analytical function f(z) in D is
defined by

D−λ
z f(z) =

1

Γ(λ)

∫ z

0

f(ζ)

(z − ζ)1−λ
dζ, (λ > 0) (5)
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where the multiplicity of (z − ζ)λ−1 is removed by requiring log(z − ζ) to be
real when (z − ζ) > 0.
The fractional derivative of order λ for an analytic function f(z) inD is defined
by

Dλ
z f(z) =

d

dz
(D−λ

z f(z)) =
1

Γ(1 − λ)

d

dz

∫ z

0

f(ζ)

(z − ζ)λ
dζ, (0 ≤ λ < 1), (6)

where the multiplicity of (z − ζ)−λ is removed by requiring log(z − ζ) to be
real when (z − ζ) > 0.
Under the hypothesis of the fractional derivative , the fractional derivative of
order (n+ λ) for an analytic function f(z) in D is defined by

Dn+λ
z f(z) =

dn

dzn
(Dλ

z f(z)), (0 ≤ λ < 1, n ∈ N0 =
{

0, 1, 2, ...
}

). (7)

From the definitions of the fractional calculus, we see that

D−λ
z zk =

Γ(k + 1)

Γ(k + 1 + λ)
zk+λ, (λ > 0, k > 0) (8)

Dλ
z z

k =
Γ(k + 1)

Γ(k + 1 + λ)
zk−λ, (0 ≤ λ < 1, k > 0) (9)

and

Dn+λ
z zk =

Γ(k + 1)

Γ(k + 1 − λ)
zk−n−λ, (0 ≤ λ < 1, k > 0, n ∈ N0, k − n �= −1,−2, ...)

(10)

Therefore we see that for any real λ

Dλ
z z

k =
Γ(k + 1)

Γ(k + 1 − λ)
zk−λ, (k > 0, k − λ �= −1,−2, ...) (11)

2 Main Results

Using the rule of the fractional derivative which is mentioned in the preceding,
we define the λ− fractional operator as follows,

f(z) = z + a2z
2 + ...+ anz

n + ...⇒ Dλ
z f(z) = Dλ

z (z + a2z
2 + ...+ anz

n + ...)

Dλf(z) = Γ(2 − λ)zλDλ
z f(z) = z +

∞∑
n=2

an
Γ(2 − λ)Γ(n+ 1)

Γ(n+ 1 − λ)
zn (12)

From the definition of Dλf(z) we have the following properties.
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i.
D′f(z) = Df(z) = limλ→1D

λf(z) = zf ′(z);

ii.
Dλ(Dδf(z)) = Dδ(Dλf(z)) =

z +

∞∑
n=2

an
Γ(2 − λ)Γ(2 − δ)(Γ(n+ 1))2

Γ(n + 1 − λ)Γ(n+ 1 − δ)
zn;

iii.

D(Dδf(z)) = z +

∞∑
n=2

annan
Γ(2 − λ)Γ(n+ 1)

Γ(n+ 1 − λ
zn = z(Dδf(z))′ =

Γ(2 − λ)zλ(λDλ
z + zDλ+1

z f(z));

vi.
D(Dλf(z))

Dλf(z)
= z

f ′(z)
f(z)

, forλ = 0,

= 1 + z
f ′′(z)
f ′(z)

, forλ = 1.

Thus, we define the following class of functions.

Definition 2.1 Let f(z) = z+
∑∞

n=2 anz
n be an element of S. Then f(z) is

said to be λ− fractional close-to-convex function in D if there exists a function
g(z) of S∗ such that

Re(
D(Dλf(z))

g
(z)) > 0

for all z ∈ D. The class of these functions is denoted by K(λ).
It is obviously that K(0) = K.
By using the definition above and properties of λ− fractional operator Dλf(z),
we have the following properties.

i.

L(z) =
z

1 − z
= z+z2+...+zn+...DλL(z) = z+

∞∑
n=2

Γ(2 − λ)Γ(n+ 1)

Γ(n+ 1 − λ)
zn =

zF (2, 1, 2 − λ; z).
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Then we have,

Re(
D(Dλf(z))

g(z)
) > 0 ⇒ Re(

zf ′(z) ∗DλL(z)

g(z)
) > 0 ⇒

Re(
zf ′(z) ∗ zF (2, 1, 2 − λ; z)

g(z)
) > 0.

(a) For λ = 0,

Re(
zf ′(z) ∗ L(z)

g(z)
) > 0 ⇒ Re(

zf ′(z)
g(z)

) > 0.

(b) For λ = 1,

Re(
zf ′(z) ∗ L′(z)

g(z)
) = Re(

zf ′(z)
g(z)

) > 0.

Where k(z) is a Koebe function.

ii.

Re(
D(Dλf(z))

g
(z)) > 0 = Re(z

f ′(z)
g(z)

(1 + z
f ′′(z)
f ′(z)

)) > 0, λ = 1,

= Re(z
f ′(z)
g(z)

) > 0, λ = 0.

Theorem 2.2 Let f(z) be an element of K(λ). Then

r(1 − r)

(1 + r)3
≤ |D(Dλf(z))| ≤ r(1 + r)

(1 − r)3
(13)

Proof 2.3 Using the definition of the class K(λ), we can write

D(Dλf(z))

g(z)
= p(z) ⇒ D(Dλf(z)) = p(z)g(z). (14)

where p(z) ∈ P . On the other hand, we have the inequalities

1 − r

1 + r
≤ |p(z)| ≤ 1 + r

1 − r
(15)

and

r

(1 + r)2
≤ |g(z)| ≤ r

(1 − r)2
(16)

from [1]. By considering (14), (15) and (16), we obtain (13).
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If f(z) be an element of K(λ). Then

1 − r

r(1 + r)3
≤ |f ′(z)| ≤ (1 + r)

r(1 − r)3
, forλ = 0, (17)

(1 − r)

(1 + r)3
≤ |f ′(z) + zf ′′(z)| ≤ (1 + r)

(1 − r)3
, forλ = 1. (18)

Theorem 2.4 Let f(z) be an element of K(λ); then

|an| ≤ nΓ(n+ 1 − λ)

Γ(2 − λ)Γ(n+ 1)
zn (19)

We notice that this result is, indeed, sharp since the extremal function

f(z) = z +

∞∑
n=2

nΓ(n+ 1 − λ)

Γ(2 − λ)Γ(n+ 1)
zn (20)

is the solution of the fractional differential equation

Dλ
z f(z) =

1

Γ(2 − λ)
z−λ z

(1 − z)2
.

Proof 2.5 If we use the definition of the class K(λ), then we can write

D(Dλf(z))

g(z)
= p(z) ⇒ D(Dλf(z)) = p(z)g(z) ⇒ (21)

z +
∞∑

n=2

Γ(2 − λ)Γ(n+ 1)

Γ(n+ 1 − λ)nanzn
(22)

= (z + b2z
2 + ...+ bnz

n + ...)(1 + p1z + p2z
2 + ...+ pnz

n + ...) ⇒ (23)

nan
Γ(2 − λ)Γ(n+ 1)

Γ(n+ 1 − λ)
= (bn + bn−1p1 + ...+ b2pn−2 + b1pn−1) ⇒ (24)

n |an| Γ(2 − λ)Γ(n+ 1)

Γ(n+ 1 − λ)
≤ |bn| + |bn−1| |p1| + ...+ |b1| |pn−1| ⇒ (25)

≤ n + (n− 1)2 + (n− 2)2 + ...+ 2.2 + 1.2 (26)

= n+ 2[1 + 2 + ...+ (n− 1)] = n2 ⇒ (27)

|an| ≤ nΓ(n+ 1 − λ)

Γ(2 − λ)Γ(n+ 1)
(28)

We notice that if we take λ = 0 then we obtain |an| ≤ n which is the coefficient
inequality for the close-to-convex functions, and we take λ = 1, then |an| ≤ 1.
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