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Abstract—The Special Theory of Relativity had been established
nearly one century ago to conciliate some seemingly contradictory
concepts and experimental results such as the Ether, universal time,
contraction of dimensions of moving bodies, absolute motion of the
Earth, speed of the light, etc. Hence the fundamental revolutionary
formulas of the Theory, i.e., the Lorentz Formulas, had been derived
first by Einstein by dwelling on a postulate which stipulated the
constancy of the speed of the light. To this end he had first postulated
that every reference system has a time proper to itself and then
redefined the notions of simultaneity, synchronous clocks, time interval,
the length of a rod in a system at rest, the length in a moving
system, etc. A second postulate of Einstein, which stated that every
physical theory is invariant under the Lorentz transformation, enabled
him to claim that the Theory of Electromagnetism is correct but the
Newtonian Mechanics has to be re-established. Since then the Theory
was almost always presented in this way by both Einstein and others
except only a few. The aim of this paper is to show that the Lorentz
formulas can be derived from the Maxwell equations if one pstulates
that the total electric charge of an isolated body does not change if it is
in motion. To this end one dwells only on the permanence principle of
functional equations, which is not a physical but purely mathematical
concept. Thus, from one side the Special Relativity becomes a natural
issue (or a part) of the Maxwell Theory and, from the other side, the
derivation of the transformation rules pertinent to the electromagnetic
field becomes straightforward and easy.
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1. INTRODUCTION

As is well known, the Special Theory of Relativity which had been
discovered at the beginning of the last century seems to be born as a
result of the long discussions on the problem of whether the absolute
motion of the earth can be detected through observations made on
the earth itself. In the earlier papers by Lorentz [1], Poincaré [2] and
Einstein [3], published between 1904–1906, as well as in almost all
papers and books published thereafter the subject was presented in
this way and based on the assumption that postulates the constancy
of the velocity of the light regardless the situation of its source. To
this end Einstein first postulated that every reference system has a
time proper to itself and then redefined the notions of simultaneity,
synchronous clocks, time interval, the length of a rod in a system at
rest, the length in a moving system, etc and then stated two additional
postulates which became thereafter the basis of the Theory, namely:

i.) The speed of light in empty space is the same in all inertial frames,
ii.) The laws of physics are the same in all inertial reference frames.

Even today the presentation of the subject is made, in general,
in this way by dwelling on these postulates (see, for example [4,
Ch.40], [5, Ch.3], [6, Ch.1]. See also [3, §2]. It is important to
observe that the so-called Lorentz transformation, which constitutes
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the main basis of the theory, was derived by considering only the
first of these postulates. As to the second postulate, it was first
used by Einstein, together with the Lorentz transformation resulted
from the first one, to check if the already established Newtonian
Mechanics and Maxwell’s Electromagnetism are correct. Thus, from
one side it permitted him to re-establish the Mechanics, and, from
the other side to reveal the rule which interrelates the expressions
of the electromagnetic field in different inertial systems. Today it
is extensively used to obtain the explicit expressions of solutions to
complicated electromagnetic problems, connected with moving bodies,
starting from their corresponding expressions supposed to be known
in appropriate (rest) systems (see for example [7–18]). So, it is
unavoidable in contemporary electrical engineering curriculum (see for
example [19]).

Although Einstein and his followers never gave up the light
postulate in establishing the Theory of Special Relativity, its role had
been subject to some objections since even earlier days of the Theory.
For example in 1910 Ignatovski [20] had showed that the light postulate
may be replaced by some kinematical assumptions to obtain a one-
parameter family of space-time transformation groups under which
space-time is invariant. The parameter is of the dimension of velocity
and for any finite value of the parameter the group is isomorphic to the
Lorentz group. Furthermore, the inertial-frame-dependent formalism
of Einstein was also objected by some scientists. For example, in 1914
Robb [21] tried to establish the Theory in inertial-frame-independent
form. With certain suitable postulates he obtained the geometry
of Minkowski space in a purely geometrical manner. More recently
Jefimenko [22] had tried to obtain the Lorentz formulas from the
retarded potentials connected with the electromagnetic field dwelling
on the so-called effective volume concept. Since this conecpt, which
had been introduced nearly one century ago by Liénard [23], is based
on the contraction of length, the starting assumptions of [22] are in
fact include the Lorentz formulas themselves.

The aim of the present paper is to show that the Lorentz formulas
are already inherent in the Maxwell equations and, hence, can be
derived from the Maxwell equations if one postulates that the total
electric charge of an isolated body does not change when it is in motion.
In other words, the special theory of relativity can be thought and
taught as a chapter of the Maxwell Theory. This approach makes the
Special Theory of Relativity rather natural and easily comprehensible
for anybody who is familiar with the Electromagnetism. To this end
we solve the simplest problem connected with the Maxwell equations
in three different coordinate-systems and compare the solutions on
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the basis of the permanence principle of functional equations [24]. The
problem consists in finding the electromagnetic field created by a point
charge while the coordinate systems in question are as follows:

a) A system in which the Maxwell equations are supposed to be valid
(an inertial system) while the charged point is in motion with
constant (vector) velocity,

b) A system attached to the charged particle,
c) A system which is not inertial.

The discussions to be made in what follows will also enable us to answer
clearly the following questions:

a) Are the afore-mentioned postulates (i) and (ii) independent from
each other? Is it possible to omit the first one to establish the
Special Theory of Relativity?

b) Can anybody reject the Lorentz formulas without rejecting the
Maxwell equations?

c) Is it possible to replace the Lorentz formula by more generalized
ones without changing the Maxwell equations?

d) Why the Maxwell equations are correct only in inertial systems?

Furthermore, derivation of the transformation rules pertinent to the
space coordinates, time as well as the electromagnetic field components
become also rather easy by straightforward computations without
needing recourse to redefine the aforementioned notions (simultaneity,
synchronization of clocks, length of rods, etc), they become immediate
results of the Lorentz transformation.

It is also worthwhile to notice that this work was motivated by
the fact that the Maxwell equations are invariant under the Lorentz
transformation, which claims that by applying this transformation on
any solution valid in a system K one obtains the solution valid in
another system K ′ (a direct problem). This naturally arises the inverse
problem as shown schematically in the following figure: Is it possible
to obtain the Lorentz transformation by comparing the expressions of
a field known in two inertial systems, say K and K ′?

Lorentz
transformation

+ Solution in K ⇒ Solution in K ′

Lorentz
transformation

⇐ Solution in K + Solution in K ′
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The aim of the present work is to show that the answer to the inverse
problem is positive if one postulates that the total electric charge of
an isolated body does not change if it is in motion. In what follows
we will present the solutions pertinent to the aforementioned problems
very briefly in order.

2. EXPLICIT EXPRESSIONS OF THE FIELD CREATED
BY A POINT CHARGE

2.1. Expressions Valid in a System in Which the Maxwell
Equations Are Supposed to Be Valid While the Charged
Point Is in Motion with Constant Velocity

Consider an inertial system of reference, say a cartesian coordinate
system Oxyz, and a point charge of amount Q which makes a uniform
motion on a straight-line, say Ox-axis. We postulate that the charge Q
of the point remains constant during the motion. If one assumes that
at the time t = 0 the charge is at the point O and its velocity is equal
to v, then the corresponding charge and current densities become

ρ = Qδ(x− vt)δ(y)δ(z) (1)

and
J = Qvδ(x− vt)δ(y)δ(z)ex, (2)

respectively. Here δ(.) denotes the usual Dirac delta distribution. Then
from the Maxwell equations written for the vacuum, namely:

curlE + µ0
∂

dt
H = 0, curlH − ε0

∂

dt
E = J, divE = ρ/ε0, divH = 0,

where E(x, y, z, t) and H(x, y, z, t) are the electric and magnetic fields
while the constants ε0 and µ0 stand for the permittivity and magnetic
permeability of the vacuum, respectively, one writes

E = −gradV − ∂

∂t
A, H =

1
µ0
curlA (3)

with

V (x, y, z, t) =
Q

4πε0

∫ ∫ ∫
δ

(
ξ − v

[
t− R

c

])
δ(η)δ(ζ)

dξdηdς

R
(4)

and
A1(x, y, z, t) =

v

c2
V (x, y, z, t), A2 = 0, A3 = 0. (5)
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Here c stands for the velocity of the electromagnetic wave in the
vacuum (c = 1/

√
ε0µ0) while V (x, y, z, t) and A(x, y, z, t) are the

usual retarded scalar and vector potentials. As to R, it denotes the
distance between the observation point (x, y, z) and the volume element
at (ξ, η, ζ), namely:

R = {(x− ξ)2 + (y − η)2 + (z + ζ)2} 1
2 . (6)

In (5) the quantities with sub-indices 1, 2 and 3 signify the cartesian
components of a vector, namely: A = (A1, A2, A3). Notice that the
couple of potentials (A, V ) appearing in (3) is not unique but to find the
field components correctly we can confine ourselves with those given
by (4) and (5).

Although an explicit expression of the potential function
V (x, y, z, t) defined by (4) is given in many books (see for ex. [25]),
for the sake of self-sufficiency we shortly explain how one can compute
the triple-integral in (4). By definition of the Dirac distribution, the
integrations with respect to η and ζ are immediate and yield

V (x, y, z, t) =
Q

4πε0

∫ δ

{
ξ − vt+ v

c

√
(x− ξ)2 + y2 + z2

}
√

(x− ξ)2 + y2 + z2
dξ.

To compute this integral we make the substitution

ξ − vt+ v

c

√
(x− ξ)2 + y2 + z2 = λ (7)

which yields

dξ =
dλ[

1 − v

c

x− ξ√
(x− ξ)2 + y2 + z2

]

and

V (x, y, z, t) =
Q

4πε0

∫
δ(λ)√

(x− ξ)2 + y2 + z2

dλ[
1 − v

c

x− ξ√
(x− ξ)2 + y2 + z2

]

=
Q

4πε0


 1√

(x− ξ)2 + y2 + z2 − v

c
(x− ξ)




λ=0

(8)
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Putting λ = 0 in (7) one gets, by a straightforward computation, an
explicit expression of ξ in terms of x,y,z and t, which reduces (8) into

V (x, y, z, t) =
Q

4πε0
1√

1 − v2/c2
1√

(x− vt)2/(1 − v2/c2) + y2 + z2
.

(9)
This expression of the scalar potential, together with (3) and (5),
provides us an explicit expression of the electromagnetic field created
by the point charge making the uniform motion mentioned above.

2.2. Expressions Valid in a Reference System Attached to
the Charged Particle

Consider now a reference system O′x′y′z′ whose origin O′ moves with
the above-mentioned point charge Q such that the axes O′x′, O′y′ and
O′z′ are parallel to Ox, Oy and Oz, respectively. It is known that this
system is also inertial because, in accordance with the composition
rule of velocities to be derived from the Lorentz transformation (to
be obtained later on!) the acceleration of a point charge is naught in
both systems in question if it is zero in one of them. Hence, by our
basic assumption the Maxwell equations are also valid in the system
O′x′y′z′ with the same constants ε0, µ0. If we denote all the quantities
observed in the system O′x′y′z′ with the same letter used above but
with an upper sign (′), then we write

ρ′(x′, y′, z′, t′) = Qδ(x′)δ(y′)δ(z′) (10a)

and
J′(x′, y′, z′, t′) = 0, (10b)

which yields

V ′ =
Q

4πε0
1√

x′2 + y′2 + z′2
(11a)

and
A′

1 = 0, A′
2 = 0, A′

3 = 0. (11b)

From these expressions of the potential functions one gets:

E′ = −gradV ′, H′ = 0. (12)

3. FOUR-DIMENSIONAL SPACE-TIME OF EINSTEIN

Now assume that the seemingly different expressions (3) and (12) of
the same field can be transformed into each other through a universal



458 Idemen

transformation rule. This latter has to transform, from one side
(x′, y′, z′, t′) to (x, y, z, t) and, from the other side, (E′,H′) to (E,H).
So, if one denotes these transformations by L and M, respectively,
then one writes, for example

E = LMe{E′(x′, y′, z′, t′),H′(x′, y′, z′, t′)}, ∀x′, y′, z′, t′ ∈ (−∞,∞)
(13)

The sub-index (e) appearing in Me refers to the electric component
to be resulted from M(E′,H′). Since the motion of the system
(x′, y′, z′, t′) with respect to (x, y, z, t) consists merely of a translation
parallel to the x-axis (or x′-axis), by the definition of the translation
(without rotation) one has

y′ = y, z′ = z, (14)

which yields also the equality of r2(= z2 + y2) appearing in (9) with
(r′)2(= (z′)2 + (y′)2) appearing in (11a). That means that both sides
of (13) are functions of the quantity ς = r2 ≡ (r′)2. Consider now
the analytical continuation of (13), written for ς > 0, into the complex
ς-plane. In accordance with the permanence principle of functional
equations [24], the equation (13) is also satisfied in all regions into
which the continuations of its left and right hand sides are possible.
In other words, (13) is satisfied not only for ς > 0 but rather for all
complex ς. This requires, first of all, the equivalence of the singularities
appearing in both sides. From (9) and (3)–(5) it is obvious that the
singularity in the left-hand side consists of the branch singularity at
the point ς = −(x − vt)2/(1 − v2/c2). As to the singularity in the
right-hand side of (13), before the application of L it is the branch
singularity at ς = −(x′)2. Because the transformation M is supposed
to be universal and, hence, independent of the coordinates of the point
at which (13) is written. Therefore the operation Me taking place
in (13) does not change the location of the branch point dictated by
(11a)–(12). Hence, the operation L appearing in (13) has to transform
ς = −(x′)2 into ς = −(x− vt)2/(1 − v2/c2). Thus one writes

x′ =
x− vt√
1 − v2/c2

, y′ = y, z′ = z, (15)

(14) being taken into account. These equations determine the
transformation L completely excepting the expression of t′. This latter
will be determined later on.

Now consider (15) in (9) and (11a) to get

V =
V ′√

1 − v2/c2
(16a)
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and

A1 =
v

c2
V ′√

1 − v2/c2
, A2 = 0, A3 = 0, (16b)

(5) being also taken into account.
Now repeat the analysis made in Section 2 by supposing that the

point charge is located at the point O. The results obtained above will
be replaced obviously by

x =
x′ + vt′√
1 − v2/c2

(17)

and
V ′ =

V√
1 − v2/c2

, (18a)

A′
1 = − v

c2
V√

1 − v2/c2
, A′

2 = 0, A′
3 = 0. (18b)

In writing this we tacitly assume that if an inertial reference system
O′x′y′z′ is in motion with velocity v with respect to the system
Oxyz, then, inversely, the system Oxyz seems to be in motion with
velocity (−v) with respect to O′x′y′z′. It is known that this is in
accordance with the composition rule of velocities derived from the
Lorentz transformation to be obtained later on.

From (15) and (17) one gets the complete expression of the
transformation L as follows:


x
y
z
ct


 =




1/
√

1 − v2/c2 0 0 (v/c)/
√

1 − v2/c2

0 1 0 0
0 0 1 0

(v/c)/
√

1 − v2/c2 0 0 1/
√

1 − v2/c2






x′

y′

z′

ct′


 .
(19)

This is the well-known Lorentz transformation with properties
L(v)L(−v) = I and Lt = L, where I stands for the unit (matrix)
operator while super-index (t) on Lt refers to the transpose.

Notice that not quite the same as (19) but rather similar
expressions had been obtained by Lorentz before Einstein and Poincaré
[1]. But at that time Lorentz had believed that there were some
essential differences between (x, y, z, t) and (x′, y′, z′, t′) which take
place in the transformation formulas, the latter being only auxiliary
mathematical quantities [26]. Therefore, according to the opinion
of Lorentz, t′ should not be thought as the correct time in the
system O′x′y′z′ [26]. But Einstein bravely claimed that (19) is
not only a mathematical receipt to transform the expressions of the
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electromagnetic field known in O′x′y′z′ into expressions valid in Oxyz,
but rather general and associated with the reference systems Oxyz
(including t) and O′x′y′z′ (including t′) themselves. In other words,
from physical phenomena point of view the space is a four-dimensional
variety.

Consider finally the relations (16a, 16b) and (18a, 18b), which
yields:

A1

A2

A3

V/c


=




1/
√

1 − v2/c2 0 0 (v/c)/
√

1 − v2/c2

0 1 0 0
0 0 1 0

(v/c)/
√

1 − v2/c2 0 0 1/
√

1 − v2/c2






A′

1

A′
2

A′
3

V ′/c


.

(20)
From this one concludes that the quadruple (A1, A2, A3, V/c) is also
transformed as the four-vector (x, y, z, ct). Therefore, the particular
couple of potential functions given by (4) and (5) is a vector-valued
function of the four-dimensional space with transform given by (11a)–
(11b). It is important to remark here that although the relation (20)
was derived for the particular field defined in Sec. 2, it is quite general
(for proof see the remark to be made at the end of Sec. 4 below).

4. TRANSFORMATION RULES OF THE FIELD
COMPONENTS

The transformation rules (19) and (20), with the relations (3), will
permit us to reveal the explicit expression of the transformation M
rather easily. Indeed, from the first equation one writes

E1 = −∂V
∂x

− ∂A1

∂t

= − 1√
1 − v2/c2

[
∂

∂x′
− v

c2
∂

∂t′

]
1√

1 − v2/c2
[vA′

1 + V ′]

− 1√
1 − v2/c2

[
−v ∂
∂x′

+
∂

∂t′

]
1√

1 − v2/c2

[
A′

1 +
v

c2
V ′

]

= −∂V
′

∂x′
− ∂A′

1

∂t′

= E′
1, (21a)

E2 = −∂V
∂y

− ∂A2

∂t

= − ∂

∂y′
1√

1 − v2/c2
[vA′

1 + V ′] − 1√
1 − v2/c2

[
−v ∂
∂x′

+
∂

∂t′

]
A′

2
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= − 1√
1 − v2/c2

[
∂V ′

∂y′
+
∂A′

2

∂t′

]
+

v√
1 − v2/c2

[
∂A′

2

∂x′
− ∂A′

1

∂y′

]

=
1√

1 − v2/c2
[E′

2 + vB′
3] (21b)

and
E3 =

1√
1 − v2/c2

[E′
3 − vB′

2]. (21c)

Quite similarly, from B = µ0H = curlA one gets also

B1 = B′
1, (22a)

B2 =
1√

1 − v2/c2

[
B′

2 −
v

c2
E′

3

]
(22b)

B3 =
1√

1 − v2/c2

[
B′

3 +
v

c2
E′

2

]
. (22c)

The rules pertinent to D and H are obtained directly from
(21a)–(22c) by considering their definitions, namely: D = ε0E and
H = B/µ0, which yields

D1 = D′
1, D2 =

1√
1 − v2/c2

[D′
2+

v

c2
H ′

3], D3 =
1√

1 − v2/c2
[D′

3−
v

c2
H ′

2],

(23)
and

H1 = H ′
1, H2 =

1√
1 − v2/c2

[H ′
2 − vD′

3], H3 =
1√

1 − v2/c2
[H ′

3 + vD′
2]

(24)
Finally, as to the rules for J and ρ, they can be obtained from the

equations J = curlH − ∂D/∂t and ρ = divD by considering also (23)
and (24). Indeed, by repeating the direct computations that were used
to obtain (21a, 21b), one gets

J1 =
∂

∂y
H3 −

∂

∂z
H2 −

∂

∂t
D1

=
1√

1 − v2/c2

[
∂

∂y′
H ′

3 −
∂

∂z′
H ′

2 −
∂

∂t′
D′

1

]

+
v√

1 − v2/c2

[
∂

∂x′
D′

1 +
∂

∂y′
D′

2 +
∂

∂z′
D′

3

]

=
1√

1 − v2/c2
J ′

1 +
v√

1 − v2/c20

divD′
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=
1√

1 − v2/c2
[J ′

1 + ρ′v], (25a)

J2 = J ′
2, (25b)

J3 = J ′
3 (25c)

and

ρ = divD

=
1√

1 − v2/c2

[
∂

∂x′
− v

c2
∂

∂t′

]
D′

1

+
∂

∂y′
1√

1 − v2/c2

[
D′

2 +
v

c2
H ′

3

]
+
∂

∂z′
1√

1 − v2/c2

[
D′

3 −
v

c2
H ′

2

]

=
1√

1 − v2/c2

[
ρ′ +

v

c2
J ′

1

]
. (26)

It is obvious from (25a, 25b, 25c) and (26) that the quantity
(J1, J2, J3, cρ) is a four-vector which is transformed according to the
rule (20).

A remark. Once the relations (21a)–(24), which transform the
expressions of a field valid inK into those valid inK ′, were established,
then by considering (21a) and (22a) one can easily show that the
equation (20) is valid for all fields. However it needs some more
clarification because the couple of potentials pertinent to a given field
is not unique. For example, it is not permitted to replace the couples
(A, V/c) and (A′, V/c), which appear in the left and right-hand sides
of (20), by any possible couples of potentials. The meaning of (20) is
that if any couple of potentials (A′, V/c), valid in the system K ′, is
inserted in the right-hand side of (20), then the left-hand side becomes
one of the possible couples of potentials which are valid in the system
K.

5. MAXWELL EQUATIONS AND NON-INERTIAL
REFERENCE SYSTEMS

Now we want to show that the Maxwell equations are not valid
in non-inertial systems, and, therefore it is not meaningful to try
to extend the Special Relativity Theory to non-inertial systems in
order to obtain solutions of electromagnetic problems connected with
accelerated bodies from the solutions of static problems. To this end
let us consider a point charge Q located at the origin of a non-inertial
reference system O′′x′′y′′z′′ which makes a non-uniform motion with
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respect to the inertial system Oxyz. If the velocity of the point charge
is denoted by v(t), then, by solving the Maxwell equations in the
system Oxyz one gets (following expressions can be obtained through
a straightforward extension of the approach adopted in Section 2 above
(Cf [25]):

V (x, y, z, t) =
Q

4πε0
1

{� − *�.*v/c}
(27a)

and
A(x, y, z, t) =

v
c2
V (x, y, z, t), (27b)

where c stands, as usual, 1/
√
ε0µ0 while �, *� and *v signify the following

retarded quantities:

*� =
[
x− α

(
t− �

c

)]
ex +

[
y − β

(
t− �

c

)]
ey +

[
z − γ

(
t− �

c

)]
ez

� =

√[
x− α

(
t− �

c

)]2

+
[
y − β

(
t− �

c

)]2

+
[
z − γ

(
t− �

c

)]2

*v =
d

dt
α

(
t− �

c

)
ex +

d

dt
β

(
t− �

c

)
ey +

d

dt
γ

(
t− �

c

)
ez.

Here the functions (α(t), β(t), γ(t)) describe the motion of the point
charge. In other words, the trajectory of the point charge consists of
the curve

x = α(t), y = β(t), z = γ(t). (28)

The field expressions to be derived from the potentials (27a, 27b)
are correct for all continuously differentiable functions (α(t), β(t), γ(t))
because the Maxwell equations are assumed to be valid in the inertial
reference system Oxyz.

If the Maxwell equations were also valid in the non-inertial system
O′′x′′y′′z′′, then, by solving them there we could get again (11a) and
(11b) with the only difference that (′) is replaced now by (′′), namely:

V ′′ =
Q

4πε0
1√

x′′2 + y′′2 + z′′2
, A′′ = 0. (29)

Then, by comparing (27a) with (29) we would obtain an equation of
the following form, which replaces (15) in this case:

L




√[
x− α

(
t− �

c

)]2

+
[
y − β

(
t− �

c

)]2

+
[
z − γ

(
t− �

c

)]2
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≡
√
x′′2 + y′′2 + z′′2. (30)

Here L denotes the transformation which changes (x, y, z, t) into
(x′′, y′′, z′′, t′′). Since L is supposed to be a law of the nature, it
will enforce us to re-establish the mechanics just as the Lorentz
transformation did one century ago. Obviously this new form of the
mechanics, which would have been affected by the particular functions
(α(t), β(t), γ(t)), would not be universal as already established
relativistic mechanics. From this we conclude that it is not possible
to pretend the validity of the Maxwell equations in the non-inertial
reference system O′′x′′y′′z′′.

6. CONCLUSIONS AND CONCLUDING REMARKS

As it was pointed out above, the aim of this paper is to present an
alternate approach to arrive at the Lorentz transformation. In addition
to a purely mathematical concept (i.e., the permanence principle of
functional equations), it dwells on the following physical assumptions:

i) the Maxwell equations describe correctly the electromagnetic
phenomenon (in the vacuum) in all inertial reference systems for
all kind of source distributions,

ii) the total electric charge of a body does not change if it is in motion,
iii) if an inertial system slides without rotation, with respect to a

second inertial system, in the direction of x-axis, then during the
motion the y and z coordinates of all points remain constant,

iv) if an inertial reference system moves with a constant velocity v
with respect to a second inertial system, then, conversely, the
latter seems to be in motion with velocity (−v) with respect to
the first.

The assumption (i) consists of the second postulate of Einstein while
(ii)–(iv) are quite reasonable and, also, are in accordance with all the
formulas to be derived from the Lorentz transformation.

The analysis made above shows that the essentials of the Lorentz
transformation are all (except the invariance of the total charge)
implicitly existing in the Maxwell equations put forth in 1873, namely
thirty years before the Einstein’s famous paper. It is rather curious
that during a long period of fervent discussions that preceded the
Special Theory of Relativity nobody tried to resort to it to bring an
explanation to the contraction of dimensions of a moving body. The
concept of four-dimensional space-time and its transformation rules
could also be revealed very early without waiting to see the results of
the experiments due to Michelson and Morley.
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To conclude this section we would like to notice also some
historical points.

(i) The so-called Lorentz Transformation was derived (mathemati-
cally) not by Lorentz but simultaneously by Poincaré and Ein-
stein in 1905. This fact was confirmed by Lorentz himself in 1921
[26]. The formulas written by Lorentz in 1895 were ad-hoc expres-
sions introduced to explain the experimental results obtained by
Michelson and Morley nearly one decade ago (between 1881 and
1887).

(ii) The approach adopted by Poincaré [2] was based on the concept
of contraction of dimensions of bodies under motions in the Ether,
which was introduced by Lorentz [1] while Einstein [3] had derived
the formulas by considering only the travel of the light in opposite
directions.

(iii) We owe also the term relativity postulate to Poincaré. He
introduced this term to indicate the fact that “the impossibility
of revelation by experiments the absolute motion of the Earth” is
a general law of the Nature [27].
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