ON THE THIRD BOUNDARY VALUE PROBLEM FOR PARABOLIC EQUATIONS IN A NON-REGULAR DOMAIN OF \mathbb{R}^{N+1}

AREZKI KHELOUFI ${ }^{1}$, §

Abstract

In this paper, we look for sufficient conditions on the lateral surface of the domain and on the coefficients of the boundary conditions of a N-space dimensional linear parabolic equation, in order to obtain existence, uniqueness and maximal regularity of the solution in a Hilbertian anisotropic Sobolev space when the right hand side of the equation is in a Lebesgue space. This work is an extension of solvability results obtained for a second order parabolic equation, set in a non-regular domain of \mathbb{R}^{3} obtained in [1], to the case where the domain is cylindrical, not with respect to the time variable, but with respect to N space variables, $N>1$.

Keywords: Parabolic equations, Non-regular domains, Robin conditions, Anisotropic Sobolev spaces.

AMS Subject Classification: 35K05, 35K20.

1. Introduction

Let Ω be an open set of \mathbb{R}^{2} defined by

$$
\Omega=\left\{\left(t, x_{1}\right) \in \mathbb{R}^{2}: 0<t<T ; \varphi_{1}(t)<x_{1}<\varphi_{2}(t)\right\}
$$

where T is a finite positive number, while φ_{1} and φ_{2} are Lipschitz continuous real-valued functions defined on $[0, T]$, and such that

$$
\varphi(t):=\varphi_{2}(t)-\varphi_{1}(t)>0
$$

for $t \in] 0, T]$. For fixed positive numbers $b_{i}, i=1, \ldots, N-1$, with $N>1$, let Q be the ($N+1$)-dimensional domain defined by

$$
\left.Q=\left\{\left(t, x_{1}\right) \in \mathbb{R}^{2}: 0<t<T ; \varphi_{1}(t)<x_{1}<\varphi_{2}(t)\right\} \times \prod_{i=1}^{N-1}\right] 0, b_{i}[
$$

In Q, consider the boundary value problem

$$
\left\{\begin{array}{l}
\partial_{t} u-\Delta u=f \in L^{2}(Q) \tag{1}\\
\partial_{x_{1}} u+\left.\beta_{i} u\right|_{\Sigma_{i}}=0, i=1,2 \\
\left.u\right|_{\partial Q \backslash\left(\Sigma_{i} \cup \Sigma_{T}\right)}=0, i=1,2
\end{array}\right.
$$

[^0]where $\Delta u=\sum_{k=1}^{N} \partial_{x_{k}}^{2} u, \partial Q$ is the of boundary of $Q, \Sigma_{i}, i=1,2$ is the part of ∂Q where $x_{1}=\varphi_{i}(t), i=1,2, \Sigma_{T}$ is the part of ∂Q where $t=T$ and with the fundamental hypothesis $\varphi(0)=0$.

The difficulty related to this kind of problems comes from this singular situation for evolution problems, i.e., φ_{1} is allowed to coincide with φ_{2} for $t=0$, which prevent the domain Q to be transformed into a regular domain by means of a smooth transformation, see for example Sadallah [2]. On the other hand, the semi group generating the solution cannot be defined since the initial condition is defined on a set measure zero.

We are especially interested in the question of what sufficient conditions, as weak as possible, the functions φ_{1}, φ_{2} and the coefficients $\beta_{i}, i=1,2$, must verify in order that Problem (1) has a solution with optimal regularity, that is a solution u belonging to the anisotropic Sobolev space

$$
H_{\gamma}^{1,2}(Q)=\left\{u \in H^{1,2}(Q):\left.u\right|_{\partial Q \backslash\left(\Sigma_{i} \cup \Sigma_{T}\right)}=\partial_{x_{1}} u+\left.\beta_{i} u\right|_{\Sigma_{i}}=0, i=1,2\right\}
$$

with

$$
H^{1,2}(Q)=\left\{u \in L^{2}(Q): \partial_{t} u, \partial_{x_{1}}^{i_{1}} \partial_{x_{2}}^{i_{2}} \ldots \partial_{x_{N}}^{i_{N}} u \in L^{2}(Q), 1 \leq i_{1}+i_{2}+\ldots+i_{N} \leq 2\right\}
$$

Note that the Robin type condition $\partial_{x_{1}} u+\left.\beta_{i} u\right|_{\Sigma_{i}}=0, i=1,2$ is a perturbation by β_{i}, $i=1,2$ of the Neumann type one and it is well known that Dirichlet and Neumann type boundary conditions correspond to two extreme cases, namely $\beta_{i}=\infty$ and $\beta_{i}=0, i=1,2$, respectively. We can find in [3], [4], [5], [6], [7], [8] and [9] solvability results of this kind of problems with Dirichlet boundary conditions. In Nazarov [10], results for the Neumann problem in a conical domain were proved. We can find in Savaré [11] an abstract study for parabolic problems with mixed (Dirichlet-Neumann) lateral boundary conditions. The case of Robin type conditions in a non-rectangular domain is studied in [12].

The organization of this paper is as follows. In Section 2, we prove that Problem (1) admits a (unique) solution in the case of a truncated domain. In Section 3 we approximate Q by a sequence (Q_{n}) of such domains and we establish (for T small enough) a uniform estimate of the type

$$
\left\|u_{n}\right\|_{H^{1,2}\left(Q_{n}\right)} \leq K\|f\|_{L^{2}\left(Q_{n}\right)},
$$

where u_{n} is the solution of Problem (1) in Q_{n} and K is a constant independent of n. Finally, in Section 4 we prove the two main results of this paper.

The main assumptions on the functions φ_{1}, φ_{2} and on the coefficients $\beta_{i}, i=1,2$, are

$$
\begin{equation*}
\varphi_{i}^{\prime}(t) \varphi(t) \rightarrow 0 \quad \text { as } t \rightarrow 0, \quad i=1,2 . \tag{2}
\end{equation*}
$$

The coefficients $\beta_{i}, i=1,2$ are real numbers such that

$$
\begin{gather*}
\beta_{1}<0 \text { and } \beta_{2}>0 \tag{3}\\
\left.(-1)^{i}\left(\beta_{i}-\frac{\varphi_{i}^{\prime}(t)}{2}\right) \geq 0 \text { a.e. } t \in\right] 0, T[, i=1,2 . \tag{4}
\end{gather*}
$$

2. Resolution of the problem (1) in truncated domains Q_{n}

In this section, we replace Q by $Q_{n}, n \in \mathbb{N}^{*}$ and $\frac{1}{n}<T$:

$$
Q_{n}=\left\{(t, x) \in Q: \frac{1}{n}<t<T\right\}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$.

Theorem 2.1. Under the assumptions (3) and (4) on the functions of parametrization φ_{i} and on the coefficients $\beta_{i}, i=1,2$, and for each $n \in \mathbb{N}^{*}$ such that $\frac{1}{n}<T$, the following problem admits a (unique) solution $u_{n} \in H^{1,2}\left(Q_{n}\right)$

$$
\left\{\begin{array}{l}
\partial_{t} u_{n}-\Delta u_{n}=f_{n} \in L^{2}\left(Q_{n}\right) \tag{5}\\
\partial_{x_{1}} u_{n}+\left.\beta_{i} u_{n}\right|_{\Sigma_{i, n}}=0, i=1,2 \\
\left.u_{n}\right|_{\partial Q_{n} \backslash\left(\Sigma_{i, n} \cup \Sigma_{T, n}\right)}=0, i=1,2
\end{array}\right.
$$

Here

$$
\left.\Sigma_{i, n}=\left\{\left(t, \varphi_{i}(t)\right) \in \mathbb{R}^{2}: \frac{1}{n}<t<T\right\} \times \prod_{k=1}^{N-1}\right] 0, b_{k}[, i=1,2
$$

and $\Sigma_{T, n}$ is the part of the boundary of Q_{n} where $t=T$.
Proof. The uniqueness of the solution is easy to check, thanks to (4). Let us prove its existence. The change of variables

$$
\Phi:(t, x) \longmapsto(t, y)=\left(t, \frac{x_{1}-\varphi_{1}(t)}{\varphi(t)}, x^{\prime}\right)
$$

transforms Q_{n} into the cylinder $\left.P_{n}=\right] \frac{1}{n}, T[\times] 0,1\left[\times \prod_{i=1}^{N-1}\right] 0, b_{i}[$. Here and in the sequel $x=\left(x_{1}, x_{2}, \ldots, x_{N}\right), x^{\prime}=\left(x_{2}, \ldots, x_{N}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{N}\right)$. Putting

$$
w_{n}(t, y)=u_{n}(t, x) \text { and } g_{n}(t, y)=f_{n}(t, x)
$$

then Problem (5) is transformed, in P_{n} into the variable-coefficient parabolic problem

$$
\left\{\begin{array}{l}
\partial_{t} w_{n}+a\left(t, y_{1}\right) \partial_{y_{1}} w_{n}-\frac{1}{b^{2}(t)} \partial_{y_{1}}^{2} w_{n}-\sum_{k=2}^{N} \partial_{y_{k}}^{2} w_{n}=g_{n} \tag{6}\\
\partial_{y_{1}} w_{n}+\left.\beta_{i} \varphi(t) w_{n}\right|_{\Sigma_{i, P_{n}}}=0, i=1,2 \\
\left.w_{n}\right|_{\partial P_{n} \backslash\left(\Sigma_{i, P_{n}} \cup \Sigma_{T, P_{n}}\right)}=0, i=1,2
\end{array}\right.
$$

where $\left.\Sigma_{1, P_{n}}=\right] 0, T\left[\times\{0\} \times \prod_{k=1}^{N-1}\right] 0, b_{k}\left[, \Sigma_{2, P_{n}}=\right] 0, T\left[\times\{1\} \times \prod_{k=1}^{N-1}\right] 0, b_{k}\left[, \Sigma_{T, P_{n}}=\right.$ $\{T\} \times] 0,1\left[\times \prod_{k=1}^{N-1}\right] 0, b_{k}\left[, b(t)=\varphi(t)\right.$ and $a\left(t, y_{1}\right)=-\frac{y_{1} \varphi^{\prime}(t)+\varphi_{1}^{\prime}(t)}{\varphi(t)}$.

Since the functions a and φ are bounded when $t \in] \frac{1}{n}, T[$, then the above change of variables which is $(N+1)$-Lipschitz preserves the spaces $H^{1,2}$ and L^{2}. In other words

$$
f_{n} \in L^{2}\left(Q_{n}\right) \Leftrightarrow g_{n} \in L^{2}\left(P_{n}\right), u_{n} \in H^{1,2}\left(Q_{n}\right) \Leftrightarrow w_{n} \in H^{1,2}\left(P_{n}\right)
$$

In the sequel, the variables (t, y) will be denoted again by (t, x). Consider the simplified problem

$$
\left\{\begin{array}{l}
\partial_{t} w_{n}-\frac{1}{b^{2}(t)} \partial_{x_{1}}^{2} w_{n}-\sum_{k=2}^{N} \partial_{x_{k}}^{2} w_{n}=g_{n} \tag{7}\\
\partial_{x_{1}} w_{n}+\left.\beta_{i} \varphi(t) w_{n}\right|_{\Sigma_{i, P_{n}}}=0, i=1,2 \\
\left.w_{n}\right|_{\partial P_{n} \backslash\left(\Sigma_{i, P_{n}} \cup \Sigma_{T, P_{n}}\right)} ^{=} 0, i=1,2
\end{array}\right.
$$

Lemma 2.1. For each $n \in \mathbb{N}^{*}$ such that $\frac{1}{n}<T$ and for every $g_{n} \in L^{2}\left(P_{n}\right)$, there exists a unique $w_{n} \in H^{1,2}\left(P_{n}\right)$ solution of (7).

Proof. Since the coefficient $b(t)$ is continuous in $\overline{P_{n}}$, the optimal regularity result is given by Ladyzhenskaya-Solonnikov-Ural'tseva [13].

Lemma 2.2. For each $n \in \mathbb{N}^{*}$ such that $\frac{1}{n}<T$, the following operator is compact

$$
a\left(t, x_{1}\right) \partial_{x_{1}}: H_{\gamma}^{1,2}\left(P_{n}\right) \longrightarrow L_{\omega}^{2}\left(P_{n}\right)
$$

Here, for $i=1,2$

$$
H_{\gamma}^{1,2}\left(P_{n}\right)=\left\{w_{n} \in H^{1,2}\left(P_{n}\right):\left.w_{n}\right|_{\partial P_{n} \backslash\left(\Sigma_{i, P_{n}} \cup \Sigma_{T, P_{n}}\right)}=\partial_{x_{1}} w_{n}+\left.\beta_{i} \varphi(t) w_{n}\right|_{\Sigma_{i, P_{n}}}=0\right\}
$$

Proof. P_{n} has the "horn property" of Besov [14], so

$$
\partial_{x_{1}}: H_{\gamma}^{1,2}\left(P_{n}\right) \longrightarrow H^{\frac{1}{2}, 1}\left(P_{n}\right), w_{n} \longmapsto \partial_{x_{1}} w_{n}
$$

is continuous. Since P_{n} is bounded, the canonical injection is compact from $H^{\frac{1}{2}, 1}\left(P_{n}\right)$ into $L^{2}\left(P_{n}\right)$, where

$$
H^{\frac{1}{2}, 1}\left(P_{n}\right)=L^{2}\left(\frac{1}{n}, T ; H^{1}(] 0,1\left[\times \prod_{i=1}^{N-1}\right] 0, b_{i}[)\right) \cap H^{\frac{1}{2}}\left(\frac{1}{n}, T ; L^{2}(] 0,1\left[\times \prod_{i=1}^{N-1}\right] 0, b_{i}[)\right)
$$

For the complete definitions of the $H^{r, s}$ Hilbertian Sobolev spaces see for instance [15]. Consider the composition

$$
\partial_{x_{1}}: H_{\gamma}^{1,2}\left(P_{n}\right) \rightarrow H^{\frac{1}{2}, 1}\left(P_{n}\right) \rightarrow L^{2}\left(P_{n}\right), w_{n} \mapsto \partial_{x_{1}} w_{n} \mapsto \partial_{x_{1}} w_{n}
$$

then, $\partial_{x_{1}}$ is a compact operator from $H_{\gamma}^{1,2}\left(P_{n}\right)$ into $L^{2}\left(P_{n}\right)$. Since $a(.,$.$) is a bounded$ function for $\frac{1}{n}<t<T$, the operator $a \partial_{x_{1}}$ is also compact from $H_{\gamma}^{1,2}\left(P_{n}\right)$ into $L^{2}\left(P_{n}\right)$.

Lemma 2.1 shows that the operator $\partial_{t}-\frac{1}{b^{2}(.)} \partial_{x_{1}}^{2}-\sum_{k=2}^{N} \partial_{x_{k}}^{2}$ is an isomorphism from $H_{\gamma}^{1,2}\left(P_{n}\right)$ into $L^{2}\left(P_{n}\right)$. On the other hand, the operator $a \partial_{x_{1}}$ is compact (see Lemma 2.2). Consequently, the operator $\partial_{t}+a(.,.) \partial_{x_{1}}-\frac{1}{b^{2}(.)} \partial_{x_{1}}^{2}-\sum_{k=2}^{N} \partial_{x_{k}}^{2}$ is a Fredholm operator from $H_{\gamma}^{1,2}\left(P_{n}\right)$ into $L^{2}\left(P_{n}\right)$. Thus the invertibility of $\partial_{t}+a(.,.) \partial_{x_{1}}-\frac{1}{b^{2}(.)} \partial_{x_{1}}^{2}-\sum_{k=2}^{N} \partial_{x_{k}}^{2}$ follows from its injectivity.

Let $w_{n} \in H_{\gamma}^{1,2}\left(P_{n}\right)$ be a solution of

$$
\partial_{t} w_{n}+a\left(t, x_{1}\right) \partial_{x_{1}} w_{n}-\frac{1}{b^{2}(t)} \partial_{x_{1}}^{2} w_{n}-\sum_{k=2}^{N} \partial_{x_{k}}^{2} w_{n}=0
$$

in P_{n}. We perform the inverse change of variable of Φ. Thus we set

$$
u_{n}=w_{n} \circ \Phi
$$

It turns out that $u_{n} \in H_{\gamma}^{1,2}\left(Q_{n}\right)$, and

$$
\partial_{t} u_{n}-\Delta u_{n}=0, \text { in } Q_{n}
$$

In addition u_{n} fulfils the boundary conditions

$$
\partial_{x_{1}} u_{n}+\left.\beta_{i} u_{n}\right|_{\Sigma_{i, n}}=\left.u_{n}\right|_{\partial Q_{n} \backslash\left(\Sigma_{i, n} \cup \Sigma_{T, n}\right)}=0, i=1,2
$$

which imply that u_{n} vanishes (see Theorem 4.1); this is the desired injectivity and ends the proof of Theorem 2.1.
Lemma 2.3. For each $n \in \mathbb{N}^{*}$ such that $\frac{1}{n}<T$, the space

$$
W=\left\{u_{n} \in D\left(\left[\frac{1}{n}, T\right] ; H^{4}(] 0,1\left[\times \prod_{i=1}^{N-1}\right] 0, b_{i}[)\right): \partial_{x_{1}} u_{n}+\left.\beta_{i} u_{n}\right|_{\Sigma_{i, P_{n}}}=0, i=1,2\right\}
$$

(see [15, p.13]), is dense in

$$
H_{\gamma}^{1,2}\left(P_{n}\right)=\left\{u_{n} \in H^{1,2}\left(P_{n}\right): \partial_{x_{1}} u_{n}+\left.\beta_{i} u_{n}\right|_{\Sigma_{i, P_{n}}}=0, i=1,2\right\}
$$

The above lemma is a particular case of [15, Theorem 2.1], from which, we can derive the following result in order to justify the calculus of the section 3 .
Lemma 2.4. For each $n \in \mathbb{N}^{*}$ such that $\frac{1}{n}<T$, the space

$$
\left\{u_{n} \in H^{4}\left(P_{n}\right):\left.u_{n}\right|_{\partial P_{n} \backslash\left(\Sigma_{i, P_{n}} \cup \Sigma_{T, P_{n}}\right)}=\partial_{x_{1}} u_{n}+\left.\beta_{i} u_{n}\right|_{\Sigma_{i, P_{n}}}=0, i=1,2\right\}
$$

is dense in the space

$$
\left\{u_{n} \in H^{1,2}\left(P_{n}\right):\left.u_{n}\right|_{\partial P_{n} \backslash\left(\Sigma_{i, P_{n}} \cup \Sigma_{T, P_{n}}\right)}=\partial_{x_{1}} u_{n}+\left.\beta_{i} u_{n}\right|_{\Sigma_{i, P_{n}}}=0, i=1,2\right\}
$$

Remark 2.1. In Lemma 2.4, we can replace P_{n} by Q_{n} with the help of the change of variables defined above.

3. A UnIFORM ESTIMATE

For each $n \in \mathbb{N}^{*}$ such that $\frac{1}{n}<T$, we denote by $u_{n} \in H^{1,2}\left(Q_{n}\right)$ the solution of Problem (5) in Q_{n}. Such a solution u_{n} exists by Theorem 2.1.

Theorem 3.1. For each $n \in \mathbb{N}^{*}$ such that $\frac{1}{n}<T$ with T small enough, there exists a constant $K>0$ independent of n such that

$$
\left\|u_{n}\right\|_{H^{1,2}\left(Q_{n}\right)}^{2} \leq K\left\|f_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2} \leq K\|f\|_{L^{2}(Q)}^{2}
$$

where

$$
\left\|u_{n}\right\|_{H^{1,2}\left(Q_{n}\right)}=\sqrt{\left\|\partial_{t} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2}+\left\|u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2}+\sum_{\substack{i_{1}, \ldots, i_{N}=0 \\ 1 \leq i_{1}+\ldots+i_{N} \leq 2}}^{2} \| \partial_{x_{1} \ldots \partial_{x_{N}}^{i_{1}} u_{n} \|_{L^{2}\left(Q_{n}\right)}^{i_{N}}}^{2}}
$$

In order to prove Theorem 3.1, we need some preliminary results. The proof of the following Lemma can be found in [1].
Lemma 3.1. Under the assumption (3) on $\left(\beta_{i}\right)_{i=1,2}$, there exists a positive constant C_{1} (independent of a and b) such that

$$
\left\|v^{(k)}\right\|_{L^{2}(a, b)}^{2} \leq C_{1}(b-a)^{2(2-k)}\left\|v^{(2)}\right\|_{L^{2}(a, b)}^{2}, k=0,1
$$

for each $v \in H_{\gamma}^{2}(a, b)$, with

$$
H_{\gamma}^{2}(a, b)=\left\{v \in H^{2}(a, b): v^{\prime}(a)+\frac{\beta_{1}}{b-a} v(a)=0, v^{\prime}(b)+\frac{\beta_{2}}{b-a} v(b)=0\right\}
$$

Lemma 3.2. For every $\epsilon>0$ chosen such that $\varphi(t) \leq \epsilon$, there exists a constant $C>0$ independent of n, such that

$$
\left\|\partial_{x_{1}}^{j} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2} \leq C \epsilon^{2(2-j)}\left\|\partial_{x_{1}}^{2} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2}, j=0,1
$$

Proof. Replacing in Lemma $3.1 v$ by u_{n} and $] a, b[$ by $] \varphi_{1}(t), \varphi_{2}(t)[$, for a fixed t, we obtain

$$
\begin{aligned}
\int_{\varphi_{1}(t)}^{\varphi_{2}(t)}\left(\partial_{x_{1}}^{j} u_{n}\right)^{2} d x_{1} & \leq C \varphi(t)^{2(2-j)} \int_{\varphi_{1}(t)}^{\varphi_{2}(t)}\left(\partial_{x_{1}}^{2} u_{n}\right)^{2} d x_{1} \\
& \leq C \epsilon^{2(2-j)} \int_{\varphi_{1}(t)}^{\varphi_{2}(t)}\left(\partial_{x_{1}}^{2} u_{n}\right)^{2} d x_{1}
\end{aligned}
$$

where C is the constant of Lemma 3.1. Integrating with respect to t, then with respect to $x_{2}, x_{3}, \ldots, x_{N}$, we obtain the desired estimates.

Proposition 3.1. For each $n \in \mathbb{N}^{*}$ such that $\frac{1}{n}<T$ with T small enough, there exists a constant $C>0$ independent of n such that

$$
\left\|\partial_{t} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2}+\sum_{\substack{i_{1}, i_{2}, \ldots, i_{N}=0 \\ i_{1}+i_{2}+\ldots+i_{N}=2}}^{2}\left\|\partial_{x_{1}}^{i_{1}} \partial_{x_{2}}^{i_{2}} \ldots \partial_{x_{N}}^{i_{N}} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2} \leq C\|f\|_{L^{2}(Q)}^{2}
$$

Then, Theorem 3.1 is a direct consequence of Lemma 3.2 and Proposition 3.1, since ϵ is independent of n.

Proof. Step 1. First, we estimate the inner products

$$
\sum_{k=1}^{N}\left\langle\partial_{t} u_{n}, \partial_{x_{k}}^{2} u_{n}\right\rangle \text { and }\left\langle\sum_{k=1}^{N} \partial_{x_{k}}^{2} u_{n}, \sum_{j=1}^{N} \partial_{x_{j}}^{2} u_{n}\right\rangle, k \neq j
$$

in $L^{2}\left(Q_{n}\right)$ making use of the boundary conditions (particulary, of the relation $\partial_{x_{1}} u_{n}+$ $\beta_{i} u_{n}=0$ on the parts of the boundary of Q_{n} where $\left.x_{1}=\varphi_{i}(t), i=1,2\right)$. We use these estimates (step2) when we develop the expression of $\left\|f_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2}$.

1) Estimation of $-2\left\langle\partial_{t} u_{n}, \partial_{x_{1}}^{2} u_{n}\right\rangle$: We have

$$
\partial_{t} u_{n} \partial_{x_{1}}^{2} u_{n}=\partial_{x_{1}}\left(\partial_{t} u_{n} \partial_{x_{1}} u_{n}\right)-\frac{1}{2} \partial_{t}\left(\partial_{x_{1}} u_{n}\right)^{2}
$$

Then

$$
\begin{aligned}
-2\left\langle\partial_{t} u_{n}, \partial_{x_{1}}^{2} u_{n}\right\rangle & =-2 \int_{Q_{n}} \partial_{x_{1}}\left(\partial_{t} u_{n} \partial_{x_{1}} u_{n}\right) d t d x+\int_{Q_{n}} \partial_{t}\left(\partial_{x_{1}} u_{n}\right)^{2} d t d x \\
& =\int_{\partial Q_{n}}\left[\left(\partial_{x_{1}} u_{n}\right)^{2} \nu_{t}-2 \partial_{t} u_{n} \partial_{x_{1}} u_{n} \nu_{x_{1}}\right] d \sigma
\end{aligned}
$$

where $\nu_{t}, \nu_{x_{1}}, \ldots, \nu_{x_{N}}$ are the components of the unit outward normal vector at ∂Q_{n} and $d x=d x_{1} d x_{2} \ldots d x_{N}$. We shall rewrite the boundary integral making use of the boundary conditions. On the parts of the boundary of Q_{n} where $t=\frac{1}{n}, x_{k}=0, k=2, \ldots, N$ and $x_{k}=b_{k-1}, k=2, \ldots, N$ we have $u_{n}=0$ and consequently $\partial_{x_{1}} u_{n}=0$. The corresponding boundary integral vanishes. On the part of the boundary where $t=T$, we have $\nu_{x_{1}}=0$ and $\nu_{t}=1$. Accordingly the corresponding boundary integral

$$
\int_{0}^{b_{N-1}} \cdots \int_{0}^{b_{1}} \int_{\varphi_{1}(T)}^{\varphi_{2}(T)}\left(\partial_{x_{1}} u_{n}\right)^{2} d x
$$

is nonnegative. On the parts of the boundary where $x_{1}=\varphi_{i}(t), i=1,2$, we have

$$
\nu_{x_{1}}=\frac{(-1)^{i}}{\sqrt{1+\left(\varphi_{i}^{\prime}\right)^{2}(t)}}, \nu_{t}=\frac{(-1)^{i+1} \varphi_{i}^{\prime}(t)}{\sqrt{1+\left(\varphi_{i}^{\prime}\right)^{2}(t)}}
$$

and

$$
\partial_{x_{1}} u_{n}\left(t, \varphi_{i}(t), x^{\prime}\right)+\beta_{i} u_{n}\left(t, \varphi_{i}(t), x^{\prime}\right)=0, i=1,2
$$

Consequently the corresponding boundary integral is

$$
\begin{aligned}
I_{n, k} & =(-1)^{k+1} \int_{0}^{b_{N-1}} \cdots \int_{0}^{b_{1}} \int_{\frac{1}{n}}^{T} \varphi_{k}^{\prime}(t)\left[\partial_{x_{1}} u_{n}\left(t, \varphi_{k}(t), x^{\prime}\right)\right]^{2} d t d x^{\prime}, k=1,2 \\
J_{n, k} & =(-1)^{k} 2 \int_{0}^{b_{N-1}} \cdots \int_{0}^{b_{1}} \int_{\frac{1}{n}}^{T} \beta_{k}\left(\partial_{t} u_{n} \cdot u_{n}\right)\left(t, \varphi_{k}(t), x^{\prime}\right) d t d x^{\prime}, k=1,2
\end{aligned}
$$

where $d x^{\prime}=d x_{2} \ldots d x_{N}$. Then, we have

$$
\begin{equation*}
-2\left\langle\partial_{t} u_{n}, \partial_{x_{1}}^{2} u_{n}\right\rangle \geq-\left|I_{n, 1}\right|-\left|I_{n, 2}\right|-\left|J_{n, 1}\right|-\left|J_{n, 2}\right| \tag{8}
\end{equation*}
$$

2) Estimation of $-2 \sum_{k=2}^{N}\left\langle\partial_{t} u_{n}, \partial_{x_{k}}^{2} u_{n}\right\rangle$: We have

$$
\partial_{t} u_{n} \partial_{x_{k}}^{2} u_{n}=\partial_{x_{k}}\left(\partial_{t} u_{n} \partial_{x_{k}} u_{n}\right)-\frac{1}{2} \partial_{t}\left(\partial_{x_{k}} u_{n}\right)^{2}
$$

Then

$$
\begin{aligned}
-2\left\langle\partial_{t} u_{n}, \partial_{x_{k}}^{2} u_{n}\right\rangle & =-2 \int_{Q_{n}} \partial_{x_{k}}\left(\partial_{t} u_{n} \partial_{x_{k}} u_{n}\right) d t d x+\int_{Q_{n}} \partial_{t}\left(\partial_{x_{k}} u_{n}\right)^{2} d t d x \\
& =\int_{\partial Q_{n}}\left[\left(\partial_{x_{k}} u_{n}\right)^{2} \nu_{t}-2 \partial_{t} u_{n} \partial_{x_{k}} u_{n} \nu_{x_{k}}\right] d \sigma
\end{aligned}
$$

On the part of the boundary where $t=\frac{1}{n}, x_{k}=0, k=2, \ldots, N$ and $x_{k}=b_{k-1}, k=2, \ldots, N$ we have $u_{n}=0$ and consequently $\partial_{x_{k}} u_{n}=0$. The corresponding boundary integral vanishes. On the part of the boundary where $t=T$, we have $\nu_{x_{1}}=0, \nu_{x_{k}}=0, k=2, \ldots, N$ and $\nu_{t}=1$. The corresponding boundary integral

$$
\int_{0}^{b_{N-1}} \cdots \int_{0}^{b_{1}} \int_{\varphi_{1}(T)}^{\varphi_{2}(T)}\left(\partial_{x_{k}} u_{n}\right)^{2} d x
$$

is nonnegative. On the parts of the boundary of Q_{n} where $x_{1}=\varphi_{i}(t), i=1,2$, we have $\nu_{x_{1}}=\frac{(-1)^{i}}{\sqrt{1+\left(\varphi_{i}^{\prime}\right)^{2}(t)}}, \nu_{t}=\frac{(-1)^{i+1} \varphi_{i}^{\prime}(t)}{\sqrt{1+\left(\varphi_{i}^{\prime}\right)^{2}(t)}}$ and $\nu_{x_{k}}=0, k=2, \ldots, N$. Consequently the corresponding boundary integral is

$$
M_{n, j}=(-1)^{j+1} \int_{0}^{b_{N-1}} \ldots \int_{0}^{b_{1}} \int_{\frac{1}{n}}^{T} \varphi_{j}^{\prime}(t)\left[\partial_{x_{k}} u_{n}\left(t, \varphi_{j}(t), x^{\prime}\right)\right]^{2} d t d x^{\prime}, j=1,2
$$

Then, we have

$$
\begin{equation*}
-2\left\langle\partial_{t} u_{n}, \partial_{x_{k}}^{2} u_{n}\right\rangle \geq M_{n, 1}+M_{n, 2}, k=2, \ldots, N \tag{9}
\end{equation*}
$$

3) Estimation of $2 \sum_{k=2}^{N}\left\langle\partial_{x_{1}}^{2} u_{n}, \partial_{x_{k}}^{2} u_{n}\right\rangle$: We have

$$
\partial_{x_{1}}^{2} u_{n} . \partial_{x_{k}}^{2} u_{n}=\partial_{x_{1}}\left(\partial_{x_{1}} u_{n} . \partial_{x_{k}}^{2} u_{n}\right)-\partial_{x_{k}}\left(\partial_{x_{1}} u_{n} . \partial_{x_{1}} \partial_{x_{k}} u_{n}\right)+\left(\partial_{x_{1}} \partial_{x_{k}} u_{n}\right)^{2}
$$

Then

$$
\begin{aligned}
2\left\langle\partial_{x_{1}}^{2} u_{n}, \partial_{x_{k}}^{2} u_{n}\right\rangle= & 2 \int_{Q_{n}} \partial_{x_{1}}\left(\partial_{x_{1}} u_{n} \cdot \partial_{x_{k}}^{2} u_{n}\right) d t d x-2 \int_{Q_{n}} \partial_{x_{k}}\left(\partial_{x_{1}} u_{n} \cdot \partial_{x_{1}} \partial_{x_{k}} u_{n}\right) d t d x \\
& +2 \int_{Q_{n}}\left(\partial_{x_{1}} \partial_{x_{k}} u_{n}\right)^{2} d t d x \\
= & 2 \int_{Q_{n}}\left(\partial_{x_{1}} \partial_{x_{k}} u_{n}\right)^{2} d t d x \\
& +2 \int_{\partial Q_{n}}\left[\partial_{x_{1}} u_{n} \partial_{x_{k}}^{2} u_{n} \nu_{x_{1}}-\partial_{x_{1}} u_{n} \cdot \partial_{x_{1}} \partial_{x_{k}} u_{n} \nu_{x_{k}}\right] d \sigma
\end{aligned}
$$

On the part of the boundary where $t=\frac{1}{n}, x_{k}=0, k=2, \ldots, N$ and $x_{k}=b_{k-1}, k=2, \ldots, N$ we have $u_{n}=0$ and consequently $\partial_{x_{k}} u_{n}=0$. On the part of the boundary where $t=T$, we have $\nu_{x_{1}}=0, \nu_{x_{k}}=0, k=2, \ldots, N$ and $\nu_{t}=1$. The corresponding boundary integral vanishes. On the parts of the boundary of Q_{n} where $x_{1}=\varphi_{i}(t), i=1,2$, we have

$$
\nu_{x_{1}}=\frac{(-1)^{i}}{\sqrt{1+\left(\varphi_{i}^{\prime}\right)^{2}(t)}}, \nu_{t}=\frac{(-1)^{i+1} \varphi_{i}^{\prime}(t)}{\sqrt{1+\left(\varphi_{i}^{\prime}\right)^{2}(t)}} \text { and } \nu_{x_{k}}=0, k=2, \ldots, N
$$

and

$$
\partial_{x_{1}} u_{n}\left(t, \varphi_{i}(t), x^{\prime}\right)+\beta_{i} u_{n}\left(t, \varphi_{i}(t), x^{\prime}\right)=0, i=1,2
$$

Consequently, the corresponding boundary integral is

$$
H_{n, j}=(-1)^{j} 2 \int_{0}^{b_{N-1}} \ldots \int_{0}^{b_{1}} \int_{\frac{1}{n}}^{T} \beta_{k}\left[\partial_{x_{k}} u_{n}\left(t, \varphi_{j}(t), x^{\prime}\right)\right]^{2} d t d x^{\prime}, j=1,2
$$

Then, we have

$$
\begin{equation*}
2\left\langle\partial_{x_{1}}^{2} u_{n}, \partial_{x_{k}}^{2} u_{n}\right\rangle=2\left\|\partial_{x_{1}} \partial_{x_{k}} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2}+H_{n, 1}+H_{n, 2} \tag{10}
\end{equation*}
$$

Summing up the estimates (9) and (10) and using the hypothesis (4), we obtain

$$
\begin{equation*}
-2\left\langle\partial_{t} u_{n}, \partial_{x_{k}}^{2} u_{n}\right\rangle+2\left\langle\partial_{x_{1}}^{2} u_{n}, \partial_{x_{k}}^{2} u_{n}\right\rangle \geq 2\left\|\partial_{x_{1}} \partial_{x_{k}} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2}, k=2, \ldots, N \tag{11}
\end{equation*}
$$

Indeed, for $k=2, \ldots, N$ we have

$$
\sum_{j=1}^{2} M_{n, j}+H_{n, j}=\sum_{j=1}^{2} \int_{0}^{b_{N-1}} \cdot . \int_{0}^{b_{1}} \int_{\frac{1}{n}}^{T}(-1)^{k}\left(2 \beta_{j}-\varphi_{j}^{\prime}(t)\right)\left[\partial_{x_{k}} u_{n}\left(t, \varphi_{j}(t), x^{\prime}\right)\right]^{2} d t d x^{\prime}
$$

which is nonnegative, thanks to the hypothesis (4). By a similar argument, we obtain

$$
\begin{align*}
& 2\left\langle\partial_{x_{2}}^{2} u_{n}, \partial_{x_{k}}^{2} u_{n}\right\rangle \geq 2\left\|\partial_{x_{2}} \partial_{x_{k}} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2}, k=3, \ldots, N, \\
& 2\left\langle\partial_{x_{3}}^{2} u_{n}, \partial_{x_{k}}^{2} u_{n}\right\rangle \geq 2\left\|\partial_{x_{3}} \partial_{x_{k}} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2}, k=4, \ldots, N, \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \tag{12}\\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
& 2\left\langle\partial_{x_{N-1}}^{2} u_{n}, \partial_{x_{N}}^{2} u_{n}\right\rangle \geq 2\left\|\partial_{x_{N-1}} \partial_{x_{N}} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2} .
\end{align*}
$$

Step 2. Estimation of $I_{n, k}, J_{n, k}$: We have

$$
\begin{aligned}
\left\|f_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2}= & \left\langle\partial_{t} u_{n}-\sum_{k=1}^{N} \partial_{x_{k}}^{2} u, \partial_{t} u_{n}-\sum_{k=1}^{N} \partial_{x_{k}}^{2} u\right\rangle \\
= & \left\|\partial_{t} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2}+\sum_{k=1}^{N}\left\|\partial_{x_{k}}^{2} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2} \\
& -2 \sum_{k=1}^{N}\left\langle\partial_{t} u_{n}, \partial_{x_{k}}^{2} u_{n}\right\rangle+2 \sum_{k=2}^{N}\left\langle\partial_{x_{1}}^{2} u_{n}, \partial_{x_{k}}^{2} u_{n}\right\rangle \\
& +2 \sum_{k=3}^{N}\left\langle\partial_{x_{2}}^{2} u_{n}, \partial_{x_{k}}^{2} u_{n}\right\rangle+\ldots+2\left\langle\partial_{x_{N-1}}^{2} u_{n}, \partial_{x_{N}}^{2} u_{n}\right\rangle .
\end{aligned}
$$

It is the reason for which we look for an estimate of the type

$$
\left|I_{n, 1}\right|+\left|I_{n, 2}\right|+\left|J_{n, 1}\right|+\left|J_{n, 2}\right| \leq K \epsilon\left\|\partial_{x_{1}}^{2} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2}
$$

A. Estimation of $I_{n, k}, k=1,2$

Lemma 3.3. There exists a constant $K>0$ independent of n such that

$$
\left|I_{n, k}\right| \leq K \epsilon\left\|\partial_{x_{1}}^{2} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2}, \quad k=1,2
$$

Proof. We convert the boundary integral $I_{n, 1}$ into a surface integral by setting

$$
\begin{aligned}
{\left[\partial_{x_{1}} u_{n}\left(t, \varphi_{1}(t), x^{\prime}\right)\right]^{2} } & =-\left.\frac{\varphi_{2}(t)-x_{1}}{\varphi_{2}(t)-\varphi_{1}(t)}\left[\partial_{x_{1}} u_{n}(t, x)\right]^{2}\right|_{x_{1}=\varphi_{1}(t)} ^{x_{1}=\varphi_{2}(t)} \\
& =-\int_{\varphi_{1}(t)}^{\varphi_{2}(t)} \partial_{x_{1}}\left\{\frac{\varphi_{2}(t)-x_{1}}{\varphi(t)}\left[\partial_{x_{1}} u_{n}(t, x)\right]^{2}\right\} d x_{1} \\
& =\int_{\varphi_{1}(t)}^{\varphi_{2}(t)}\left[-2 \frac{\varphi_{2}(t)-x_{1}}{\varphi(t)} \partial_{x_{1}} u_{n}(t, x) \partial_{x_{1}}^{2} u_{n}(t, x)+\frac{1}{\varphi(t)}\left[\partial_{x_{1}} u_{n}\right]^{2}\right] d x_{1}
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
I_{n, 1} & =\int_{0}^{b_{N-1}} \ldots \int_{0}^{b_{1}} \int_{\frac{1}{n}}^{T} \varphi_{1}^{\prime}(t)\left[\partial_{x_{1}} u_{n}\left(t, \varphi_{1}(t), x^{\prime}\right)\right]^{2} d t d x^{\prime} \\
& =\int_{Q_{n}} \frac{\varphi_{1}^{\prime}(t)}{\varphi(t)}\left(\partial_{x_{1}} u_{n}\right)^{2} d t d x+2 \int_{Q_{n}} \frac{\varphi_{2}(t)-x_{1}}{\varphi(t)} \varphi_{1}^{\prime}(t)\left(\partial_{x_{1}} u_{n}\right)\left(\partial_{x_{1}}^{2} u_{n}\right) d t d x
\end{aligned}
$$

Thanks to Lemma 3.2, we can write

$$
\int_{\varphi_{1}(t)}^{\varphi_{2}(t)}\left[\partial_{x_{1}} u_{n}(t, x)\right]^{2} d x_{1} \leq C[\varphi(t)]^{2} \int_{\varphi_{1}(t)}^{\varphi_{2}(t)}\left[\partial_{x_{1}}^{2} u_{n}(t, x)\right]^{2} d x_{1}
$$

Therefore

$$
\int_{\varphi_{1}(t)}^{\varphi_{2}(t)}\left[\partial_{x_{1}} u_{n}(t, x)\right]^{2} \frac{\left|\varphi_{1}^{\prime}\right|}{\varphi} d x_{1} \leq C\left|\varphi_{1}^{\prime}\right| \varphi \int_{\varphi_{1}(t)}^{\varphi_{2}(t)}\left[\partial_{x_{1}}^{2} u_{n}(t, x)\right]^{2} d x_{1}
$$

consequently,

$$
\left|I_{n, 1}\right| \leq C \int_{Q_{n}}\left|\varphi_{1}^{\prime}\right| \varphi\left(\partial_{x_{1}}^{2} u_{n}\right)^{2} d t d x+2 \int_{Q_{n}}\left|\varphi_{1}^{\prime}\right|\left|\partial_{x_{1}} u_{n}\right|\left|\partial_{x_{1}}^{2} u_{n}\right| d t d x
$$ since $\left|\frac{\varphi_{2}(t)-x_{1}}{\varphi(t)}\right| \leq 1$. Using the inequality

$$
2\left|\varphi_{1}^{\prime} \partial_{x_{1}} u_{n}\right|\left|\partial_{x_{1}}^{2} u_{n}\right| \leq \epsilon\left(\partial_{x_{1}}^{2} u_{n}\right)^{2}+\frac{1}{\epsilon}\left(\varphi_{1}^{\prime}\right)^{2}\left(\partial_{x_{1}} u_{n}\right)^{2}
$$

for all $\epsilon>0$, we obtain

$$
\left|I_{n, 1}\right| \leq C \int_{Q_{n}}\left|\varphi_{1}^{\prime}\right| \varphi(t)\left(\partial_{x_{1}}^{2} u_{n}\right)^{2} d t d x+\int_{Q_{n}}\left[\epsilon\left(\partial_{x_{1}}^{2} u_{n}\right)^{2}+\frac{1}{\epsilon}\left(\varphi_{1}^{\prime}\right)^{2}\left(\partial_{x_{1}} u_{n}\right)^{2}\right] d t d x .
$$

Lemma 3.2 yields

$$
\frac{1}{\epsilon} \int_{Q_{n}}\left(\varphi_{1}^{\prime}\right)^{2}\left(\partial_{x_{1}} u_{n}\right)^{2} d t d x \leq C \frac{1}{\epsilon} \int_{Q_{n}}\left(\varphi_{1}^{\prime}\right)^{2} \varphi(t)^{2}\left(\partial_{x_{1}}^{2} u_{n}\right)^{2} d t d x
$$

Thus, there exists a constant $K>0$ independent of n such that

$$
\begin{aligned}
\left|I_{n, 1}\right| & \leq C \int_{Q_{n}}\left[\left|\varphi_{\varphi}^{\prime}\right| \varphi(t)+\frac{1}{\epsilon}\left(\varphi_{1}^{\prime}\right)^{2} \varphi(t)^{2}\right]\left(\partial_{x_{1}}^{2} u_{n}\right)^{2} d t d x+\int_{Q_{n}} \epsilon\left(\partial_{x_{1}}^{2} u_{n}\right)^{2} d t d x \\
& \leq K \epsilon \int_{Q_{n}}\left(\partial_{x_{1}}^{2} u_{n}\right)^{2} d t d x,
\end{aligned}
$$

because $\left|\varphi_{1}^{\prime} \varphi(t)\right| \leq \epsilon$. The inequality

$$
\left|I_{n, 2}\right| \leq K \epsilon\left\|\partial_{x_{1}}^{2} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2}
$$

can be proved by a similar argument.
B. Estimation of $J_{n, k}, k=1,2$: We have

$$
\begin{aligned}
J_{n, 1} & =-2 \int_{0}^{b_{N-1}} \ldots \int_{0}^{b_{1}} \int_{\frac{1}{n}}^{T} \beta_{1} \partial_{t} u_{n}\left(t, \varphi_{1}(t), x^{\prime}\right) \cdot u_{n}\left(t, \varphi_{1}(t), x^{\prime}\right) d t d x^{\prime} \\
& =-\int_{0}^{b_{N-1}} \ldots \int_{0}^{b_{1}} \int_{\frac{1}{n}}^{T^{n}} \beta_{1}\left[\partial_{t} u_{n}^{2}\left(t, \varphi_{1}(t), x^{\prime}\right)\right] d t d x^{\prime} .
\end{aligned}
$$

By setting, for each fixed x^{\prime} in $\left.\prod_{i=1}^{N-1}\right] 0, b_{i}\left[, h(t)=u_{n}^{2}\left(t, \varphi_{1}(t), x^{\prime}\right)\right.$, we obtain

$$
\begin{aligned}
J_{n, 1} & =-\int_{0}^{b_{N-1}} \ldots \int_{0}^{b_{1}} \int_{\frac{1}{n}}^{T} \beta_{1} \cdot\left[h^{\prime}(t)-\varphi_{1}^{\prime}(t) \partial_{x_{1}} u_{n}^{2}\left(t, \varphi_{1}(t), x^{\prime}\right)\right] d t d x^{\prime} \\
& =\int_{0}^{b_{N-1}} \ldots \int_{0}^{b_{1}} \int_{\frac{1}{n}}^{T} \beta_{1} \cdot \varphi_{1}^{\prime}(t) \partial_{x_{1}} u_{n}^{2}\left(t, \varphi_{1}(t), x^{\prime}\right) d t d x^{\prime}+\int_{0}^{b_{N-1}} \ldots \int_{0}^{b_{1}}-\left.\beta_{1} \cdot h(t)\right|_{\frac{1}{n}} ^{T} d x^{\prime}
\end{aligned}
$$

Since β_{1} is negative and $u_{n}^{2}\left(\frac{1}{n}, \varphi_{1}\left(\frac{1}{n}\right), x^{\prime}\right)=0$, we have $\int_{0}^{b_{N-1}} \ldots \int_{0}^{b_{1}}-\left.\beta_{1} \cdot h(t)\right|_{\frac{1}{n}} ^{T} d x^{\prime} \geq 0$. The last boundary integral in the expression of $J_{n, 1}$ can be treated by a similar argument used in Lemma 3.3. So, we obtain the existence of a positive constant K independent of n, such that

$$
\left|\int_{0}^{b_{N-1}} \cdots \int_{0}^{b_{1}} \int_{\frac{1}{n}}^{T} \beta_{1} \cdot \varphi_{1}^{\prime}(t) \partial_{x_{1}} u_{n}^{2}\left(t, \varphi_{1}(t), x^{\prime}\right) d t d x^{\prime}\right| \leq K \epsilon\left\|\partial_{x_{1}}^{2} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2},
$$

and consequently,

$$
\begin{equation*}
\left|J_{n, 1}\right| \geq-K \epsilon\left\|\partial_{x_{1}}^{2} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2} . \tag{13}
\end{equation*}
$$

By a similar method and using the fact that β_{2} is positive and $u_{n}^{2}\left(\frac{1}{n}, \varphi_{2}\left(\frac{1}{n}\right), x^{\prime}\right)=0$, we obtain the existence of a positive constant K independent of n, such that

$$
\begin{equation*}
\left|J_{n, 2}\right| \geq-K \epsilon\left\|\partial_{x_{1}}^{2} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2} . \tag{14}
\end{equation*}
$$

Summing up the estimates (8), (11), (12), (13), (14) and making use of Lemma 3.2, we then obtain

$$
\begin{aligned}
\left\|f_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2} \geq & \left\|\partial_{t} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2}+\sum_{k=1}^{N}\left\|\partial_{x_{k}}^{2} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2}-4 K \epsilon\left\|\partial_{x_{1}}^{2} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2} \\
& +2 \sum_{k=2}^{N}\left\|\partial_{x_{1}} \partial_{x_{k}} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2}+2 \sum_{k=3}^{N}\left\|\partial_{x_{2}} \partial_{x_{k}} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2} \\
& +2 \sum_{k=4}^{N} 2\left\|\partial_{x_{3}} \partial_{x_{k}} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2}+\ldots+2\left\|\partial_{x_{N-1}} \partial_{x_{N}} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2} \\
\geq & \left\|\partial_{t} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2}+\left(1-4 K_{4} \epsilon\right)\left\|\partial_{x_{1}}^{2} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2}+\sum_{k=2}^{N}\left\|\partial_{x_{k}}^{2} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2} \\
& +2 \sum_{k=2}^{N}\left\|\partial_{x_{1}} \partial_{x_{k}} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2}+2 \sum_{k=3}^{N}\left\|\partial_{x_{3}} \partial_{x_{k}} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2} \\
& +2 \sum_{k=4}^{N} 2\left\|\partial_{x_{3}} \partial_{x_{k}} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2}+\ldots+2\left\|\partial_{x_{N-1}} \partial_{x_{N}} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2}
\end{aligned}
$$

Then, it is sufficient to choose ϵ such that $(1-4 K \epsilon)>0$, to get a constant $K_{0}>0$ independent of n such that

$$
\left\|f_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2} \geq K_{0}\left(\left\|\partial_{t} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2}+\sum_{\substack{i_{1}, i_{2}, \ldots, i_{N}=0 \\ i_{1}+i_{2}+\ldots+i_{N}=2}}^{2}\left\|\partial_{x_{1}}^{i_{1}} \partial_{x_{2}}^{i_{2}} \ldots \partial_{x_{N}}^{i_{N}} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2}\right)
$$

But $\left\|f_{n}\right\|_{L^{2}\left(Q_{n}\right)} \leq\|f\|_{L^{2}(Q)}$, then, there exists a constant $C>0$, independent of n satisfying

$$
\left\|\partial_{t} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2}+\sum_{\substack{i_{1}, i_{2}, \ldots, i_{N}=0 \\ i_{1}+i_{2}+\ldots+i_{N}=2}}^{2}\left\|\partial_{x_{1}}^{i_{1}} \partial_{x_{2} \ldots \ldots}^{i_{2}} \ldots \partial_{x_{N}}^{i_{N}} u_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2} \leq C\left\|f_{n}\right\|_{L^{2}\left(Q_{n}\right)}^{2} \leq C\|f\|_{L^{2}(Q)}^{2}
$$

This ends the proof of Proposition 3.1.

4. Main Results

We are now able to prove the main results of the paper.

4.1. Local in time result.

Theorem 4.1. Assume that the functions of parametrization $\varphi_{i}, i=1,2$ and the coefficients $\beta_{i}, i=1,2$ fulfil conditions (2), (3) and (4). Then, for T small enough, the heat operator $L=\partial_{t}-\Delta$ is an isomorphism from $H_{\gamma}^{1,2}(Q)$ into $L^{2}(Q)$.
Proof. 1) Injectivity of the operator L : Let us consider $u \in H_{\gamma}^{1,2}(Q)$ a solution of the problem (1) with a null right-hand side term. So,

$$
\partial_{t} u-\Delta u=0 \text { in } Q
$$

In addition u fulfils the boundary conditions

$$
\left.u\right|_{\partial Q \backslash\left(\Sigma_{i} \cup \Sigma_{T}\right)}=0 \text { and } \partial_{x_{1}} u+\left.\beta_{i} u\right|_{\Sigma_{i}}=0, i=1,2
$$

Using Green formula, we have

$$
\int_{Q}\left(\partial_{t} u-\Delta u\right) u d t d x=\int_{\partial Q}\left(\frac{1}{2}|u|^{2} \nu_{t}-\sum_{k=1}^{N} \partial_{x_{k}} u . u \nu_{x_{k}}\right) d \sigma+\int_{Q} \sum_{k=1}^{N}\left|\partial_{x_{k}} u\right|^{2} d t d x
$$

where $\nu_{t}, \nu_{x_{1}}, \ldots, \nu_{x_{N}}$ are the components of the unit outward normal vector at ∂Q. We shall rewrite the boundary integral making use of the boundary conditions. On the parts of the boundary of Q where $t=0, x_{k}=0, k=2, \ldots, N$ and $x_{k}=b_{k-1}, k=2, \ldots, N$ we have $u=0$ and consequently the corresponding boundary integral vanishes. On the part
of the boundary where $t=T$, we have $\nu_{x_{1}}=\nu_{x_{2}}=\ldots=\nu_{x_{N}}=0$ and $\nu_{t}=1$. Accordingly the corresponding boundary integral

$$
A=\frac{1}{2} \int_{0}^{b_{N-1}} \cdots \int_{0}^{b_{1}} \int_{\varphi_{1}(T)}^{\varphi_{2}(T)}|u|^{2}(T, x) d x
$$

is nonnegative. On the part of the boundary where $x_{1}=\varphi_{i}(t), i=1,2$, we have

$$
\nu_{t}=\frac{(-1)^{i+1} \varphi_{i}^{\prime}(t)}{\sqrt{1+\left(\varphi_{i}^{\prime}\right)^{2}(t)}}, \nu_{x_{1}}=\frac{(-1)^{i}}{\sqrt{1+\left(\varphi_{i}^{\prime}\right)^{2}(t)}}, \nu_{x_{k}}=0, k=2, \ldots, N
$$

and

$$
\partial_{x_{1}} u\left(t, \varphi_{i}(t), x^{\prime}\right)+\beta_{i} u\left(t, \varphi_{i}(t), x^{\prime}\right)=0, i=1,2 .
$$

Consequently the corresponding boundary integral is

$$
\sum_{i=1}^{2} \int_{0}^{b_{N-1}} \cdot . \int_{0}^{b_{1}} \int_{0}^{T}(-1)^{i}\left(\beta_{i}-\frac{\varphi_{i}^{\prime}(t)}{2}\right) u^{2}\left(t, \varphi_{i}(t), x^{\prime}\right) d t d x^{\prime}
$$

Then, we obtain

$$
\begin{aligned}
\int_{Q}\left(\partial_{t} u-\Delta u\right) u d t d x= & \sum_{i=1}^{2} \int_{0}^{b_{N-1}} . . \int_{0}^{b_{1}} \int_{0}^{T}(-1)^{i}\left(\beta_{i}-\frac{\varphi_{i}^{\prime}(t)}{2}\right) u^{2}\left(t, \varphi_{i}(t), x^{\prime}\right) d t d x^{\prime} \\
& +\frac{1}{2} \int_{0}^{b_{N-1}} \cdots \int_{0}^{b_{1}} \int_{\varphi_{1}(T)}^{\varphi_{2}(T)} u^{2}(T, x) d x+\int_{Q} \sum_{k=1}^{N}\left|\partial_{x_{k}} u\right|^{2} d t d x
\end{aligned}
$$

Consequently $\int_{Q}\left(\partial_{t} u-\Delta u\right) u d t d x=0$ yields the equality $\int_{Q} \sum_{k=1}^{N}\left|\partial_{x_{k}} u\right|^{2} d t d x=0$, because

$$
\sum_{i=1}^{2} \int_{0}^{b_{N-1}} \ldots \int_{0}^{b_{1}} \int_{0}^{T}(-1)^{i}\left(\beta_{i}-\frac{\varphi_{i}^{\prime}(t)}{2}\right) u^{2}\left(t, \varphi_{i}(t), x^{\prime}\right) d t d x^{\prime} \geq 0
$$

thanks to the hypothesis (4). This implies that $\sum_{k=1}^{N}\left|\partial_{x_{k}} u\right|^{2}=0$ and consequently $\Delta u=$ 0 . Then, the hypothesis $\partial_{t} u-\Delta u=0$ gives $\partial_{t} u=0$. Thus, u is constant. The boundary conditions and the fact that $\beta_{i} \neq 0, i=1,2$ imply that $u=0$.
2) Surjectivity of the operator L : Choose a sequence $Q_{n}, n=1,2, \ldots$ of reference domains (see section 2). Then we have $Q_{n} \rightarrow Q$, as $n \rightarrow \infty$.

Consider the solution $u_{n} \in H^{1,2}\left(Q_{n}\right)$ of the Robin problem (5) in Q_{n}. Such a solution u_{n} exists by Theorem 2.1. Let $\widetilde{u_{n}}$ the $0-$ extension of u_{n} to Q. Then, in virtue of Theorem 3.1, we know that there exists a constant C such that

$$
\left\|\widetilde{u_{n}}\right\|_{L^{2}(Q)}+\left\|\widetilde{\partial_{t} u_{n}}\right\|_{L^{2}(Q)}+\sum_{\substack{i_{1}, i_{2}, \ldots, i_{N}=0 \\ 1 \leq i_{1}+i_{2}+\ldots+i_{N} \leq 2}}^{2}\left\|\partial_{x_{1} x_{1}} \widetilde{\partial_{x_{2} \ldots}^{i_{2}} \ldots i_{x_{N}}^{i_{N}} u_{n}}\right\|_{L^{2}\left(Q_{n}\right)}^{2} \leq C\|f\|_{L^{2}(Q)} .
$$

This means that $\widetilde{u_{n}}, \widetilde{\partial_{t} u_{n}}, \partial_{x_{1}}^{i_{1}} \widetilde{\partial_{x_{2}}^{i_{2}} \ldots \partial_{x_{N}}^{i_{N}} u_{n}}$ for $1 \leq i_{1}+i_{2}+\ldots+i_{N} \leq 2$ are bounded functions in $L^{2}(Q)$. So for a suitable increasing sequence of integers $n_{k}, k=1,2, \ldots$, there exist functions

$$
u, v \text { and } v_{i_{1}, i_{2}, \ldots, i_{N}} 1 \leq i_{1}+i_{2}+\ldots+i_{N} \leq 2
$$

in $L^{2}(Q)$ with $1 \leq i_{1}+i_{2}+\ldots+i_{N} \leq 2$ such that

$$
\widetilde{u_{n_{k}}} \rightharpoonup u, \widetilde{\partial_{t} u_{n_{k}}} \rightharpoonup v, \partial_{x_{1}}^{i_{1}} \widetilde{\partial_{x_{2}}^{i_{2}} \ldots \partial_{x_{N}}^{i_{N}} u_{n_{k}} \rightharpoonup v_{i_{1}, i_{2}, \ldots, i_{N}}, .}
$$

weakly in $L^{2}(Q)$ as $k \rightarrow \infty$. Clearly,

$$
v=\partial_{t} u, v_{i_{1}, i_{2}, \ldots, i_{N}}=\partial_{x_{1}}^{i_{1}} i_{x_{2}}^{i_{2}} \ldots \partial_{x_{N}}^{i_{N}} u, 1 \leq i_{1}+i_{2}+\ldots+i_{N} \leq 2
$$

in the sense of distributions in Q and so in $L^{2}(Q)$. Finally, $u \in H^{1,2}(Q)$ and $\partial_{t} u-\Delta u=$ f in Q. On the other hand, the solution u satisfies the boundary conditions

$$
\left.u\right|_{\partial Q \backslash\left(\Sigma_{i} \cup \Sigma_{T}\right)}=0 \text { and } \partial_{x_{1}} u+\left.\beta_{i} u\right|_{\Sigma_{i}}=0, i=1,2,
$$

since

$$
\forall n \in \mathbb{N}^{*},\left.u\right|_{Q_{n}}=u_{n}
$$

This proves the existence of solution to Problem (1) and ends the proof of Theorem 4.1.
4.1.1. Global in time result. In the case where T is not in the neighborhood of zero, we set $Q=D_{1} \cup D_{2} \cup \Sigma_{T_{1}}$ (T_{1} small enough) where

$$
\begin{gathered}
D_{1}=\left\{(t, x) \in Q: 0<t<T_{1}\right\}, D_{2}=\left\{(t, x) \in Q: T_{1}<t<T\right\}, \\
\left.\Sigma_{T_{1}}=\left\{\left(T_{1}, x_{1}\right) \in \mathbb{R}^{2}: \varphi_{1}\left(T_{1}\right)<x_{1}<\varphi_{2}\left(T_{1}\right)\right\} \times \prod_{i=1}^{N-1}\right] 0, b_{i}[
\end{gathered}
$$

In the sequel, f stands for an arbitrary fixed element of $L^{2}(Q)$ and $f_{i}=\left.f\right|_{D_{i}}, i=1,2$. Theorem 4.1 applied to the non-regular domain D_{1}, shows that there exists a unique solution $v_{1} \in H^{1,2}\left(D_{1}\right)$ of the problem

$$
\left\{\begin{array}{l}
\partial_{t} v_{1}-\Delta v_{1}=f_{1} \in L^{2}\left(D_{1}\right) \tag{15}\\
\partial_{x_{1}} v_{1}+\left.\beta_{i} v_{1}\right|_{\Sigma_{i, 1}}=0, i=1,2 \\
\left.v_{1}\right|_{\partial D_{1} \backslash\left(\Sigma_{i, 1} \cup \Sigma_{T_{1}}\right)}=0, i=1,2
\end{array}\right.
$$

$\Sigma_{i, 1}$ are the parts of the boundary of D_{1} where $x_{1}=\varphi_{i}(t), i=1,2$.
Lemma 4.1. If $u \in H^{1,2}(] 0, T[\times] 0,1\left[\times \prod_{i=1}^{N-1}\right] 0, b_{i}[)$, then $\left.u\right|_{t=0} \in H^{1}\left(\gamma_{0}\right),\left.u\right|_{x_{1}=0} \in$ $H^{\frac{3}{4}}\left(\gamma_{1}\right)$ and $\left.u\right|_{x_{1}=1} \in H^{\frac{3}{4}}\left(\gamma_{2}\right)$, where $\left.\gamma_{0}=\{0\} \times\right] 0,1\left[\times \prod_{i=1}^{N-1}\right] 0, b_{i}\left[, \gamma_{1}=\right] 0, T[\times\{0\} \times$ $\left.\prod_{i=1}^{N-1}\right] 0, b_{i}\left[\right.$ and $\left.\gamma_{2}=\right] 0, T\left[\times\{1\} \times \prod_{i=1}^{N-1}\right] 0, b_{i}[$.

The above lemma is a particular case of [15, Theorem 2.1, Vol.2]. The transformation $(t, x) \longmapsto(t, y)=\left(t, \varphi(t) x_{1}+\varphi_{1}(t), x^{\prime}\right)$, leads to the following lemma:

Lemma 4.2. If $u \in H^{1,2}\left(D_{2}\right)$, then $\left.u\right|_{\Sigma_{T_{1}}} \in H^{1}\left(\Sigma_{T_{1}}\right),\left.u\right|_{x_{1}=\varphi_{i}(t)} \in H^{\frac{3}{4}}\left(\Sigma_{i, 2}\right)$, where $\Sigma_{i, 2}, i=1,2$ are the parts of the boundary of D_{2} where $x_{1}=\varphi_{i}(t)$.

Hereafter, we denote the trace $\left.v_{1}\right|_{\Sigma_{T_{1}}}$ by ψ which is in the Sobolev space $H^{1}\left(\Sigma_{T_{1}}\right)$ because $v_{1} \in H^{1,2}\left(D_{1}\right)$ (see Lemma 4.2). Now, consider the following problem in D_{2}

$$
\left\{\begin{array}{l}
\partial_{t} v_{2}-\Delta v_{2}=f_{2} \in L^{2}\left(Q_{2}\right), \tag{16}\\
\left.v_{2}\right|_{\Sigma_{T_{1}}}=\psi \\
\partial_{x_{1}} v_{2}+\left.\beta_{i} v_{2}\right|_{\Sigma_{i, 2}}=0, i=1,2 \\
\left.v_{2}\right|_{\partial D_{2} \backslash\left(\Sigma_{i, 2} \cup \Sigma_{T_{1}}\right)}=0, i=1,2
\end{array}\right.
$$

$\Sigma_{i, 2}$ are the parts of the boundary of D_{2} where $x_{1}=\varphi_{i}(t), i=1,2$. We use the following result, which is a consequence of [15, Theorem 4.3, Vol.2] to solve Problem (16).
Proposition 4.1. Let R be the cylinder $] 0, T[\times] 0,1\left[\times \prod_{i=1}^{N-1}\right] 0, b_{i}\left[, f \in L^{2}(R)\right.$ and $\psi \in H^{1}\left(\gamma_{0}\right)$. Then, the problem

$$
\left\{\begin{array}{l}
\partial_{t} u-\Delta u=f \text { in } R \\
\left.u\right|_{\gamma_{0}}=\psi \\
\partial_{x_{1}} u+\left.\beta_{i} u\right|_{\gamma_{i}}=0, i=1,2 \\
\left.u\right|_{\partial R \backslash\left(\gamma_{0} \cup \gamma_{i}\right)}=0, i=1,2
\end{array}\right.
$$

where $\left.\gamma_{0}=\{0\} \times\right] 0,1\left[\times \prod_{i=1}^{N-1}\right] 0, b_{i}\left[, \gamma_{1}=\right] 0, T\left[\times\{0\} \times \prod_{i=1}^{N-1}\right] 0, b_{i}\left[\right.$ and $\left.\gamma_{2}=\right] 0, T[\times$ $\left.\{1\} \times \prod_{i=1}^{N-1}\right] 0, b_{i}\left[\right.$, admits a (unique) solution $u \in H^{1,2}(R)$.
Remark 4.1. In the application of [15, Theorem 4.3, Vol.2], we can observe that there are not compatibility conditions to satisfy because $\partial_{x_{1}} \psi$ is only in $L^{2}\left(\gamma_{0}\right)$.

Thanks to the transformation $(t, x) \longmapsto(t, y)=\left(t, \varphi(t) x_{1}+\varphi_{1}(t), x^{\prime}\right)$, we deduce the following result:
Proposition 4.2. Problem (16) admits a (unique) solution $v_{2} \in H^{1,2}\left(D_{2}\right)$.
So, the function u defined by

$$
u=\left\{\begin{array}{l}
v_{1} \text { in } D_{1} \\
v_{2} \text { in } D_{2}
\end{array}\right.
$$

is the (unique) solution of Problem (1) for an arbitrary T. Our second main result is
Theorem 4.2. Under the assumptions (2), (3) and (4) on the functions of parametrization φ_{i} and the coefficients $\beta_{i}, i=1,2$, Problem (1) admits a (unique) solution $u \in$ $H^{1,2}(Q)$.

Acknowledgments. I want to thank the anonymous referee for a careful reading of the manuscript and for his/her helpful suggestions.

References

[1] Kheloufi,A., (2013), Existence and uniqueness results for parabolic equations with Robin type boundary conditions in a non-regular domain of \mathbb{R}^{3}, Applied Mathematics and Computation, 220, pp. 756-769.
[2] Sadallah,B.K., (1983), Etude d'un problème 2 m -parabolique dans des domaines plan non rectangulaires. Boll. Un. Mat. Ital., 2-B (5), pp. 51-112.
[3] Alkhutov,Yu.A., (2007), L_{p}-Estimates of solutions of the Dirichlet problem for the heat equation in a ball. Journ. Math. Sc., 142 (3), pp. 2021-2032.
[4] Kheloufi,A., Labbas,R. and Sadallah,B.K., (2010), On the resolution of a parabolic equation in a non-regular domain of \mathbb{R}^{3}, Differential Equations and Applications, 2 (2),pp. 251-263.
[5] Labbas,R., Medeghri,A. and Sadallah,B.K., (2002), Sur une équation parabolique dans un domaine non cylindrique. C.R.A.S, Paris, 335, pp. 1017-1022.
[6] Labbas,R., Medeghri,A. and Sadallah,B.K., (2002), On a parabolic equation in a triangular domain. Applied Mathematics and Computation 130, pp. 511-523.
[7] Labbas,R., Medeghri,A. and Sadallah,B.K., (2005), An L^{p} approach for the study of degenerate parabolic equation. E. J. D.E., 2005 (36), pp. 1-20.
[8] Sadallah,B.K., (2008), Regularity of a parabolic equation solution in a non-smooth and unbounded domain. J. Aust. Math. Soc., 84 (2), pp. 265-276.
[9] Sadallah,B.K., (2008), A remark on a parabolic problem in a sectorial domain. Applied Mathematics E-Notes, 8, pp. 263-270.
[10] Nazarov,A.I., (2001), L^{p}-estimates for a solution to the Dirichlet problem and to the Neumann problem for the heat equation in a wedge with edge of arbitrary codimension. J. Of Math.Sci., 106, (3), pp. 2989-3014.
[11] Savaré,G., (1997), Parabolic problems with mixed variable lateral conditions: an abstract approach. J. Math. Pures et Appl. 76, pp. 321-351.
[12] Kheloufi,A. and Sadallah,B.K., (2010), Parabolic equations with Robin type boundary conditions in a non-rectangular domain. E.J.D.E., (25), pp. 1-14.
[13] Ladyzhenskaya,O. A., Solonnikov,V.A. and Ural'tseva,N. N., (1968), Linear and Quasi-Linear Equations of Parabolic Type, A.M.S., providence, Rhode Island.
[14] Besov,V., (1967), The continuation of function in L_{p}^{1} and W_{p}^{1}, Proc. Steklov Inst. Math. 89, pp. 5-17.
[15] Lions,J.L. and Magenes,E., (1968), Problèmes aux Limites Non Homog ènes et Applications. 1,2, Dunod, Paris

Arezki Kheloufi for the photography and short autobiography, see TWMS J. App. Eng. Math., V.5, N.1.

[^0]: ${ }^{1}$ Laboratoire de Mathématiques Appliquées, Faculté des Sciences Exactes, Université de Bejaia, 6000 Bejaia, Algérie. Lab. E.D.P.N.L. and Hist. of Maths, Ecole Normale Supérieure, 16050-Kouba, Algiers, Algeria.
 e-mail: arezkinet2000@yahoo.fr;
 § Manuscript received: December 30, 2014; Accepted: November 06, 2015.
 TWMS Journal of Applied and Engineering Mathematics, Vol.6, No.1; © Işık University, Department of Mathematics, 2016; all rights reserved.

