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ABSTRACT 
 

This paper presents new criteria for the existence of stable equilibrium points in the total saturation 
region for cellular neural networks (CNNs). It is shown that the results obtained can be used to derive 
some complete stability conditions for some special classes of CNNs such as positive cell-linking 
CNNs, opposite-sign CNNs and dominant-template CNNs. Our results are also compared with the 
previous results derived in the literature for the existence of stable equilibrium points for CNNs. 
 
 

I. INTRODUCTION  
Cellular Neural Networks introduced in [1] have 
been extensively used in the area of image 
processing. In order for a CNN to operate 
properly in such applications the designed CNN 
must be completely stable. (A CNN is said to be 
completely stable if every trajectory tends to 
converge to stable equilibrium point.). Complete 
stability analysis of CNNs has been one of the 
major problems since there are no sufficient 
techniques and methods to establish the complete 
stability conditions for CNNs. In particular, 
complete stability analysis of nonsymmetric 
CNNs is more difficult since their dynamical 
behaviour can exhibit various phenomena such 
as oscillation, periodic orbit and chaos. So far, 
only a few results were obtained for the complete 
stability of a general nonsymmetric CNN, [2][5]. 
Therefore, the recent results usually focus on 

finding stable equilibrium points for nonsymmet-
ric CNNs. It is known that the existence of at 
least one stable equilibrium point is a necessary 
condition for the complete stability of CNNs. It 
has been conjectured in [6] that a CNN 
possessing a stable equilibrium point in the total 
saturation region is completely stable. This 
conjecture has been verified by most of the 
results obtained in the literature. We should also 
point out here that a CNN possessing a stable 
equilibrium may not be completely stable. A 
numerical example of this case is given in [7]. 
However, so far no one has provided a 
mathematical proof indicating that a CNN 
possessing a stable equilibrium is not completely 
stable. Therefore, complete stability analysis of 
nonsymmetric CNNs is mainly based on 
searching for conditions that establish the 
existence of at least one stable equilibrium point 
in the total saturation region [6]-[9].  
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2. PRELIMINARIES 
In this paper, we will consider the model of tha 
CNN whose dynamical behaviour is described by 
the following form of state equations: 
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we will also assume that the self-feedback 
coefficients iaii ∀> ,1

ii > ,1

. This assumption is 
important as it has been proved in [10] that under 
the condition a , a stable equilibrium 
point can only be in the total saturation region 
where 

i∀

.,1 i∀>xi  We will now establish some 
sufficient conditions under which there exists at 
least one stable equilibrium point in the total 
saturation region. 
We first give some definitions and facts that are 
important in the context of the stabiliy analysis 
of CNNs considered in this paper. 
 
Definition 1: Let B be a matrix with positive 
diagonal elements. B is called  quasi-diagonally 
column dominant if there exist positive constants 

 such that nidi ,...,1, =
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We will denote this class of matrices by     B 
. +∈ 0R

 
Definition 3 : Let B be a matrix with positive 
diagonal elements. B 0F∈ . If 
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Definition 4 : Let B be a matrix with positive 
diagonal elements. B ∈ . If +

0F

Definition 5 : Let B be a matrix with positive 
diagonal elements. The comparison matrix S of 
the matrix B  is defined as  and 0>= iiii bs

ijij bs −=  for i j≠ .The comparison matrix S 

of B is called nonsingular M-matrix ( M-matrix ) 
if the real part of every eigenvalue of S is 
positive (nonnegative). This class of matrices is 
denoted by B )0CC (, B∈∈ . 
 
Fact 1 : Let B be an nxn matrix with positive 
diagonal elements. If  the comparison matrix of 
B is a nonsingular M-matrix, then there exist 
positive constants nii ,...,1,d =  such that  

∑
≠
=

>
n

ij
j

jijiii bdbd
1

   i n,....,1=  

 
Fact 2 : Fact 1 implies that class  is a strict 
subclass of the class C.  

0R

 
Fact 3 : Class  is not a subclass of the class 

.  
0R

0F
Proof : Consider the following matrix 
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Note that B  implying that B . It is 

easy to see that B ∉ . 

C∈ 0R∈
F

 
Fact 4 : Class  is not a subclass of the class 

.  

F

Proof : Consider the following matrix 
 








=

565.1
650
5.105

B  

 
where B . Since B has a negative 

eigenvalue, B ∉ . 

F∈
R

In the following, the previous results concerning 
the existence of stable equilibrium points in 
CNNs are restated : 
 
Theorem 1 [6] : The CNN defined by (1) has at 
least one stable equilibrium point in the total 
saturation region if the comparison matrix of A-I 
is a nonsingular M-matrix,  A-I∈ . C
 In [4], the condition A-I∈  was also proved to 
imply the complete stability of CNNs.  

C

 
Theorem 2 [4] : The CNN defined by (1) is 
completely stable if A-I∈ . C
 
Theorem 3 [2] : The CNN defined by (1) is 
completely stable if the matrix A-I is strictly 
diagonally row dominant, that is  
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Theorem 4 [7] : Let the sequence  
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 be a rearrangement of the 

sequence 1 . Then, the CNN defined by 
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total saturation region if there exists a sequence 
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Theorem 5 [8] : Consider the CNN where the 
matrix A-I has the following form: 
 















−
−−

−−
−

−

10.
1.

....

....
0.1
0..
0..0

2

12

1

1

ps
sps

sp
s

A
 

where   . This CNN has 
at least one stable equilibrium point in total 
saturation region if 

,0> p

1p >

1>

min( 1s ), 2s−  
 
Theorem 6 [9] : The CNN defined by (1) has a 
least one stable equilibrium point in the total 
saturation region if the following condition 
holds: 

iia ,   for i∀  

 
Theorem 7 [11] : Let the matrix A-I for a two-
cell CNN be defined as follows: 
 





−

−
1

1

p
s
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Then, this two-cell CNN is completly stable if 

 ( p
 

3. NEW CONDITIONS FOR THE 
EXISTENCE OF A STABLE 
EQUILIBRIUM POINT 
The following theorem presents a new condition 
that ensures the existence of a stable equilibrium 
point in the saturation region.  nλ
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i
Theorem 8 : Under the assumption 

, there exists a stable equilibrium 
point in the the total saturation region 
(

aii ∀>− ,01

ixi ∀> ,1
+

0R

) for the system defined by (1) if A-

I ∈ . 

Proof : The condition  implies 
that there exists no stable equilibrium point in the 
linear region (

iaii ∀>− ,01

i∀,1

i∀,

+∈ 0R

xi ≤

ii >− 01

) and in the partial 
saturation region (some states are saturated and 
some are not) [10]. Therefore, under the 
condition , a stable equilibrium 
point can only be in the total saturation region. 
We will now show that A-I  implies the 
existence of a stable equlibrium in the total 
saturation region. 

a

 
Now consider the equilibrium equations of the 
CNN defined by (1): 
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region, we will assume that there exists a stable 
equilibrium point at which iix ε+= 1*  where 

 are sufficiently small positive constants. 
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Therefore it follows that there exist positive 
constants  such that iix ε+= 1 , i∀  is a 

solution of the equilibrium point that is in the 
total saturation region. Hence, we have proved 
that if A-I  then the CNN defined by (1) 
has a stable equilibrium point in the total 
saturation region.  

+

i

∈ 0R
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Theorem 9, given below, directly follows from 
the analysis of the equilibrium equation of the 
CNN: 
 
 Theorem 9 : The CNN defined by (1) has at 
least one stable equilibrium point in the total 
saturation region if A-I ∈ . +

0F
Proof : Let pi ∀= ,1 . In this case, (9) can be 
written as :  
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implies the existence of a sufficiently smallε  at 
the equilibrium point, Q.E.D.  
In the following, we will improve the conditions 
given in Theorems 8 and 9 for the existance of 
stable equilibrium point. To this end, the 
following fact will be needed : 
 
 Fact 5 : Let  be a matrix of dimension 
(n+1)x(n+1) and B be the nxn leading principal 
submatrix of B̂ of the following forms :  
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From Theorem 1, we can conclude that the CNN 
defined by (12) has a stable equilibrium point in 
the total saturation region if [+∈− 0

ˆˆ RIA Î  is 
the (n+1)x(n+1) unity matrix]. On the other 
hand, by Fact 5,  if 

where A is the nxn leading 

principal sub-matrix of  of the following form:  

+∈− 0
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Note that the above matrix A is the feedback 
matrix of system (1). Since, the dynamics of 
system (1) is independent of the dynamical 
behaviour of the state , the following result 
can be derived: 

+nx

 
Theorem 10: The CNN defined by (1) has a 
stable equilibrium point in the total saturation 
region if . RIA ∈−
 
The result of Theorem 9 can also be relaxed to 
the following :  
 
Theorem 11: The CNN defined by (1) has at 
least one stable equilibrium point in the total 
saturation region if 0FIA ∈− .  
Now the feedback matrix given in [4] :  
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where 

and 

. This feedback matrix A satisfies 
the conditions given in (6)-(8), thus ensuring the 
existence of a stable equilibrium point in the total 
saturation region. It is shown in [4] that (1.02, 
3.1) and (-1.02, -3.1) are the stable equilibrium 
points of the CNN defined by (1). It is also 

shown in [4] that this CNN has a periodic orbit, 
which means that the existence of a stable 
equilibrium point does not directly imply the 
complete stability of CNNs. Hence, the 
conditions obtained in (6)-(8) may not always 
ensure the complete stability for CNNs. We 
should point out here that the feedback matrix A 
of this example does not satisfy the condition 

08.0,1.1 1122211 −=−==== sapaa
2221 == sa

0RIA ∈− . On the other hand, we have carried 
out extensive simulations for CNNs with 

0RIA ∈−  and 0FIA ∈− . We have not 
found any unstable CNN whose feedback matrix 
satisfies one of the conditions and  0RI ∈−A

0FIA ∈− . Based on these simulation results 
and on the fact that no one, so far, has observed 
an unstable CNN where  or 0RI ∈A −

0FIA ∈− , we make the following 
conjectures: 
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Conjecture 1 : The CNN defined by (1) is 
completely stable if .  
 
Conjecture 2 : The CNN defined by (1) is 
completely stable if .  
We will now show that Conjecture 1 is true for 
two-cell CNNs. We first prove the following 
fact: 
  
Fact : Let B be the 2x2 matrix with b and 

. Then, B∈  if and only if .  
 
Proof: Let the matrices B and P be given as 
follows :  
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0R
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B∈ if PB is diagonally column dominant. 

Since , the term 11 >b 0
21
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1111 =−

b
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bb . 

Therefore, PB is diagonally column dominant if 
021 ≥b12− b2211bb . The comparison matrix 

S of B: 
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Since and , the real part of the 
eigenvalues of S is nonnegative, if and only if 
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Now consider the two-cell CNN where A-I is of 
the form :  
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where . According to Conjecture 1, 
this two-cell CNN is completely stable if 

. In [11], the condition 

 was already proved to be 
sufficient for the complete stability of a two-cell 
CNN. 
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4. CONCLUSIONS 
New conditions for the existence of stable 
equilibrium points for general cellular neural 
networks have been presented. The conditions 
obtained do not directly imply complete stability 
of CNNs. However, complete stability can be 
conjectured based on the remarks made in [6]. 
An analytical proof that clarifies the relationship 
between the existence of a stable equilibrium 
point and complete stability remains a 
challenging problem in the stability analysis of 
nonsymmetric CNNs. 
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