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Abstract

Internet of Things is a very fast growing area. Its requirements and related

technologies are changing from day to day. In Internet of Things, devices can

communicate with each other with different messaging protocols. The latest mes-

saging protocols are well developed, but they are too heavy to be run on devices

developed with old technology. Therefore, these devices have to be operated with

old-fashioned protocols. This makes devices vulnerable to security risks.

CoAP is a newly developed messaging protocol for constrained devices used in

Internet of Things applications. The protocol is a variant of HTTP, so it has

similar specifications. CoAP does not have an embedded security mechanism.

Therefore, another protocol called DTLS is used on top of it to provide security.

DTLS has powerful functions like handshaking and session processes; however, it

is weak against DoS attacks.

In this study, we develop a security extension for Internet of Things devices using

CoAP with DTLS for secure messaging. DTLS applies handshaking process for

every received request. The handshaking process is the most time and resource

consuming part of the communication. We propose a security extension to pre-

vent unnecessary messaging during handshaking process of an attacker device

that sends a lot of unauthenticated requests. When a client sends requests to a

server that has the proposed security extension, the server counts unsuccessful

handshaking processes for each client. If the count passes a limit of suspicious re-

quests, the security extension on server adds the client’s IP address into a banned

IPs list. Until the expiration time, the server does not accept any request from

the banned IP address.

Our proposed security extension is tested in different scenarios to examine the

effects on the network. The results of the experiments show that the enhanced

security extension decreases delays on the network and it is helpful for commu-

nication between authenticated devices.

Keywords: IoT, CoAP, DTLS, DoS, security
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NESNELERİN İNTERNETİ UYGULAMALARI İÇİN

COAP VE DTLS PROTOKOLLERİNİN GÜVENLİK

ANALİZİ

Özet

Nesnelerin İnterneti çok hızlı büyüyen bir alan. Bu alanın gereksinimleri ve ilgili

teknolojiler günden güne değişiyor. Nesnelerin İnterneti’nde, cihazlar birbirleri ile

farklı mesajlaşma protokolleri ile iletişim kurabilir. En yeni mesajlaşma protokol-

leri iyi geliştirilmiştir, ancak eski teknolojiyle geliştirilen cihazlarda uygulanama-

yacak kadar ağırdırlar. Bu yüzden bu cihazlar eski tür protokoller ile çalıştırılmak

zorunda kalıyorlar. Bu durum, cihazları güvenlik risklerine karşı savunmasız hale

getiriyor.

CoAP, Nesnelerin İnterneti uygulamalarında kullanılan kısıtlı cihazlar için yeni

geliştirilmiş bir mesajlaşma protokolüdür. Protokol HTTP’nin bir çeşididir, bu

yüzden benzer özelliklere sahiptir. CoAP’ın yerleşik bir güvenlik mekanizması

yoktur. Bu nedenle, DTLS adında başka bir protokol, güvenliği sağlamak için

kullanılır. DTLS, el sıkışma ve oturum işlemleri gibi güçlü işlevlere sahiptir,

ancak DoS saldırılarına karşı zayıftır.

Bu çalışmada, güvenli mesajlaşma için DTLS ile CoAP kullanan Nesnelerin In-

terneti cihazları için bir güvenlik uzantısı geliştirdik. DTLS, alınan her istek için

el sıkışma işlemini uygular. El sıkışma süreci, iletişimin en çok zaman alan ve

kaynak harcayan kısmıdır. Kimliği doğrulanmamış ve birçok istek gönderen bir

saldırganın bu işlem sırasında oluşturduğu gereksiz mesajlaşmayı önlemek için bir

güvenlik uzantısı öneriyoruz. Bir istemci önerilen güvenlik uzantısına sahip bir

sunucuya istek gönderdiğinde, sunucu her istemci için başarısız el sıkışmalarını

sayar. Sayı bir şüpheli istek sınırını geçerse, sunucudaki güvenlik uzantısı is-

temcinin IP adresini bir yasaklanmış IP adresleri listesine ekler. Zaman aşımına

kadar, sunucu yasaklanan IP adresinden herhangi bir istek kabul etmez.

Önerilen güvenlik eklentisinin ağ üzerindeki etkilerini incelemek için eklenti farklı

senaryolarda test edilmiştir. Bu testlerin sonuçları, geliştirilmiş güvenlik pro-

tokolünün ağdaki gecikmeleri azalttığını ve kimliği doğrulanmış cihazlar arasındaki

iletişimde yardımcı olduğunu göstermektedir.

Anahtar kelimeler: IoT, CoAP, DTLS, DoS, güvenlik
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Chapter 1

Introduction

IoT (Internet of Things) is connecting different kinds of devices with each other by

Internet or any other means of networking to monitor and control an environment

remotely. Low-power computers, sensors, embedded devices are example for these

devices. IoT is one of the fastest growing area in computer science. It reaches

many different kinds of market in the world such as environmental monitoring [1],

healthcare [2], smart cities [3], etc. According to J. Jeon, 75 billion IoT devices

will be get connected in 2020 [4].

One of the critical issues about IoT is to ensure that IoT devices, the network,

and data are secure. These commonly used devices would be under attacks of

hackers. In IoT ecosystem, devices connect to each other. If a hacker machine

can reach a single device, it can connect (send/receive fake messages) to all the

other devices in the same network and can hack other devices, thus the whole

network.

There are many powerful and commonly used network security protocols and

standards for popular computing devices such as PCs and smartphones. Day by

day, computer and Internet security companies update their security products

(antivirus, firewall etc.) or develop new methods for new threats. However, IoT

devices are not able to adapt these developments rapidly due to their constraints.

By their nature, IoT devices are low-cost products and have limited resources such

as limited memory, battery and processor. Therefore, their hardware specialities
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are insufficient to run intensive security protocols or software. The IoT technology

follows the recent security related developments from behind. In order to close the

gap, security protocols for every IoT devices/applications should be standardized.

On the other hand, there are many standardized communication protocols when

we examine IoT from the networking perspective. CoAP [5], MQTT [6], AMQP [7]

and DDS [8] are four major IoT protocols providing mechanisms for asynchronous

communication between IoT devices. CoAP and MQTT are very dominantly used

in most of the IoT applications. A server and a client communicate as one-to-one

with each other in CoAP. In MQTT, multiple clients communicate with a central

server as many-to-many communication. AMQP is enterprise-scale asynchronous

messaging protocol. It consists of publisher, consumer and broker. Publisher and

consumer communicate with each other through a queue established on a broker

[9]. DDS is a middleware protocol that uses publisher-subscriber data transfer

model [10]. CoAP (Constrained Application Protocol) uses REST [11] software

architecture. Since the REST architecture is useful for web services, CoAP has an

advantage over other protocols. Therefore, it is highly preferable by developers.

However, none of those protocols have any build-in security mechanisms.

While examining studies on IoT application security, it is seen that there are

two most commonly compared methods: TLS [12] and DTLS [13]. TLS is the

first protocols proposed for providing security of a network traffic with trans-

parent connection-oriented channel. It requires a reliable transport channel as

TCP. DTLS is a variant of TLS. The aim of DTLS is to provide a secure com-

munication over an unreliable datagram traffic with UDP [13]. These protocols

provide authentication, key exchange and secure communication between IoT de-

vices. They are suitable to be implemented on resource constrained IoT devices

since they can work in low-power consumption mode and do not need powerful

hardware specifications to run.

In this thesis, we focus on security flaw of the most commonly used IoT communi-

cation protocols: DTLS running on top of CoAP. The protocol CoAP is efficient
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for nowadays constrained devices; therefore, it is expected to be the most prefer-

able protocol at the near future. For different kinds of IoT applications, different

communication protocols can be used. However, the protocol, which needs to

be run on IoT devices, can not be a heavy protocol like HTTP with its security

plug-in due to their limited resources. Although CoAP is a popular light-weight

protocol for IoT devices, it needs an efficient security solution. DTLS is suitable

security protocol to provide security for CoAP. However, DTLS has a weak point

against DoS attacks according to its specification. In a DoS attack, attackers

send too many requests to overwhelm server resources and decrease the server’s

ability to reply legitimate requests. The attack creates an inoperative server as a

result of overloading.

In our study, we overcome the previously mentioned problem with an enhanced

security extension that is implemented on top of DTLS. The extension blocks

specific requests similar to DoS attacks. It measures incoming requests to detect

DoS attackers on the server side. We adapt our extension on a well-implemented

library called Californium [14]. The Eclipse Californium platform provides an

open source implementation of CoAP and DTLS 1.2 [13]. We extend DTLS

implementation in Californium library with a new IP checking mechanism. The

Californium library is suitable for running on devices such as Raspberry Pi and

Arduino. Thus, we test our proposed extension on real devices in a real testbed

using Raspberry Pi. As performance metrics, the delay of secured communication

and the effects of unsuccessful handshaking processes during DoS attacks for

every devices are considered. Our implementation has adaptable parameters to

test different cases. Thus, we examine performance of devices with the enhanced

security extension for different attacking scenarios.

This thesis is organized as follows. In Chapter 2 we will introduce related works,

CoAP and its comparison with other protocols, DTLS, and the Californium plat-

form. We will give the details of our proposed security extension in Chapter 3,

including details of the proposed algorithms, and the implementation of the test

3



platform. We will present our experimental results in Section 4 and conclude our

work in Section 5.
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Chapter 2

Background

2.1 Related Works

In a survey conducted by Bagci et al. [15], it was found that describes the Fusion

architecture and application which is developed on IPsec and DTLS systems.

They are described as Fusion’s implementation and evaluate its storage over-

heads, communication performance, and energy consumption. According to the

research’s results, applying the coalesced solution to use the standardized IoT

security protocols IPsec and DTLS is usable. Their implementation and evalua-

tion show that it is applicable on implemented solutions in constrained devices,

and the combined solution has better performance than performing cryptographic

operations separately.

In their research by Sitenkov [16], investigate the access control solution for the

IETF standard draft CoAP, using the DTLS protocol for transport security. They

used the centralized approach to save access control information in the framework.

Public key cryptography operations is computationally heavy for constrained de-

vices. Therefore, they build the new solution based on symmetric cryptography.

Evaluation results show that the access control framework increases the com-

putational effort of the handshake by 6.0%, increases the code footprint of the

Datagram Transport Layer Security implementation by 7.9% and has no effect

on the overall handshake time.
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Raza S. et. al. [17] researched about integration of DTLS and CoAP for the

IoT which name is Lithe. They proposed a new implemented DTLS header

compression scheme. The new header has gains to reduce energy consumption

by leveraging the 6LoWPAN standard. The proposed DTLS header compres-

sion scheme does not compromise the end-to-end security properties provided by

DTLS. Simultaneously, it considerably reduces the number of transmitted bytes

while maintaining DTLS standard compliance. According to evaluated results,

the new approach get precious achievements in terms of packet size, energy con-

sumption, processing time, and network-wide response times with compressed

DTLS. They quantitatively show that DTLS can be compressed and its overhead

is significantly reduced using 6LoWPAN standardized mechanisms. Their imple-

mentation and evaluation of compressed DTLS is successful to reduce the CoAPs

overhead as the DTLS compression is efficient in terms of energy consumption

and network-wide response time when compared with plain CoAPs. The differ-

ence between compressed DTLS and uncompressed DTLS is very significant if

the use of uncompressed DTLS results in 6LoWPAN fragmentation.

Rahman R et al. [18] examined IoT protocols and their security risks. Especially,

they are concentrated on CoAP protocol. They analyzed architecture, imple-

mentation and comparison with HTTP for CoAP. Nevertheless, they worked on

CoAP’s security challenges and solutions. According to the analysis, providing

security by DTLS with high performance is a considerable challenge for CoAP.

Kothmayr et al. [19] research first fully implemented two-way authentication

security with DTLS for IoT. Their proposed security scheme is based on RSA

which is one of the most used public key cryptography algorithms. According to

the results, DTLS is achievable security solutions for IoT systems. The handshake

process with RSA is consumed 488 mj. Also, the system needs less than 20 KB

memory. The value is under their sensor nodes which require 48 KB.
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2.2 Constrained Application Protocol (CoAP)

CoAP (Constrained Application Protocol) [5] was proposed by Shelby et al. in

2015. HTTP and HTTPS are not proper for IoT and M2M applications [20]

due to their high messaging overheads. That’s why CoAP was developed for

constrained devices and networks to achieve lower communication overheads [5].

Indeed, CoAP is a lightweight variant of HTTP. They have the same principles;

however, CoAP is simplified for resource constrained devices such as sensor nodes

that need to consume lower energy to operate longer [18]. CoAP protocol is

relatively new in communication networks and it has some weak points such as

security issues. It does not have a standardized security mechanism yet [18].

In the rest of this section, CoAP design details, features and comparison with

similar protocols are given.

2.2.1 Design Principles

CoAP protocol has the following design principles:

• It is designed to decrease the size of message overhead

• It can communicate asynchronously and uses UDP

• It has different message types: Confirmable, Non-confirmable, Acknowl-

edgement and Reset. Reliability of a message is controlled by the first two

message types.

2.2.2 Features

The most important features of CoAP protocol are listed below:

• Supporting UDP integration/binding for unicast and multicast requests
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• Content-type is available in the request header

• Uniform Resource Identifier (URI) is supported

• Proxy and caching mechanism abilities

• Supporting Datagram Transport Layer Security (DTLS) to provide security

• CoAP has a simple binary format. The format includes header (fixed-size

4-bytes), variable-length token values (between 0 to 8-bytes).

• CoAP shares same response code definitions with HTTP

2.2.3 CoAP vs. HTTP

HTTP is the main protocol to provide data delivery on the Internet (expand-

ing its interface to support HTTP/HTTPS protocol). CoAP is developed as an

alternative to HTTP for constrained devices. Therefore, they use very similar

infrastructures and processes. These protocols uses the same methods of REST

structure [18]. Besides that, HTTP is old and widely known but CoAP is very

new and still continue to develop.

The priority in CoAP design is being lightweight for both constrained devices and

networks. Therefore, CoAP has significantly low communication overhead than

HTTP. For a same type of transaction, CoAP with UDP creates a transaction

with 8 to 10 times less bytes than HTTP with TCP creates. [21].

2.2.4 CoAP vs. MQTT

There are different kinds of message exchanging protocols designed based on

requirements of IoT systems. MQTT (Message Queuing Telemetry Transport

Protocol) is also very popular and used in lots of IoT applications. MQTT [6] is

another M2M communication protocol developed in 1999. The protocol is based
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Criteria CoAP MQTT
Transport Layer UDP TCP

Architecture Client/Broker
Client/Server
Client/Broker

Header Size 4 Byte 2 Byte

Message Size Max 256 MB
Max dependent
to programming
technology

Methods

Connect,
Disconnect,
Publish,
Subscribe,
Unsubscribe,
Close

Get, Post,
Put, Delete

Cache and
Proxy

Partial Yes

Security TLS/SSL UDP, SCTP

Default port
1883/883
(TLS/SSL)

5685,5684
(UDP/DTLS)

Table 2.1: Comparison of CoAP and MQTT.

on publish-subscribe messaging and is also designed to mitigate the communica-

tion overhead in M2M communication for constrained environments.

Table 2.1 shows the comparison of CoAP and MQTT protocols. One of the im-

portant differences between CoAP and MQTT is about transport protocols used

underneath. MQTT uses TCP and CoAP uses UDP. The differences affect the

reliability of these messaging protocols [22]. TCP can guarantee packet delivery

to target; on the other hand, UDP can not [23] guarantee message delivery.

Both CoAP and MQTT are binary protocols. MQTT has 2-byte header size and

it has the half size of CoAP’s header. The message payloads can be maximum

256 MB for CoAP, and the maximum payload value can change according to

the web server or programming technology for MQTT. Although header size is

lower in MQTT than CoAP, TCP connection increases overall overhead and mes-

sage size in MQTT [23]. Moreover, CoAP achieves better values for bandwidth

requirements and round trip time (RTT) when it is compared with MQTT [24].
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type version epoch
sequence
number

length fragment

1 byte 2 bytes 2 bytes 6 bytes 2 bytes variable

Table 2.2: DTLS Record Format.

2.3 Datagram Transport Layer Security (DTLS)

TLS is a well-developed security protocol, which is generally used on web traffic

and e-mail protocols [13]. TLS run on top of TCP, so it can achieve reliable

connection. DTLS is an alternative to TLS designed for applications running on

top of unreliable datagram protocols such as UDP [25]. DTLS commonly uses the

infrastructure of TLS. As mentioned above, TLS does not support requirements

of an unreliable communication. DTLS completes these requirement with least

possible changes [13].

Table 2.2 shows the record format of DTLS. The fields type, version, length

include basic information about a record. Epoch and sequence number are signif-

icant for handshake functionality. Epoch starts from 0, and increases. Sequence

number is a unique value, and it is used with Epoch to calculate Message Au-

thentication Code for each DTLS record.

2.3.1 Handshaking

In Figure 2.1, handshake process of DTLS between a client and a server is shown

[19]. First of all, the client sends “ClientHello” message that contains the protocol

version. If the cipher suite is one of the supported version on the server, the

process will continue. If the process is successful, the server sends a response with

“ServerHello” message with the supported cipher suite. After that, the server

continues to send a message called “CerfiticateRequest” with X.509 certificate.

After this message, the server sends “ServerHelloDone” message to complete

the flight. In Flight 5, the client sends encrypted keys. it starts to send its

certificate information on “ClientKeyExchange”. After the message containing

10



Figure 2.1: DTLS Handshake Process.

the encrypted pre-master secret with keys is received by the server, the client

sends “CertificateVerify” message to provide authentication itself. The message

shows that the server’s private key matched the client’s public key. Afterward, the

client sends “ChangeCipherSpec” message, and it shows that the client encrypted

all messages successfully with the cipher suite and these keys. Finally, the client

sends “Finished” message, and it contains the encrypted version of all previous

handshaking messages. In last flight, the server sends “ChangeCipherSpec” and

“Finished” messages. Finally, they complete the handshake process with this

message.

Handshaking in DTLS protocol is very important to start a secure communication

between a client and a server. If this procedure fails, they can not communicate

with each other.

2.4 Eclipse Californium Platform

CoAP has been implemented in different programming languages. Californium [14]

platform contains one of the well-developed Java implementations of CoAP proto-

col. Indeed, Californium is a very wide range library and still under development.
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The library is under Eclipse Distribution License and Eclipse Public License.

The library has both server side and client side implementations. Unlike other

CoAP implementations, Californium library has sub-projects to support all fea-

tures of the protocol. When the source directory is examined, Californium-core,

Scandium-core, and sub-directories of the projects can be seen. Californium-core

includes core implementations of CoAP and related implementations. Scandium-

core is sub-project of Californium to provide security and DTLS version 1.2 im-

plementation resides in this package.

Californium platform has some certain benefits when it is compared with other

implementations of CoAP. It has many well-implemented example codes for test-

ing. Setting up a scenario and running it is very easy and quick. For testing

purposes, the platform also provides a useful plugin called Copper [26], which is

designed to act as a CoAP user-agent to test CoAP communication. It runs on

Firefox Browser; however, it is only available in Linux. Moreover, according to

Kovatsch et al. in [27], Californium implementation achieves three times higher

throughput than other CoAP implementations. This is one of the most significant

reasons to use Californium platform in this work.

Urkia et al. compare up-to-date open source CoAP implementations in [28]. They

consider technical specifications, target platforms, extensions and other dioristic

properties. The features of different implementations are summarized in Table

2.3. The authors set an experiment with the given CoAP implementations. Server

and client codes are run on RaspberryPi devices. Each client and server, which

are deployed for every implementation, send 50 requests to each other. According

to their experiment, Californium has less RTT values than Python-based libraries

have, but longer RTT values than C-based libraries achieves. On the other hand,

Californium is the library that consumes the RAM the most. C-based libraries

has better values on CPU and RAM usage to compile and execute the protocol

than the others have. In larger scenarios, libraries implemented by Java, Python

and Nodejs achieve similar performance to C-based libraries.
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Library Language
Target
Platform

Client/Server Extension

libcoap C

POSIX,
Contiki,
IwIP,
TinyOS

Client & Server

Observe,
Block-wise,
Resource
directory

smcp C
Embedded
devices,
Linux

Client & Server
Observe,
Multicase

microcoap C
Arduino,
POSIX

Server -

FreeCoAP C
GNU or
Linux

Client & Server -

Californium Java JVM Client & Server

Observe,
Blockwise
Resorce
Directory

h5.coap
node-coap
CoAPython

JS
JS
Python

Nodejs
Nodejs
Nodejs

Client
Client & Server
Client & Server

Observe,
Blockwise
resource,
Core-link
multicast

CoAPy Python Python Client & Server
Multicast,
Blockwise

Table 2.3: Features of CoAP libraries.
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Chapter 3

DTLS Protocol with Proposed Security Extension

3.1 Structure

As it is mentioned in the previous chapter, Californium includes an open-source

implementation of CoAP protocol. The library has a modular structure. It

includes five sub-packages: californium-core, californium-osgi, californium-proxy,

element-connector and scandium-core. In our work, we have modified some classes

on Californium-core and Scandium-core packages to improve security perspective

of DTLS version 1.2 protocol.

Californium has many skills for CoAP based projects and related progress and

protocols. Californium-core includes basic functionalities about CoAP. In addi-

tion, when a server or a client is created, it is initialized by californium-core.

Scandium-core is completely about security and includes DTLS implementation.

It applies 1.2 version of DTLS. Therefore, we improve the security against DoS

attacks on that version. Since the modules include detailed and well-implemented

demo classes, it is an advantage to test our proposed model in such a complex

project.

Californium has maven as project structure. It provides convenience to check

downloaded libraries’ version and keep the project up-to-date.
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3.2 CoapServer

CoapServer is a class, which includes all CoAP implementations of server side

in californium-core module. The class has network and security configurations,

listening port information and message deliverer to income CoAP request from a

source. If adding multiple end point information to CoapServer, the server can

listen multiple ports of these end points.

3.3 CoapClient

CoapClient is a class, which includes all CoAP implementations of client side in

californium-core module. Unlike CoapServer, it does not has message deliverer.

In addition, it has timeout parameter to control send request status. The client

can send request to just a single resource. Therefore, it does not support to add

multiple end point information.

3.4 Configuration

When we add DTLS to our CoAP server or CoAP client, we need to define security

configuration on these nodes. There are four settings to make successful DTLS

configuration: Psk Store, Trust Store, Identity, and Supported Cipher Suites.

In scandium-core module, there are helper classes to configure security properties.

KeyStore is one of these classes. It provides to store cryptographic keys and

certificates. These stored keys and certificates are used to set identity on security

configuration. The helper class is used to read and store certificates on Trust

Store, Supported Cipher Suites and Identity properties.

Psk Store configuration sets pre-shared key for authentication process. It has

identity and key parameters. The parameters are stored in text format. The

parameters are same for both server and client during the communication of each
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other. Trust Store includes root certificates on X.509 certification format. X.509

is a standard for public key certificates. It contains public key and an identity

[29]. Identity provides private key and the definition of used certification chain

to connector. The parameter is used to convince nodes identity server to client

and client to server. Therefore, the values must be same to ensure this process on

both nodes. Supported Cipher Suites, as it is understood form its name, include

list of supported cipher suites. To secure communication, server and client must

support at least one mutual cipher suite and the parameter can not be empty in

connector.

After making all these configurations on a builder object, the builder is added

to DTLSConnector. It creates a configuration object to be used on server or

client nodes. At the end, the nodes are ready for secure communication after the

configuration.

3.5 Implementation

Our proposed security extension is about protecting DTLS 1.2 against DoS at-

tacks. Therefore, we develop the solution on DTLSConnector class in scandium-

core module. The class includes all main functions about DTLS in Californium.

As a result, both server and client implementations, which are used mutually

by DTLSConnector class, are affected from the development. We create a new

DTLSConnector class that is named DTLSConnectorClient. Therefore, the

client side implementation does not affect the development. The created class

maintains the previous functionalities. We focus on DTLSConnector to improve

and it is used by our server.

We examine the received packets on the server side to enhance the secure of

DTLS protocol. In the original version, all received packets are forwarded to

related progresses in DTLSConnector. If there is no procedure defined for a

specific packet, the reception of the packet is only put into a log information file

and the information is shown. Indeed, all packets of same type are included in all
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this process without exception. This process is a time-consuming one, especially

for packets received before handshake. Therefore, we decide to develop a new

procedure to decrease this time consumption. There is no change for successful

handshake packets, but the new implementation catches multiple received packets

without successful handshake from the same resource.

Aim of the enhanced security extension is providing protection for a CoAP server

from DoS attacks. There is no control mechanism about IP address on DTLS

version 1.2 [13]. Therefore, controlling received packet from clients eliminates the

risks on security of the communication.

When we develop the security extension, we implement a main algorithm that

is shown in Algorithm 1. The other three algorithms are helper methods of the

main algorithm. Algorithm 1 includes the processes applied to received requests

to provide security. In the algorithm, processes are shown step by step.

3.5.1 Algorithms

In Algorithm 1, the records are prepared by processing received data included in

datagram packets at the beginning. The records include the client’s IP address,

the content of the message and some additional information. We keep track of the

IP address for DoS attack control. Then, the client’s port information is checked.

If an attacker uses a DNS or NTP server, all messages sent by the attacker will

have 53 or 123 as the source port number in the received packet. Therefore,

if the client’s port is one of these ports, the algorithm calls the method insert-

BannedIpAddressList for inserting the IP address into bannedIpAddressList table

in the database (called DB in the algorithm). After that, the algorithm checks

the IP address with the port in Banned IP Addresses List. If the address exists in

the list, the IP address is inserted to receivedPacketDelay table in the database.

This table includes all records of received requests and their reception time to

analyze delay values of all received requests after all. If the IP address is not in

the list, the record is forwarded to one of the related processes: ”HANDSHAKE”
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massage, ”APPLICATION DATA” massage, ”ALERT” massage or ”CHANGE

CIPHER SPEC” massage. Except for ”HANDSHAKE” massage process, other

processes are not critical for the security extension. Therefore, we do not keep

track of these types of massages.

Algorithm 2 shows the details of processHandshakeRecord function. The function

is called if the record type equals to ”HANDSHAKE” massage in Algorithm

1. The algorithm tries to examine the handshake process for the record. If

any exception occurs such as non-matching keys, the count of an unsuccessful

handshake is increased by one point. After the incrementation, if the count

exceeds the limit on banned IP addresses, the IP address of the record is added to

BannedIpAddressList in the database. If this happens, the server does not accept

any request from this client anymore until an expiration time. The expiration

time is set to a month after the insertion. In the end of the forwarded processes,

if there is no error, the request is added to receivedPacketDelay table as it is a

successful request.

Algorithm 3 is a simple but significant process. It checks the address in bannedI-

pAddressList table. If the address in the list, the algorithm returns true. Other-

wise, it returns false.

Algorithm 4 checks the address of the client for its unsuccessful requests. If the

requests count exceeds the limit on banned IP addresses, the IP address sending

the request is inserted into bannedIpAddressList table in the database. Thus, the

server does not accept any request from this IP address until expiration time. The

limit of received unsuccessful request is a parameter. The value can be determined

at the start of the server process.
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Algorithm 1

packet← getNextPacketFromBuffer() // Read datagram packet

IPAddress← packet.IPAddress // Get IP address of the packet

portNumber ← packet.portNumber // Get port number of the packet

record← packet // record keeps IPAddress, portNumber and

bannedCount that is initially zero

// Check portNumber if the request is from DNS (53) or NTP (123)

if portNumber == 53 OR portNumber == 123 then

insertBannedIpAddressList(IPAddress) // call function

end

if isBannedIPAddress(IPAddress) then

table ReceivedPacketDelay ← record // Insert the request with

unsuccessful handshake to ReceivedPacketDelay table in DB

else

forall records of received packet do

if record.recordType equal ’HANDSHAKE’ then

processHandshakeRecord(record) // call function

end

if record.recordType equal ’APPLICATION DATA’ then

processApplicationDataRecord(record) // call function

end

if record.recordType equal ’ALERT’ then

processAlertRecord(record) // call function

end

if record.recordType equal ’CHANGE CIPHER SPEC’ then

processChangeCipherSpecRecord(record) // call function

end

table ReceivedPacketDelay ← record // Insert the request with

successful handshake to ReceivedPacketDelay table in DB

end

end
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Algorithm 2 processHandshakeRecord(record)

if any process is failed then

record.bannedCount + + ; // Increase count of unsuccessful

handshake by one for the request IP address

end

if isExceedTheBannedLimit(record) then

table bannedIpAddressList← record.IPAddress ; // Insert the

address to bannedIpAddressList table in DB

end

Algorithm 3 isBannedIPAddress(IPAddress)

if IPAddress ∈ bannedIpAddressList table in DB then
return true

else
return false

end

Algorithm 4 isExceedTheBannedLimit(record)

if record.bannedCount > limit for unsuccessful handshake then

insertBannedIpAddressList(record.IPAddress)

end

3.6 Experimental Setup

In our research, we have implement a security extension to DTLS running on

CoAP. First of all, three classes are created that are named SecureServer,

SecureClient and DosDtlsAttackerToSecureServer. SecureServer plays server-

role, and other classes play as a client-role in the experiment. Figure 3.1 shows

that our experiment setup. Every scenarios use the same setup. We only change

some specific parameters such as banned Limit and number of DoS attack threads.
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Figure 3.1: Experiment Setup.

The server is initialized by CoapServer class and configured by DTLSConnector-

Config class. The config class includes security properties: KeyStore, TrustStore,

PskStore, identity properties, and cipher suites properties. If we do not add these

security properties, the server runs as Coap without DTLS.

SecureClient class is initialized by CoapClient, and it has the same features of

DTLSConnector configuration with SecureServer. The configuration must be

the same for secured communication between parties.

The client class, DosDtlsAttackerToSecureServer, is initialized by CoapClient,

but its’ security settings are different than others. It does not include supported

cipher suites by the server. Therefore, when the client sends any type of request

to the server, the server does not response to any request because the requests

are not valid.

We need one of the two things to create a real DoS attack: sending a request

to push capacity of a server or sending a lot of requests to keep server busy. In

the experiments, we apply the second attack type. Therefore, the client performs
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many threads. The number of attack threads is dynamic, we change the value

according to the scenario.
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Chapter 4

Experimental Results and Discussion

Our experimental work is about creating network scenarios with multiple different

conditions. We do not use simulation approach. Instead, we test the proposed

solution with real devices in a real environmental conditions. In every scenario,

there are two clients and one server, and each one is running on a separate de-

vice: SecureServer, SecureClient and DosDtlsAttacker. SecureServer runs

on laptop, and each client runs on a different RaspberryPi. RaspberryPi is an

experimental IoT device. It is more powerful than an average constrained device,

but it is good to observe changes of performance values when the device runs our

client implementation.

Californium is completely developed with Java. Therefore, we generate jar files

to upload codes to RaspberryPi devices. Server codes runs on laptop, so there

is no need to generate its jar file. After generated jar files for clients, we upload

them to devices with a ftp server.

Order of running devices are important and fixed in every scenario. First of all,

server is run before clients. It is essential to receive request from client since in

opposite case, clients may send request to unavailable server address. After the

server is ready to run, we can run the clients for a specific time that can differ

from server time.
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java -cp cf-secure.jar

org.eclipse.californium.MasterThesis.MasterThesisSecureClient

M 192.168.1.28 5684

Figure 4.1: Call SecureClient Jar File Example.

java -cp cf-secure.jar

org.eclipse.californium.MasterThesis.DosDtlsAttackerToSecureServer

192.168.1.28:5684 60 100

Figure 4.2: Call DosDtlsAttacker Jar File Example.

In the experiment, we change two parameters to call DosDtlsAttacker jar file.

Exceed limit of banned list is used to detect DoS attacker and block it. It is

an useful parameter to observe attacker’s pressure on the network performance.

When the parameter is bigger, attack detection time is increased. Other change-

able value is number of threads of DosDtlsAttacker. The parameter has opposite

effect than exceed limit of banned list because it decreases the attack detection

time with a same exceed limit value, but it causes to a higher response delay val-

ues during an attack. Therefore, we input these parameters to DosDtlsAttacker

when jar file is called from a terminal as shown in Figure. It is the easiest way

to test with different parameters on scenarios.

In Figure 4.1 and Figure 4.2 figures show how to call client jar files. Figure 4.1

is for SecureClient and the other figure is for DosDtlsAttacker. Each jar file

is needed to call with different parameters. In every jar call, mean of first four

parameters are same. These jar files have same names, but its main class names

are different.

In Figure 4.1, fifth parameter can be ‘S’ or ‘M’. Meaning of ’S’ is sending a single

request, the other option is sending multiple requests to target address. We use

’S’ parameter on development process. In our test scenarios, we always use ’M’

parameter to run SecureClient for multiple request. Last two values are address

and port of the target. The client runs for 300 seconds. The run time is not

critical because we want to observe effects of DosDtlsAttacker on the network
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performance. Therefore, the time is enough to show the effects before and after

the attack.

In Figure 4.2, after main class name, order of these parameters are target ad-

dress with port, running time limit and number of thread. As it is seen, the

client has less running time limit than SecureClient. Thus, we can examine the

changes between before and after a DoS attack. Like the running time limit of

client, number of thread is the other most effective parameter for performances of

devices in the scenarios. Because of this reason, we run DosDtlsAttacker after

SecureServer and SecureClient.

After uploading jars, we connect devices remotely with Putty from a PC, and

call jar files with parameters. When SecureServer received first packets from

the SecureClient, it shows log messages on the console. The logs are about

handshake processes, and at end of the logs we can see ”successfully completed”

message. When the log messages are seen in the console, SecureServer and

SecureClient can communicate with each other securely. After communication

proceeds for a specific time, we can run other client as DosDtlsAttacker. First

running process of the attacker client takes time, because it tries to send as many

message as the number of threads. The number of thread, run time are changeable

parameters for DosDtlsAttacker. SecureClient has constant run configuration.

Every scenario, we get three delay graphs. First graph which is named as delay

graph is about delay for successfully received requests by server. The requests

are came from SecureClient to SecureServer because DosDtlsAttacker does not

complete handshake with SecureServer, and its requests are not reach to deep

into SecureServer. In the graph, we can examine effects of DosDtlsAttacker on

the delay values between SecureClient and SecureServer. Other two graphs are

about delay of handshake and forward process for each client in server. These

values include both successful and unsuccessful requests.

In all delay graphs of scenarios, the X-axis is elapsed time in seconds, and the

Y-axis is the related delay value in milliseconds.
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4.1 Scenario 1: Effects of Low Thread Number and High Banned

Limit

In this scenario, the number of thread parameter is set to 100, and the exceed limit

on inserted banned IP addresses list is set to 50. Packet delay of SecureClient

on SecureServer on Figure 4.3, communication process delay of SecureClient

on Figure 4.4 and communication process delay of DosDtlsAttacker on Figure

4.5 are shown.

In Figure 4.3, first and maximum delay value is 8380 ms at 1.13 seconds of run

time for an success handshake between SecureClient and SecureServer. There

is no development for the handshake process by the security extension. Upto 90

seconds, SecureServer and SecureClient are successfully communicating with

each other, and DosDtlsAttacker does not send any request to SecureServer.

After that, when SecureServer starts to receive DosDtlsAttacker’s requests, de-

lay increases obviously. The situation continues approximate upto 125 seconds. In

that point, SecureServer inserts to the IP address in banned list in the database,

and it starts to reject requests coming from the banned IP as DosDtlsAttacker.

After the insertion, delay is decreased, but it is not same before the DoS attack.

Nevertheless, there is a good improvement for delay values between SecureServer

and SecureClient.

Figure 4.4 shows that received requests’ delays from SecureClient to

SecureServer. The delay values are calculated to each request. First and max

value of the figure is about handshake process. The value is 75ms. After the

process, there are small values until 90s. In there, delay values increases to 20-

25ms because DosDtlsAttacker starts to send request to server at the same time.

Figure 4.5 shows that delays of record process to abort handshake. These process

values are bigger than SecureClient because SecureServer checks these requests

and try to handshake with each other. Until 110s, there are no values because

the client runs with 100 threads, so begin of all threads takes time.
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Figure 4.3: Delay on Secure Server for scenario 1.

Figure 4.4: Packet delay of Secure Client for scenario 1.

Figure 4.5: Packet delay of DoS Attacker Client for scenario 1.

When we compare values of delay processes between SecureClient and

DosDtlsAttacker, we can easily observe different values. SecureClient has

smaller values than the other because it completes handshake during the commu-

nication with server. However, DosDtlsAttacker has higher values than

SecureClient because it tries to handshake with server on each request.

4.2 Scenario 2: Effects of High Thread Number and High Banned

Limit

In this scenario, number of thread parameter is set to 1000, and exceed limit to in-

sert banned IP address list to 50. Packet delay of SecureClient on SecureServer
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on Figure 4.6, communication process delay of SecureClient on Figure 4.7 and

communication process delay of DosDtlsAttacker on Figure 4.8 are shown.

Figure 4.6: Delay on Secure Server for scenario 2.

Figure 4.7: Packet delay of Secure Client for scenario 2.

Figure 4.8: Packet delay of DoS Attacker Client for scenario 2.
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Figure 4.6 shows that delay graph of the scenario. First delay is about handshake

process which value is 7.6 seconds. In the scenario, number of thread param-

eter value increases 100 to 1000. Therefore, delay values are obviously bigger

than previous scenario during under the DoS attack. Max delay value is 14.42

seconds due to the attack, and the value is approximately two times more than

the scenario’s delay value of handshake process. The comparison is significant

to network performance because handshake process is occurred once and again

the delay value is unexpected during communication. The unexpected situation

increases overall communication time. In this point, our security extension pro-

vides communication quality and it decreases delay values average 137ms. Of

course, the average value is more than delays of non-under attack but the value

is acceptable to provide communication.

When the network is under DoS attack, SecureClient can send less request than

normal because DosDtlsAttacker keeps busy the network. After the attacker

is inserted to banned list, SecureClient continues to send request as before the

attack.

4.3 Scenario 3: Effects of Low Thread Number and Medium Banned

Limit

In this scenario, number of thread parameter is set to 100, and exceed limit to in-

sert banned IP address list to 25. Packet delay of SecureClient on SecureServer

on Figure 4.9, communication process delay of SecureClient on Figure 4.10 and

communication process delay of DosDtlsAttacker on Figure 4.11 are shown.

When we compare results of the scenario with scenario 1, changing limit on

banned IPs list value is more influence than number of thread values for elapsed

time of during attack. The elapsed time of attack is decreased to 18s from 36.5s

than scenario 1. The changes shows that the limit on banned IPs list parameter

is directly affected to elapsed time of attack.
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Figure 4.9: Delay on Secure Server for scenario 3.

Figure 4.10: Packet delay of Secure Client for scenario 3.

Figure 4.11: Packet delay of DoS Attacker Client for scenario 3.

4.4 Scenario 4: Effects of Medium Thread Number and Medium

Banned Limit

In this scenario, number of thread parameter is set to 500, and exceed limit to in-

sert banned IP address list to 25. Packet delay of SecureClient on SecureServer

on Figure 4.12, communication process delay of SecureClient on Figure 4.13 and

communication process delay of DosDtlsAttacker on Figure 4.14 are shown.

The scenario is suitable to compare effects of number of threads. In scenario 4,

number of threads is increased 100 to 500 than scenario 3. When we compare

these results, number of threads parameter is effective for both. Max delay during
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attack is increased 2.81s to 10.48s and attack elapsed time is increased 18s to

41.6s. These differences between results are significant to network performance

and network security.

Figure 4.12: Delay on Secure Server for scenario 4.

Figure 4.13: Packet delay of Secure Client for scenario 4.

Figure 4.14: Packet delay of DoS Attacker Client for scenario 4.

4.5 Scenario 5: Effects of High Thread Number and Medium Banned

Limit

In this scenario, number of thread parameter is set to 1000, and exceed limit to in-

sert banned IP address list to 25. Packet delay of SecureClient on SecureServer

on Figure 4.15, communication process delay of SecureClient on Figure 4.16 and

communication process delay of DosDtlsAttacker on Figure 4.17 are shown.
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In the scenario, we increase number of threads to 1000. We compare the scenario

with scenario 3 and 4 because they have same limit on banned IPs list value.

Thus, we can compare correctly effects of number of threads values. According

to results of these scenarios, number of thread parameter is effective until 500.

When the parameter is increased to 500 from 100, elapsed time of the attack is

increased to 41.6s from 18s. However, if the parameter is changed 500 to 1000,

the elapsed time of attack is increased to 47.4s.

Figure 4.15: Delay on Secure Server for scenario 5.

Figure 4.16: Packet delay of Secure Client for scenario 5.

Figure 4.17: Packet delay of DoS Attacker Client for scenario 5.
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4.6 Scenario 6: Effects of Low Thread Number and Low Banned Limit

In this scenario, number of thread parameter is set to 100, and exceed limit

to insert banned IP address list is set to 5. Packet delay of SecureClient on

SecureServer on Figure 4.18, communication process delay of SecureClient on

Figure 4.19 and communication process delay of DosDtlsAttacker on Figure

4.20 are shown. Delay values are less than previous scenarios because exceed

limit parameter is less ten times, and it directly affected the delay values and

unprotected attack time. Attack time decreases approximately 60 seconds to 30

seconds than previous scenarios. In additionally, max delay values as 3.65s under

the attack is less than first delay as handshake process.

Figure 4.18: Delay on Secure Server for scenario 6.

Figure 4.19: Packet delay of Secure Client for scenario 6.
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Figure 4.20: Packet delay of DoS Attacker Client for scenario 6.

4.7 Scenario 7: Effects of High Thread Number and Low Banned

Limit

In this scenario, number of thread parameter is set to 1000, and exceed limit to

insert banned IP address list to 5. Packet delay of SecureClient on SecureServer

on Figure 4.21, communication process delay of SecureClient on Figure 4.22 and

communication process delay of DosDtlsAttacker on Figure 4.23 are shown.

Number of thread parameter is ten times more than previous scenario. The

difference is perceivable in the scenario’s graphs. In Figure 4.21, we can analyze

the DoS attacker effects directly to communication between SecureClient and

SecureServer. During under attack, its maximum delay value increases to 6.08s.

Figure 4.22 and 4.23 show that exceed limit to banned list parameter absorbs

differences on number of thread parameter because there is no any significant

changes in the figures. Communication quality is protected successfully.

Figure 4.21: Delay on Secure Server for scenario 7.
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Figure 4.22: Packet delay of Secure Client for scenario 7.

Figure 4.23: Packet delay of DoS Attacker Client for scenario 7.

4.8 Discussion

Table 4.1 shows that results of all scenarios. We test our security extension on

seven scenarios. Running time of devices and order of running start are constant

for all scenarios because these parameters are not affect results in no sense. How-

ever, number of threads and exceed limit of banned list is directly affect results.

When we change value of these parameters, we can get different results. In first

scenario, we use 100 for parameter of number of threads and 50 exceed limit of

banned list. These values are enough to affect secure communication between

client and server which is completed handshake process. In other scenarios, we

increase or decrease these parameters. In second scenario, we increases number of

thread to 1000, and the change increases time of insertion banned list to two times

than previous scenario. Because the server tries handshake process with every

DoS attackers, and the processes is caused to increase delay. In sixth scenario, we
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Scenario
Name

Number of
Threads

Limit on Banned
IPs List

Max delay
during attack

Attack
Elapsed
Time

Scenario 1 100 50 3.60 sec 36.5 sec
Scenario 2 1000 50 14.42 sec 62 sec
Scenario 3 100 25 2.81 sec 18 sec
Scenario 4 500 25 10.48 sec 41.6 sec
Scenario 5 1000 25 10.71 sec 47.4 sec
Scenario 6 100 5 3.65 sec 26 sec
Scenario 7 1000 5 6.08 sec 31.2 sec

Table 4.1: Results of All Scenarios.

decreases parameter values and then both the delay values are decrease on net-

work. In seventh scenario, we set number of thread to 1000 and exceed limit to

banned list to 5. Actually, these settings are meaningful to observe achievement

of our security extension on the scenario. Delay value and attack time before

avoid these attackers are decreased. Thus, we get more successful result with low

value of exceed limit of banned list.

In scenario 3, 4 and 5, we want to observe effects of number of threads values.

In previous scenarios, we set the parameter with minimum and maximum values

for the our setup. However, we set exceed limit to banned list to 25 in the 3

scenarios. The mid value of exceed limit to the list contributes variety to our

study. According to results of these scenarios, values of number of threads are

directly affected to performance on the network. Between 500 and 1000 values of

number of threads, the network performances get very similar results each other.

The reason for this is performance of Raspberry Pi devices. Our DoS attacker

code is run on Raspberry Pi device and it can not start all threads in limited

time. If we have 10 Raspberry Pi devices to run DoS attacker codes, we can get

higher max delay values in Scenario 5.
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Chapter 5

Conclusion

We propose an enhanced security extension against DoS attacks for DTLS running

together with CoAP protocol to provide protection in IoT ecosystem. IoT is

extremely growing area in computer science, and CoAP with DTLS is commonly

run on IoT devices. Therefore, our work tries to bring a new point of view about

security for web transfer protocols.

In this study, we successfully develop a security extension on DTLS to provide

protection for CoAP messaging. We implement all improvements on Californium,

which is Java based library including implementation of CoAP and related pro-

tocols. We compare Californium library with other CoAP libraries. It has some

certain advantages. The library provides high performance, is well-implemented

for CoAP and its project structure is much more well-established to be improved

than other CoAP implementations.

In the experiments, we create different scenarios to test the performance of the

method. In every scenarios, we test most meaningful parameter values such as

number of attack threads and limit on banned IP Addresses to see the effects of

new security extension. These values are differently set according to network’s

requirements. The parameter values of exceed limit of banned list is set to 5, 25,

and 50. It is seen that the smaller values of limit achieves an earlier detection

of DoS attacks. The number of threads are also changed between 100, 500, and
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1000. We examine the effect of load created on the server as a result of traffic

that is created by attack threads.

In future works, the extension will be added and tested with other frequently

used unreliable datagram protocols such as UDP.
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cient iot-based remote health monitoring system for smart regions,” in 2015

17th International Conference on E-health Networking, Application Services

(HealthCom), 2015, pp. 563–568.

[25] M. Tiloca, K. Nikitin, and S. Raza, “Axiom: Dtls-based secure iot group

communication.” SICS Swedish ICT AB, 2017.

[26] M. Kovatsch, “Copper (cu).” [Online]. Available: https://github.com/

mkovatsc/Copper

[27] M. Kovatsch, M. Lanter, and Z. Shelby, “Californium: Scalable cloud services

for the internet of things with coap,” in 2014 International Conference on

the Internet of Things (IOT), 2014, pp. 1–6.

41

https://github.com/mkovatsc/Copper
https://github.com/mkovatsc/Copper


[28] M. Iglesias-Urkia, A. Orive, and A. Urbieta, “Analysis of coap implemen-

tations for industrial internet of things: A survey,” in The 8th Interna-

tional Conference on Ambient Systems, Networks and Technologies (ANT

2017), IK4-Ikerlan Technology Research Centre, Information and Commu-

nication Technologies Area. Po J.M.Arizmendiarrieta, 2. 20500 Arrasate-

Mondrag´on, Spain, 2017, pp. 188–195.

[29] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and

W. Polk, “Internet x.509 public key infrastructure certificate and

certificate revocation list (crl) profile,” May 2008. [Online]. Available:

https://tools.ietf.org/rfc/rfc5280.txt

42

https://tools.ietf.org/rfc/rfc5280.txt

	Abstract
	Özet
	Acknowledgements
	List of Tables
	List of Figures
	List of Abbreviations
	1 Introduction
	2 Background
	2.1 Related Works
	2.2 Constrained Application Protocol (CoAP)
	2.2.1 Design Principles
	2.2.2 Features
	2.2.3 CoAP vs. HTTP
	2.2.4 CoAP vs. MQTT

	2.3 Datagram Transport Layer Security (DTLS)
	2.3.1 Handshaking

	2.4 Eclipse Californium Platform

	3 DTLS Protocol with Proposed Security Extension
	3.1 Structure
	3.2 CoapServer
	3.3 CoapClient
	3.4 Configuration
	3.5 Implementation
	3.5.1 Algorithms

	3.6 Experimental Setup

	4 Experimental Results and Discussion
	4.1 Scenario 1: Effects of Low Thread Number and High Banned Limit
	4.2 Scenario 2: Effects of High Thread Number and High Banned Limit
	4.3 Scenario 3: Effects of Low Thread Number and Medium Banned Limit
	4.4 Scenario 4: Effects of Medium Thread Number and Medium Banned Limit
	4.5 Scenario 5: Effects of High Thread Number and Medium Banned Limit
	4.6 Scenario 6: Effects of Low Thread Number and Low Banned Limit
	4.7 Scenario 7: Effects of High Thread Number and Low Banned Limit
	4.8 Discussion

	5 Conclusion
	Reference



