
MANAGEMENT OF THE INTERNET OF THINGS (IOT)

WITH SOFTWARE-DEFINED NETWORKING

CEM TÜRKER
B.S., Computer Engineering, IŞIK UNIVERSITY, 2019

Submitted to the Graduate School of Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

IŞIK UNIVERSITY

2019

MANAGEMENT OF THE INTERNET OF THINGS

(IOT) WITH SOFTWARE-DEFINED NETWORKING

Abstract

In recent years, Software Defined Networking is started to shape telecommunica-

tion industry. Control plane and data plane separation is applied on telecommu-

nication infrastructure and have evolved packet network. There are also many

studies about the application of Software Defined Networking on Wireless Sensor

Networks domain. One of them is SDN-WISE that aims to reduce the complexity

of network configuration and management of Wireless Sensor Networks. In this

thesis, a couple of contributions are done on SDN-WISE architecture to improve

the network performance by changing the routing mechanism.

In wireless sensor networks, nodes, who are close to sink, places a critical role,

because those nodes are being frequently selected to reach destination path when

a data is required to deliver on edge nodes in the topology. In this thesis, we try

to maximize the lifetime of the network by selecting destination paths considering

forecasted remaining battery level. Lifetime defined as follows. When any node

dies in a topology, it is assumed that the lifetime of the network is over. This

approach is implemented on SDN-WISE architecture and to see the performance

of this method a set of experiments are performed.

This thesis is about maximizing the lifetime of the network on SDN-WISE by

applying forecasting on node’s battery level. Architectural modifications is done

and linear regression is added to reach the objective. Our results show that the

lifetime of the network is increased. However, while increasing the lifetime of the

network, the packet delivery delay is increased between the nodes. We analyse

this trade-off.

Keywords: SDN-WISE, WSN, Routing, Forecast, Linear Regression

ii

YAZILIM TABANLI AĞLAR İLE NESNELERİN

İNTERNETİ (IOT) YÖNETİMİ

Özet

Son yıllarda, Yazılım Tanımlı Ağ, telekomünikasyon endüstrisini şekillendirmeye

başlamıştır. Kontrol yollari ve veri yollari ayrımı telekomünikasyon altyapısına

uygulanır ve yazilim ağlarini geliştirmiştir. Kablosuz Algılayıcı Ağlarda Etki

Alanında Yazılım Tanımlı Ağların uygulanması hakkında birçok çalışma vardır.

Bunlardan biri, ağ konfigürasyonunun ve Kablosuz Sensör Ağlarının yönetiminin

karmaşıklığını azaltmayı amaçlayan SDN-WISE platformudur. Bu tezde, ağ per-

formansını artırmak amacı ile yönlendirme mekanizmasını değiştirmek için SDN-

WISE mimarisine birkaç katkı yapılmıştır.

Kablosuz algılayıcı ağlarda, alıcıya yakın olan düğümler kritik bir rol oynar, çünkü

bu düğümler, topolojideki kenar düğümlerde bir veri istendiğinde, hedef yola

ulaşmak için sık sık seçilmektedir. Bu tezde, kalan pil seviyesini göz önünde

bulundurarak hedef yolları seçerek ağın ömrünü maksimize etmeye çalışıyoruz.

Ömür boyu; herhangi bir düğüm bir topolojide öldüğünde, ağın kullanım ömrünün

sona erdiği varsayılır. Bu yaklaşımı SDN-WISE mimarisine uyguladik ve bu

yöntemin performansını görmek için bir dizi deney yaptik.

Bu tez, düğümün pil seviyesi ile ilgili tahminleri uygulayarak ağın kullanım ömrünü

SDN-WISE’de maksimize etmekle ilgilidir. Bunun için SDN-WISE’de mimari

değişiklikler yapılmış ve hedefe ulaşmak için lineer regresyon eklenmiştir. Sonuçlar

ağın kullanım ömrünün arttığını göstermektedir. Bununla birlikte, ağın ömrünü

arttırırken, düğümler arasında paket iletim gecikmesi artmıştır. Bu ödünleşim

analizi sonuçlarda paylaşılmıştır.

Anahtar kelimeler: SDN-WISE, WSN, Yönlendirme, Önden Tahmin, Li-

neer Regresyon

iii

Acknowledgements

First of all, I want to thank to Assist. Prof. Dr. Ayşegül Erman Tüysüz, who

has supervised me during my thesis and has helped me to improve my work.

Also, I have special thanks to Cansu Toprak, who has supported me while working

on my thesis.

Finally, I thank my lovely parents and brother, Mehmet Türker, Işıl Türker and

Can Türker, who supported me all the time.

iv

To My Family. . .

Table of Contents

Abstract ii

Özet iii

Acknowledgements iv

List of Tables viii

List of Figures ix

List of Abbreviations x

1 Introduction 1

2 Background 3

2.1 Previous Works . 3

2.2 Software Defined Networking (SDN) 5

2.2.1 SDN Architecture . 5

2.2.2 SDN Features . 6

2.2.3 SDN Capabilities from WSN Point of View 6

2.3 SDN-WISE . 7

2.3.1 Protocol Architecture . 7

3 Proposed Routing Architecture and Test Environment 10

3.1 Architecture . 11

3.1.1 Overview . 11

3.1.1.1 SDN-WISE Controller 12

3.1.1.2 SDN-WISE Forecast 14

3.1.1.3 InfluxDB . 14

3.1.2 Algorithm Modification . 15

3.1.3 Forecasting Battery Levels 19

3.2 Test Environment . 20

3.2.1 Overview . 20

3.2.2 Test Tools . 21

3.2.3 Test Automation . 22

3.2.4 Test Data Reporting . 22

4 Experiments 25

4.1 Simulation Runs For Experiments 26

4.2 Lifetime . 27

4.3 Battery Consumption . 28

4.4 Delay . 30

5 Conclusion 32

Reference 34

List of Tables

3.1 Battery forecasting Example With Linear Regression. 19

3.2 Sample of Output File. 24

4.1 Weights Used In Experiments. 25

4.2 Simulation Parameters. 26

4.3 SDN-WISE Controller Configuration Parameters. 27

viii

List of Figures

2.1 SDN Architecture Overview. 6

2.2 SDN-WISE Architecture. 8

2.3 SDN-WISE Controller, Sink And Node Network Layers. 8

3.1 Forecasting Architecture Overview. 11

3.2 Forecast Response Message. 13

3.3 Report packet delivery Message To SDN-WISE Forecast. 13

3.4 Retrieve TAG Values From Battery. 14

3.5 Retrieve Battery Level. 14

3.6 Test Architecture Overview. 20

4.1 Lifetime Graph Results. 28

4.2 Battery Consumption Results. 29

4.3 Delay Results. 30

ix

List of Abbreviations

IoT Internet of Things

WSN Wireless Sensor Network

SDN Software Defined Networks

SD-WSN Software Defined Wireless Sensor Networks

PF Particle Filtering

PID Process ID

VM Virtual Machine

RPL IPv6 Routing Protocol for Low Power And Lossy Networks

RSSI Received Signal Strength Indicator

RPC Remote Procedure Call

x

Chapter 1

Introduction

In this thesis, Software Defined Networks (SDN) has investigated on Wireless

Sensor Networks (WSN) to obtain maximum network lifetime using the routing

in an efficient way. Lifetime means that, if any node’s battery dies in the topology,

it is assumed that lifetime of the network is over. SDN plays an important role to

achieve this goal and thanks to it’s centralized and programmable control unit.

Resource and process control is difficult to manage for WSN due to behaviours and

structures of the sensors. SDN aims to provide applicable controlling mechanism

for WSN. Most of the studies have already changed their scope into SD-WSN

topic [1].

At 2020, 50 billion devices are measured to be connected to the network and

most of them will be actuators and the sensors [2]. Thus, monitoring them and

intervene the routing from centralized management is needed to gain maximum

resource usage. That is why WSN integration with SDN is important.

One of the SD-WSN approach, which is SDN-WISE, has investigated and used

in this thesis. A particular solution has proposed as an improvement on SDN-

WISE protocol. The solution is about prediction of the next battery usages for

the future using linear regression and applying the forecasted battery levels on

a rerouting algorithm. Battery level plays a significant role in WSN, since the

nodes are mostly driven by nonchargeable batteries [3].

1

In the thesis, it is shown that SD-WSN network resources can be managed and

battery level of the nodes in the topology can be balanced using rerouting by the

controller unit. Thus, the weight over the node will be reduced, and the battery

consumption will be degraded as well.

Tests are driven towards different size of WSN topologies. Lifetime of a topology

and communication delay are measured and comparison have made with the

proposed and the default SDN-WISE protocol. As a result, longer lifetime has

achieved for every topology; however, communication delay was increased.

2

Chapter 2

Background

2.1 Previous Works

In recent years, telecom industry has started to shift their infrastructures to SDN

for their future plans. The reason is to have a centralized view and supporting

programmability of protocols and network functions by decoupling data plane and

controller plane. Currently data plane and control plane are mostly integrated in

network devices [4].

There are many different Software Defined Wireless sensor solutions have pro-

posed already. In this study, we have worked with SDN-WISE application. The

reason is controller unit has already implemented in the application. Furthermore,

node and sink codes are open-sourced which means that they can be extended by

additions. SDN-WISE also provides testing on network using Cooja. The tutorial

has been shared for testing through their website [5]. Cooja simuation tool will

be described in the Section 3.2.1 briefly.

SDN-Wise is a proposed application for SD-WSN and has its own protocol be-

tween control and network layer like Openflow. This is for communicating with

sensors and called as SDN-WISE Protocol. The SDN-WISE controller architec-

ture is nearly similar to how SDN controller is working. Only differences are

topology discovery, network packet processing and topology management phases

[6]. The details of them will be discussed in Chapter 2.

3

Studies have been applied to SDN-WISE to test functionality, adding big data

integration and increase lifetime of the network. These are adding the trickle

timing algorithm and adding a LSTM-ANN to SDN-WISE.

SDN-WISE is proposed for managing easily the WSN with functionality of SDN.

It means that, it provides a observably and management overall the network.

Also their proposed solution allows different WSN networks to work together. To

do that, they have proposed a different stack implementation for WSN nodes [7].

Big data integration with SDN-wISE is also proposed. The map-Reduce function-

ality is added to SDN-WISE, and different data-aggregation is applied in their

tests [8]. They compared performance of their proposed system with three differ-

ent topologies. Also, their data process is done at different levels; one is at cloud

based, in WSN node, other-one is hybrid.

Trickle timing algorithm is integrated with SDN-WISE to improve energy effi-

ciency. The trickle algorithm allows nodes in low-power and lossy networks (the

IPv6 Routing Protocol) to share information in a highly robust, scalable manner

and simple way [9]. When the network is consistent and stable, the packet fre-

quency will be low; however, when a network inconsistency is detected, the num-

ber of packet rate will be increased between nodes to make it consistent again.

According to their results, they gain better efficiency over battery consumption

on nodes. They are referring that their approach performed higher compared to

RPL in terms of radio duty cycle. The tests are applied with 5 nodes and 1 sink

which is really insufficient for testing the performance.

LSTM-ANN is added to controller plane to predict the future flows [10]. This is

the first study that machine learning have applied. The algorithm tries to find a

pattern from existing network and passes it to a routing algorithm and tries to

predict a future move. In their test results, they discussed the packet delivery by

comparing existing shortest path algorithm (Dijkstra) and their modification. In

addition to that, they share how much their packet predictions are matched with

expected flows.

4

2.2 Software Defined Networking (SDN)

This section describes an overview of Software Defined Networking, which is de-

veloping rapidly at present. With new developments such as on IoT, network

virtualization and big data, it seems that SDN will play a significant role on man-

agement of network resources. Traditional networks have limitations in order to

meet the requirements of this growing area. Therefore, most of the researches

that are in the same field have been turned their perspectives towards SDN. IoT

can also be accepted as a subsection for WSN. Therefore, understanding of SDN

in WSN field will help to focus on system requirements from the basic. SDN

architecture is shown in Figure 2.1 [11].

2.2.1 SDN Architecture

Unlike traditional networks, SDN decouples controlling and forwarding planes. It

introduces centralized management for network elements in the topology. This

centralized management is called as controller for SDN architecture and it is

purely programmable. By centralizing network in control plane, it provides in-

frastructure to SDN applications which can be security, monitoring, optimizing

or configuring specific. It also makes networking devices vendor specific [12].

Infrastructure layer is responsible for forwarding data packets based on instruc-

tions. These instructions are received from control layer. Some protocols, Open-

flow is commonly known, help to communicate between these layers. In this

thesis, we used special protocol for that, SDN-WISE protocol. In the control

layer, decisions are made on packet forwarding. It basically behaves forward-

ing table for devices. It maintains packet’s actions and based on algorithms, it

can also decides routing path. SDN applications are located in application layer.

These applications basically can operate behavior of forwarding on demand.

5

Figure 2.1: SDN Architecture Overview.

2.2.2 SDN Features

SDN has the following features:

• More granular architecture for network area

• Programmable control layer which helps to monitor, scale and manage

• Vendor independent network elements

• Increased network reliability and security

• Rapid delivery of new network features

2.2.3 SDN Capabilities from WSN Point of View

Distributed resource management, monitoring and adding an intelligence to net-

work adds a value to WSN. In addition to that, there are many different type of

WSN topology types like query driven or mobile and they require different type

of routing algorithm. SDN provides these required feature to WSN. From SDN

6

Controller, it is possible to trace network resource and do required actions. More-

over, in controller, it is possible to switch or deploy different kind of algorithm

and apply them on WSN topology. Even it is easy to integrate machine learning

approach. It requires only one application deployment to do. From WSN point

of view, SDN provides a really good features to provide long support. However,

these changes require trade-off. For instance, to observe resources, there should

be some report packet going through the nodes and it will cause them to loose

battery. SDN-WISE provides the integration between SD-WSN.

2.3 SDN-WISE

In SDN, management of the network is done from centralized place and control

plane and data plane is physically separated. SDN Controllers send the flow rules

to the Openflow switches to apply packet classification and forwarding packets

throughout the network topology. When switch does not have the any information

about incoming packet, it asks assistance from controller and controller applies

the flow rules to the switches. Controller gives the decision about its policies.

These policies could be modified with installing new controller software. The

SDN-WISE uses this approach in wireless infrastureless networks[6]. The flow

rules are named as Wise Flow rule. Openflow protocol is named as SDN-WISE

protocol. Assigned Wise flow rules are tracked in Wise Flow table in nodes. In

SDN-Wise shortest path between nodes is calculated by using Dijkstra algorithm

as a default. The SDN-WISE architecture is shown in Figure 2.2 [13].

2.3.1 Protocol Architecture

SDN-WISE networks consists of Sensor-nodes and one or multiple sink. Sink

is the gateway to the controller. It plays as a bridge between data plane and

controller plane. Nodes who needs to send data to controller needs to go through

the controller or vice versa. The communication between sink and controller

7

Figure 2.2: SDN-WISE Architecture.

Figure 2.3: SDN-WISE Controller, Sink And Node Network Layers.

represents the controller plane, between sink and nodes represents the data plane.

The protocol architecture of SDN-WISE is shown in Figure 2.3 [14].

SDN-WISE uses IEEE 802.15.4 on physical and MAC layers. Network elements

are sink and node. The difference between sink and node is that sink is connected

with network interface to infrastructured network. Thus that all control packets

should go through the sink to leave the WSN or reach the controller [14].

Incoming packets are handled in forwarding (FWD) layer as specified in the Wise

Flow table. The wise flow tables are updated according to Controller plane di-

rectives.

8

In network packet processing (INPP) layers is responsible for data aggregation

or other in network processing. Also, this do some optimization, it chains similar

packets that must be sent to similar destination according to packet size.

If the incoming packet is not matching with Wise Flow table, the request is sent

to controller. While packets is sent to controller, it must go through a sink. In

order to reach sink, every node must know the efficient way to reach sink, in other

words, best next hop through the sink. The best next hop through the sink is

calculated using its neighbor nodes using topology discovery (TD).

Network logics or policies are demanded by one or several controllers and a Wise-

visor. The wise-visor layer abstracts the network resources so that different de-

manded request from several controllers, can run over the same set of physical

devices.

Adaptation layer is used for formatting messages which are received from a Sink,

so that they can be handled by wise-visor layer or vice-versa

9

Chapter 3

Proposed Routing Architecture and Test Environment

In this thesis, the aim is to maximize the lifetime of a WSN network. Lifetime of

a network can be defined differently. One of the most commonly used definitions

of network lifetime is the time at which the first sensor node goes out of battery

and cannot send/receive packets. Another definition is the operational time of

the network during which it is able to access all nodes and not disconnected. The

most optimistic definition can be the time until all nodes die.

In this thesis, the lifetime of a network is defined such that if any node goes out

of battery, lifetime of the network is over. Thus, we choose “time until the first

node dies” definition. Battery plays a significant role in terms of maximizing

the lifetime; however, current implementation of SDN-WISE has not considered

battery in shortest path algorithm (Dijkstra algorithm). They preferred to use

only received signal strength indicator (RSSI) value in algorithm. As a solution

in this work, the battery level is considered and applied on the routing algorithm.

In the new routing algorithm, battery levels are forecasted and applied. In order

to do that, a new module is written and integrated with existing SDN-WISE

controller.

At last, testing environment has already been defined in SDN-WISE using Cooja,

but since existing code base has changed, libraries, which are used in Cooja, are

needed some modifications due to lack of incompatible library versions. There is

10

Figure 3.1: Forecasting Architecture Overview.

no defined way to do automated tests in SDN-WISE using Cooja VM. Thus, it

is an other contribution defined in this thesis work.

3.1 Architecture

3.1.1 Overview

The proposed architecture consists of three main applications which are InfluxDB,

SDN-WISE Forecast and SDN-WISE Controller. InfluxDB stores time based

battery data and SDN-WISE Controller is the WSN controller unit. SDN-WISE

Forecast is a new application which is implemented for forecasting the batteries. It

uses InfluxDB as a storage unit and SDN-WISE Controller as a controller. While

it is doing rerouting, it queries the forecasted batteries from SDN-WISE Forecast

and applies batteries to the routing algorithm. The proposed architecture is

shown in Figure 3.1

11

3.1.1.1 SDN-WISE Controller

SDN-WISE Controller is a standalone application which manages a wireless sen-

sor network with SDN-WISE protocol. It provides centralized management and

controls the routing between sensor nodes, battery statuses of the nodes and

also it can send actions to nodes through connected sinks. In proposed solution,

codes related to battery and routing has been modified. Also, adapter is added

to connect SDN-WISE Forecast application using gRPC protocol.

In testing, each report packets which are received from nodes are sent to SDN-

WISE Forecast service. Also, at certain periods (40 seconds has chosen to have

enough number of report packets), forecasted batteries are gathered from SDN-

WISE Forecast service. The forecasted batteries are used while rerouting when

they are needed. When a report packet is received, the network topology is

being checked. If more efficient routing path is found, Dijkstra algorithm is being

triggered. In forecast scenario, every 40 seconds, battery values are being same

for each node because they are being forecasted ones.

Since battery is being involving near RSSI in Dijkstra algorithm, battery and

RSSI values are needed to be balanced. Also, these values play important role

for the sake of our tests. Despite, most of the configuration parameters already

existed such as connection timeout for node; however, RSSI and Battery were not

in there. In proposed solution, these parameter are added to the configuration.

Sum of these parameters indicates total weight for node. Total weight is accepted

as 1.0. If RSSI is set to 1.0 as a weight, it makes battery weight as 0. In another

word, SDN-WISE Controller is going to behave as default (without forecasting

service). However, if RSSI weight is set to 0.5, this also sets battery weight to 0.5

and it triggers forecasting service. Weight indication was required for performance

measurement under different weights (like RSSI as 0.5 and battery as 0.5). In

addition, it is important to consider that every node starts with same battery size.

Maximum value for battery size is mapped to 255 by the SDN-WISE Controller

12

message ForecastResponse {

repeated ForecastNode nodes = 1; //list of nodes

}

message ForecastNode {

string nodeID = 1; //Node identifier

int64 estimatedBattery = 2; // Forecasted battery

int64 time = 3; // forecasted time

}

Figure 3.2: Forecast Response Message.

message StatSaveRequest {

string nodeID = 1; //Node identifier

int64 currentBattery = 2; //Battery value that is

// captured from report package

}

Figure 3.3: Report packet delivery Message To SDN-WISE Forecast.

to have a numerical display. It is also same for RSSI. The reason is that these

parameters are corresponded to 1 byte allocation in the report packet.

For the communication with SDN-WISE Forecast service, gRPC is used. gRPC

is a network protocol that proposed by Google. It uses HTTP 2.0 and sends data

in binary format. When we compared to HTTP, results show that it is faster

and the transferred data size is very small. Also, connection between SDN-WISE

Controller and SDN-WISE Forecast is bidirectional. gRPC can be bidirectional,

but HTTP can not.

The received forecasted node’s message body is represented in Proto file format

in Figure 3.2.

SDN-WISE Controller sends its node’s report with Figure 3.3 Proto structure to

SDN-WISE Forecast.

13

SHOW TAG VALUES FROM Battery WITH KEY = ’Device’

Figure 3.4: Retrieve TAG Values From Battery.

SELECT BatteryLevel FROM Battery WHERE Device = ’NODE TAG’

AND time >= ’previous_forecast_time’ ORDER BY time ASC

Figure 3.5: Retrieve Battery Level.

3.1.1.2 SDN-WISE Forecast

SDN-WISE Forecast is a standalone application which is written in Go. The

purpose of the application is providing forecasted batteries using linear regression.

When a battery report is received at SDN-WISE Controller, the report message

is forwarded to SDN-WISE forecast only if battery weight is bigger than 0. Re-

ceived reports are stored in InfluxDB using TAG (Node identifier). Each node’s

reports are stored in Battery table. Node’s ID is used as a TAG to distinguish

nodes in Measurement table. Most likely from each node, it is expected to

receive 6 report packets before doing forecast. Every 40 seconds, collected bat-

teries are queried from InfluxDB for each node and batteries are forecasted for

current time + 40 seconds.

When the scheduled period is reached in time task, existing node identifiers are

queried with below command from InfluxDB.

Once TAGs are received with Figure 3.4, for each TAG batteries and their record-

ing time are queried(Figure 3.5).

When the batteries and their report time are collected, current time+ 40 second

is going to be predicted using linear regression.

3.1.1.3 InfluxDB

InfluxDB [15] is an open source time series database. It is written in Go language.

It provides high-availability storage and efficient retrieval of time series data in

14

fields such as Internet of Things sensor data, monitoring and real-time analytics.

It is recommended by open source communities to monitor nearly real-time or

real-time data. There are many alternatives like InfluxDB such as TimescaleDB

and OpenTSDB; however, it was chosen in the first place because it was easy to

integrate with Grafana. Grafana is a visualization tool to demonstrate data in

graphs [16]. However, after couple of decisions, Grafana was no longer needed.

Even without Grafana, InfluxDB has been still continued to be used because

significant progress has already done about querying and insertion operations.

Also, SDN-WISE Forecast service has adopted the InfluxDB Go client too.

InfluxDB is used with Docker. Docker is a containerization tool that allows

to maintain applications as a running service [17]. SDN-WISE Forecast service

connects to InfluxDB using it’s line protocol from 8086 port.

3.1.2 Algorithm Modification

In the current SDN-WISE Controller, battery level is not taken into account in

Dijkstra algorithm. To apply the proposed solution remaining battery level of

a node plays a crucial role. Therefore, remaining battery level value should be

considered by the shortest path algorithm.

The library, which SDN-WISE Controller uses to calculate routing, also supports

the other parameters like node parameters besides vertex parameters. Thus,

the proposed solution has added by using the features of existing library. The

Algorithm 1 represents the existing solution in SDN-WISE Controller. The Al-

gorithm 2 represents new algorithm proposed in this work.

In following algorithms, dist array represents the RSSI value between nodes.

The value v.weight represents the node’s battery level. It is important to note

that the RSSI value and battery level value are not fully mapped. RSSI value and

battery level value range between 0 and 255. Moreover, the weights of these values

play an important role in the calculation. The values are multiplied with their

15

weight values before using in the algorithm. For instance, if RSSI weight is 0,7

and battery weight is 0,3 then it will be applied in the algorithm as v.weight×0, 3

and dist[v]×0, 7. Since we work on a shortest path, we are trying to reach lowest

value. Thus, while using the battery levels, we are subtracting the obtained value

from 255 which is the max battery level value mapped in the controller side. In

other words, v.weight is already been subtracted from 255 before multiplied by

0,3.

16

Algorithm 1: Current SDN-WISE Controller Dijkstra Algorithm.

1 Function Dijkstra(Graph, source):

2 forall vertex ∈ Graph do

3 dist[v]←∞ // initial distance from source to vertex v is

set to infinite

4 previous[v]← undefined // Previous node in optimal path from

source

5 end

6 dist[source]← 0 // Distance from source to source

7 Q← Set < n > // all nodes in the graph are not optimized thus

are in Q

8 while Q.size! = 0 do

9 u← node // in Q with smallest in dist

10 Q.remove(u)

11 forall neighbor v ∈ u do

12 alt← dist[u] + dist between(u, v) // The Link quality is added

in this part as dist

13 if alt < dist[v] then

14 dist[v]← alt

15 previous[v]← u

16 end

17 end

18 end

19 return previous

17

Algorithm 2: New Dijkstra Algorithm Including Weights.

1 Function Dijkstra(Graph, source):

2 forall vertex ∈ Graph do

3 dist[v]←∞ // initial distance from source to vertex v is

set to infinite

4 previous[v]← undefined // Previous node in optimal path from

source

5 end

6 dist[source]← source.battery // Distance from source to source

7 Q← Set < n > // all nodes in the graph are not optimized thus

are in Q

8 while Q.size! = 0 do

9 u← node // in Q with smallest in dist

10 Q.remove(u)

11 forall neighbor v ∈ u do

12 alt← dist[u] + dist between(u, v) + v.battery // The Link quality

is added in this part as dist and weight is added as

battery

13 if alt < dist[v] then

14 dist[v]← alt

15 previous[v]← u

16 end

17 end

18 end

19 return previous

18

X Feature Time
Readable

X Feature Time
In Unix

Y Battery Level

Entry 1 2019-08-03
23:10:42

1564866642 210

Entry 2 2019-08-03
23:10:47

1564866647 208

Entry 3 2019-08-03
23:10:52

1564866652 207

Entry 4 2019-08-03
23:10:57

1564866657 204

Entry 5 2019-08-03
23:11:02

1564866662 199

Predicted 2019-08-03
23:11:42

1564866702 179

Table 3.1: Battery forecasting Example With Linear Regression.

3.1.3 Forecasting Battery Levels

Linear regression is used for forecasting the batteries. Linear regression learning

is provided by Sajari’s regression library [18]. To be able to use the library, it is

needed to provide at least 2 samples. In the solution X feature was time of the

battery read and Y was the battery. To forecast the future time, in the solution

X feature was given as current time + 40 seconds and expected the predicted Y

value (battery) for that time. Most likely for each run, sample sets are consisting

of 5 because for each node were sending 5 or 6 report packets in 40s (Every 6

second report packets are sent to sink).

While forecasting, X feature is given to linear regression in Unix format. In above

sample, predicted battery is 179. For each node in the above, estimation is done

every 40 seconds. The sample is shown in Table 3.1

19

Figure 3.6: Test Architecture Overview.

3.2 Test Environment

3.2.1 Overview

SDN-WISE test environment is created as recommended from their website. They

refers to install VMware to use Cooja simulation environment. The steps that

they mentioned in their installation page was followed in this thesis. Addition to

these steps, .class files of existing node and sink are updated due to incompatibility

with latest SDN-WISE controller version.

The way of the tests are done with following steps; from the topology randomly 3

node is selected and from the controller the queries are sent to randomly selected 3

nodes. Every 1 second, this request is sent to nodes again and again. Until any of

the node in topology has reached to 5% of battery. As this happens, the node who

reaches 5% battery level sends a report package immediately to the controller.

After controller receives package, it stops the application and creates an output

file. Output file will be mentioned on the Data Collection and Reporting section.

The test environment architecture is shown in Figure 3.6

20

3.2.2 Test Tools

As testing tools, VMware for running the tests in the machine, Cooja for WSN

simulation, Docker for containerization of InfluxDB and personal laptop has been

used.

VMware is a virtual machine tool that allows you to run virtual operating system

on your computer [19]. The version of VMware that is used in tests is 14.1.1 build-

7528167. In VMware snapshot of that already has created image is used and it is

provided by SDN-WISE. That image contains 12.04.5 LTS, Precise Pangolin of

Linux Ubuntu. While the tests are running, 4GB RAM is shared with VM image

from physical partition.

Contiki is an operating system that is used for internet of things devices. It is

mostly used for embedded systems and it runs on small microcontroller devices.

Cooja is simulation tool that allows you to do simulate Wireless Sensor Network

devices in different scenarios using Contiki. There are many different options

available for that, but since SDN-WISE has preferred this simulation tool, it is also

preferred by us [20]. Cooja allows you to do WSN simulation from it’s graphical

user interface or from command line [21]. In the following Test Automation

section in the thesis, commands will be mentioned. Cooja version is 2.6 in tests.

Docker is a container that allows you to run your applications in an operation level

virtualization [17]. The difference from virtual machines is that it shares kernel

with host machine. In the tests, InfluxDB has been ran as docker container. The

docker version is 18.09.0 in tests.

Personal laptop is hosted of all those tools. It runs wit Linux operating system.

The version is Ubuntu 16.04.5 LTS [22]. It has basically 8GB RAM and Intel(R)

Core(TM) i7-8750H CPU @ 2.20GHz 8 real core and 12 virtual thread.

21

3.2.3 Test Automation

Each test nearly takes at least 600 second to finish. Thus, it was needed to

be automated. To do that, two different scripts are prepared. One scripts was

running in VM, other one was running in actual machine.

The script which runs in actual machine, is managing when to run VM script,

SDN-WISE Controller and SDN-WISE Forecast. When this script is started, it

starts with SDN-WISE Forecast and SDN-WISE Controller first and puts them

in a fork and takes their PID id. After that is sends a request to VM script that

controller and forecast applications are ready also delivers the topology template

that needs to run. When VM scripts is triggered, it waits for taken PID id

to terminate itself. The termination is happened when SDN-WISE Controller

detects that one of the node in the topology is below 5%. When controller detects

it, it shutdown itself. When this happens, the script also detects the controller

action and gives a commend to VM script to stop running addition to that it also

stops forecast application.

The other script which runs in VM, is managing Cooja simulation. When the

script receives a request to run Cooja, first it extracts the information from the

request to decide which topology template is needed to run. Once, it is decided,

runs the topology template on Cooja simulation from command line. To termi-

nate the running Cooja simulation, it waits for actual script command to stop.

3.2.4 Test Data Reporting

To evaluate the result for each test run, there is an output file. This output file in-

cludes battery consumption, report packet delays and lifetime. These parameters

are the experiments outputs that will be represented on graph in experimentation

section. The output file is generated when one of the node’s battery is 5% in the

topology.

22

The battery consumption is tracked for all of the nodes until one of the node’s bat-

tery reaches 5%. Once it is reached, the stored batteries consumption is written

as an output. Remaining total batteries are calculated with following formula

255× n−
∑

cb =
∑

rb (3.1)

where: n = number of nodes in topology

cb = consumed battery

rb = remaining batteries

Delay is calculated using Report packets. Every 6 second, nodes are sending

report packets to controller. In the payload of the report packet, last 8 byte is

representing the time that is captured when the report packet is sent. The time

which comes from node, is compared with the current time in the controller and

the delay is estimated with this. The unit is ms for delay. Until the battery reaches

5%, delays are stored. While creating the average delay output, all existing delays

are sum up and divided in the collected report packet size.

Lifetime timer starts when a first packet arrives to the controller from any node.

It ends when one of the node in the topology reaches 5% battery. When the node

is reached, it is written as spend time as an output to file.

There is a sample of an output file structure on Table 3.2. Type, battery weight,

RSSI weight, test start time and test end time is much more informative output

files for debugging. Type field could be default or forecast. The default is the

behavior that runs without my changes. Forecast type is selected when battery

weight is bigger than 0. Test start time is captured when the application is

triggered. test end time is captured before shutting down the application.

23

Field Name Value

Type FORECAST

Battery Weight 0.5

RSSI Weight 0.5

Test start time 02019-18-16 08:18:01

Test end time 02019-18-16 08:26:55

Spend time 533s

Total remaining battery 619

Total battery consumption 2186

Average Delay 430ms

Table 3.2: Sample of Output File.

24

Chapter 4

Experiments

The experiments are conducted to compare current SDN-WISE Controller im-

plementation and our modifications. From the results of our experiments, we

have created three different evaluation graphs. While we are applying the experi-

ment, we stick with three different weights. As shown on Table 4.1, RSSI Weight

1.0(battery is not involving) represents the current implementation of SDN-WISE

Controller. RSSI Weight 0.5 (battery is involving with 50 percentage) represents

that forecast involving version also battery has 50% affect with RSSI on algo-

rithm. And last, RSSI Weight 0 (battery is only involving with 100 percentage)

represents the heavily battery affect on algorithm.

From the test results, we created three graph the compare performance of weights.

The graphs are lifetime, battery consumption and delay.

RSSI Weight Battery Weight Short Description

1 0 Default behavior of SDN-WISE

0.5 0.5 Battery and RSSI used %50

0 1 Battery usage %100 and RSSI usage %0

Table 4.1: Weights Used In Experiments.

25

Simulation Range Randomly distributed from 0 to 150 for X and Y

Number Of Sink 1

Number Of Node 10 to 30

Table 4.2: Simulation Parameters.

4.1 Simulation Runs For Experiments

To run the experiments, ninety different simulation template has created. Each

simulation template ran for RSSI Weight 1.0, RSSI weight 0.5 and RSSI weight

0.0 . The simulations topology numbers was 10, 13, 15, 18, 20, 22, 25, 28 and

30. For each topology number there was 10 different randomly created topology

template. While creating the simulation template, Cooja asks you to how many

number of sinks are going to be used and how many nodes are going to be used.

In our experiments, sink number is 1 and nodes are changing from 10 to 30. Also,

distribution of the nodes and sink is put randomly on 2D environment. X was

selected as 150 and Y was selected as 150. This means that node or sink will be

deployed from 0 to 150 X and 0 to 150 Y randomly. Simulation configurations

are shown on Table 4.2.

To run the SDN-WISE controller, some configuration has to be set. One of

the important configuration parameter is RSSI weight. If the RSSI Weight is

smaller than 1. Also, SDN-WISE forecast application is being run. The possible

configuration parameters are 0, 0.5 and 1. Number of nodes parameter is used

for selecting query nodes randomly. To apply the query on nodes, the number

of the nodes parameter value has to be known. In short, number of node and

querying sending frequency from Sink parameters have a relationship between

each other. Querying sending frequency from Sink parameter can not be smaller

than number of nodes value. Since query nodes are always 3 and number of nodes

are at least 10, there is no problem with this constraint. Report packet frequency

is by default set to 6. Connection timeout is by default 25. Note that default

configuration has already been used by SDN-WISE Controller. Test terminate

26

RSSI Weight 0, 0.5 or 1

Number of Node 10 to 30

Query sending frequency from Sink 1s for each 3 randomly selected node

Report packet frequency for each node 6s

Connection Timeout 25s

Test Terminate When battery of a node is at 5%

Table 4.3: SDN-WISE Controller Configuration Parameters.

parameter is newly added. The reason is to add this configuration to track the

battery state of the nodes more precisely. Test Terminate is decided by setting

percentage. This percentage actually represents the nodes battery. When any of

the node’s battery reached the percentage in topology, the SDN-WISE Controller

will be terminated. The some of the SDN-WISE configuration parameters are

listed in Table 4.3.

From start to end, whole experiments process is taking at least 114 hours to finish.

For each weight configuration, ninety simulation is running.

Once the simulation templates are created, thanks to automation script, with

one click, whole experiments are being run. The configuration parameters for

Simulation and SDN-WISE Controller are set by using automation script.

The test has been triggered one time and the outputs are mapped three different

graph. All these graphs are created from the test results’ output files.

4.2 Lifetime

From the output files, we collected spend time values and created three different

lines for RSSI weight 1.0, 0.5 and 0. The results are shown in Figure 4.1. Circle,

triangle and star shapes represents the average of 30 different lifetime values which

are the results of the different RSSI weights.

27

Figure 4.1: Lifetime Graph Results.

The above graph shows that we are able to reach over goal by using forecast.

lifetime of the network is much increased when we set RSSI Weight value to 0.

When RSSI weight is set to 0.5, we observe that the lifetime increase as well.

In addition to that, we can observe that the lifetime is getting higher when we

decrease the RSSI weight. With 30 sample there is no intersection point between

lines. As last, from the graph we can see that even RSSI Weight 0.5 is not going

below of the RSSI weight 1.0 or above RSSI weight 0.

4.3 Battery Consumption

In the output files, we also collected battery consumption values and created three

different lines for RSSI weight 1.0, 0.5 and 0. The battery consumption results

are shown in Figure 4.2. Again, circle, triangle and star shapes represents the

28

Figure 4.2: Battery Consumption Results.

average of 30 different battery consumption values which are the results of the

different RSSI weights.

The above graphs shows that when we include the battery in Dijkstra algorithm,

the battery consumption is going to be higher compared to RSSI Weight 1.0.

Also, in the graph, we can see that RSSI Weight 1.0 is less consumed battery

compared to 0 and 0.5. The reason is the involvement of the battery. It is

causing routing, that is why it is going different paths. Using different path is

causing more battery consumption. Moreover, when RSSI Weight 1.0, the line is

nearly linear because battery is not involving in the algorithm.

29

Figure 4.3: Delay Results.

4.4 Delay

As last from the output files, we collected average delays for report packets and

created three different lines for RSSI weight 1.0, 0.5 and 0. The average delay

results are shown in Figure 4.3. Again, circle, triangle and star shapes repre-

sents the average of 30 different average delay values which are the results of the

different RSSI weights.

The above graphs shows that even we increase lifetime from the forecast, we

increase the delay as well. Increasing the delay is reducing the performance of

the network. The reason for increasing delay could be the number of rerouting.

Since battery is changed more frequently, the rerouting occurs more frequently.

Routing triggers the topology discovery packets to propagate through the network

for more efficient rerouting. In that time, nodes are being in preparing state.

30

Thus, there could be reason that some of the nodes are not able to send their

report packets to controller due to this rerouting. We can observe that RSSI

Weight 0 delays are higher compared to others, and RSSI weight 0.5 is higher

that RSSI weight 1.0. From this result, we can understand that adding battery

to algorithm, is causing overhead for routing.

31

Chapter 5

Conclusion

In this study, we propose a solution to increase the lifetime of the wireless sensor

network using battery forecasting. The lifetime and battery consumption graphs

show that we accomplished our objective and able to increase lifetime of the wire-

less sensor network. However, the delay graph shows that when we try to reach

our goal, we did trade-off unintentionally. While we were increasing the lifetime

of the network, we also increased data transfer the delay between the nodes. The

situation might be occurred due to frequent rerouting or SDN-WISE topology

discovery algorithm which might not be not good fit for applying forecast. In

addition to that, the feature set might be small, we could find another features to

solve this issue while we are using the linear regression. In this solution, we just

prefer to use time stamp as a feature in linear regression. Moreover, another rea-

son might be the our forecast approach. While we are doing that we preferred the

linear regression instead of different machine learning methods. Instead of using

linear regression, we could use another ML algorithm. As an example, Recurrent

Neural Network (RNN). It is a time series machine learning algorithm that might

work efficiently with this solution. However, because of the time limitation, there

wasn’t much time to learn new machine learning approach. Also, existing code

base was not ready to integrate machine learning. Thus, understanding the RNN,

could take much time. Moreover, we needed to investigate how it is going to be-

have with different kind of WSNs. As a future work, it could be used for this

proposed solution instead of linear regression.

32

Test automation was the important part of this study. In existing tutorial and

papers, the way of testing is not explained in details. In this study, we also

focused on testing some chapters. We tried to explain the details of testing and

support our explanation with figures.

33

References

[1] K. M. Modieginyane, B. B. Letswamotse, R. Malekian, and A. M.

Abu-Mahfouz, “Software defined wireless sensor networks application

opportunities for efficient network management,” Comput. Electr. Eng.,

vol. 66, no. C, pp. 274–287, Feb. 2018. [Online]. Available: https:

//doi.org/10.1016/j.compeleceng.2017.02.026

[2] M. Jacobsson and C. Orfanidis, Using software-defined networking

principles for wireless sensor networks, 2015. [Online]. Available:

http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-254172

[3] D. Duan, F. Qu, W. Zhang, and L. Yang, “Optimizing the battery energy

efficiency in wireless sensor networks,” in 2011 IEEE International Confer-

ence on Signal Processing, Communications and Computing (ICSPCC), Sep.

2011, pp. 1–6.

[4] Jian-Quan Wang, Haijing Fu, and Chang Cao, “Software defined networking

for telecom operators: Architecture and applications,” in 2013 8th Interna-

tional Conference on Communications and Networking in China (CHINA-

COM), Aug 2013, pp. 828–833.

[5] SDN-WISE. SDN-WISE tutorial with vm. Accessed: 24 December 2018.

[Online]. Available: https://sdnwiselab.github.io/docs/guides/GetStarted.

html

[6] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “Sdn-wise: Design,

prototyping and experimentation of a stateful sdn solution for wireless sensor

34

https://doi.org/10.1016/j.compeleceng.2017.02.026
https://doi.org/10.1016/j.compeleceng.2017.02.026
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-254172
https://sdnwiselab.github.io/docs/guides/GetStarted.html
https://sdnwiselab.github.io/docs/guides/GetStarted.html

networks,” in 2015 IEEE Conference on Computer Communications (INFO-

COM), April 2015, pp. 513–521.

[7] L. Galluccio, S. Palazzo, S. Milardo, and G. Morabito, “Reprogramming

wireless sensor networks by using sdn-wise: A hands-on demo,” in 2015

IEEE Conference on Computer Communications Workshops (INFOCOM

WKSHPS), April 2015, pp. 19–20.

[8] A. G. Anadiotis, G. Morabito, and S. Palazzo, “An sdn-assisted framework

for optimal deployment of mapreduce functions in wsns,” IEEE Transactions

on Mobile Computing, vol. 15, no. 9, pp. 2165–2178, Sep. 2016.

[9] N. Q. Hieu, N. Huu Thanh, T. T. Huong, N. Quynh Thu, and H. V. Quang,

“Integrating trickle timing in software defined wsns for energy efficiency,”

in 2018 IEEE Seventh International Conference on Communications and

Electronics (ICCE), July 2018, pp. 75–80.

[10] S. Milardo, A. Venkatasubramanian, K. Vijayan, P. Nagaradjane, and

G. Morabito, “From reactive to predictive flow instantiation: An artificial

neural network approach to the sd-iot,” in European Wireless 2018; 24th

European Wireless Conference, May 2018, pp. 1–6.

[11] F. Alam, I. Katib, and A. Alzahrani, “New networking era: Software de-

fined networking,” International Journal of Advanced Research in Computer

Science and Software Engineering, vol. 3, no.11 2013.

[12] M. S. Olimjonovich, “Software defined networking: Management of network

resources and data flow,” in 2016 International Conference on Information

Science and Communications Technologies (ICISCT), Nov 2016, pp. 1–3.

[13] A.-C. Anadiotis, L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo,

“Sd-wise: A software-defined wireless sensor network,” Computer

Networks, vol. 159, pp. 84 – 95, 2019. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S1389128618312192

35

http://www.sciencedirect.com/science/article/pii/S1389128618312192
http://www.sciencedirect.com/science/article/pii/S1389128618312192

[14] SDN-WISE. SDN-WISE protocol. Accessed: 24 December 2018. [Online].

Available: https://sdnwiselab.github.io

[15] I. Community. InfluxDB documentation. Accessed: 15 January 2019.

[Online]. Available: https://docs.influxdata.com/influxdb/v1.6/

[16] G. Community. Grafana documentation. Accessed: 02 January 2019.

[Online]. Available: https://grafana.com/grafana

[17] D. Community. Docker documentation. Accessed: 05 June 2019. [Online].

Available: https://www.docker.com/resources/what-container

[18] Sajari. Sajari regression library. Accessed: 26 December 2018. [Online].

Available: https://github.com/sajari/regression

[19] WMWare. WMWare documenntation. Accessed: 30 May 2019. [Online].

Available: https://docs.vmware.com/en/VMware-Workstation-Player/

index.html

[20] A. Dunkels. Contiki documentation. Accessed: 24 December 2018. [Online].

Available: https://github.com/contiki-ng/contiki-ng/wiki

[21] C. Maintainers. Introduction to Cooja. Accessed: 24 December

2018. [Online]. Available: https://github.com/contiki-os/contiki/wiki/

An-Introduction-to-Cooja

[22] U. Community. Ubuntu releases. Accessed: 24 March 2019. [Online].

Available: https://wiki.ubuntu.com/Releases

36

https://sdnwiselab.github.io
https://docs.influxdata.com/influxdb/v1.6/
https://grafana.com/grafana
https://www.docker.com/resources/what-container
https://github.com/sajari/regression
https://docs.vmware.com/en/VMware-Workstation-Player/index.html
https://docs.vmware.com/en/VMware-Workstation-Player/index.html
https://github.com/contiki-ng/contiki-ng/wiki
https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja
https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja
https://wiki.ubuntu.com/Releases

	Abstract
	Özet
	Acknowledgements
	List of Tables
	List of Figures
	List of Abbreviations
	1 Introduction
	2 Background
	2.1 Previous Works
	2.2 Software Defined Networking (SDN)
	2.2.1 SDN Architecture
	2.2.2 SDN Features
	2.2.3 SDN Capabilities from WSN Point of View

	2.3 SDN-WISE
	2.3.1 Protocol Architecture

	3 Proposed Routing Architecture and Test Environment
	3.1 Architecture
	3.1.1 Overview
	3.1.1.1 SDN-WISE Controller
	3.1.1.2 SDN-WISE Forecast
	3.1.1.3 InfluxDB

	3.1.2 Algorithm Modification
	3.1.3 Forecasting Battery Levels

	3.2 Test Environment
	3.2.1 Overview
	3.2.2 Test Tools
	3.2.3 Test Automation
	3.2.4 Test Data Reporting

	4 Experiments
	4.1 Simulation Runs For Experiments
	4.2 Lifetime
	4.3 Battery Consumption
	4.4 Delay

	5 Conclusion
	Reference

