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SOME PROPERTIES OF HYPERBOLIC CONTACT MANIFOLD IN A
QUASI SASAKIAN MANIFOLD

S. RAHMAN1 §

Abstract. The present paper deals with different geometrical properties of hyperbolic

contact manifold of a quasi sasakian manifold. In the end we studies the properties of

the Integrability of the distributions on a hyperbolic contact manifold of a quasi sasakian

manifold.
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1. Introduction

The hyperbolic contact manifold was given by Sasaki (1960), A. Al-Aqeel, A. Hamoli and
M. D. Upadhyay (1987) have studied some properties of such manifold.CR-submanifold
of a Kahlerian manifold has been defined by A. Bejancu[1]. Later, A. Bejancu and N. Pa-
paghiue [3], introduced and studied the notion of semi-invariant submanifold of a Sasakian
manifold.
The purpose of the paper is to define and study different geometrical properties of hyper-
bolic contact manifold of quasi sasakian manifold.
In Section 2, we recall some results and formula for later use. In Section 3, we prove
that the existence of a globally metric frame f-stracture. In Section 4, we show that the
integrability of distributions on and geometry of their leaves.
We find the characteristic properties of existence of a globally metric frame f-stracture,
integrability of distribution on M and geometry of their leaves on hyperbolic contact
manifold of quasi sasakian manifold.

2. Definition and Identities

Let M̄ be a real 2n + 1 dimensional differentiable manifold, endowed with an almost
contact metric structure (f, ξ, η, g). Then we have from [5]

(a) f2 = I + η ⊗ ξ

(b) η(ξ) = −1
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(c) η ◦ f = 0 (2.1)

(d) f(ξ) = 0

for every vector field X, then M̄ is called a hyperbolic contact manifold.

Let the manifold M̄ admits a contact metric g such that

(e) η(X) = g(X, ξ)

(f) g( fX, fY ) = g(X,Y )− η(X)η(Y )

then M̄ is said to be a hyperbolic contact metric manifold.

A hyperbolic contact metric manifold is said to be normal (Blair, 1976) if

N (1) = [f, f ] + dη ⊗ ξ = 0 (2.2)

we call M̄ to be a certain class of hyperbolic contact metric manifold if

(∇̄Xf)Y = g(fX, Y ) + η(Y )fX (2.3)

and

(∇̄Xf)Y + (∇̄Y f)X = η(Y )fX + η(X)fY (2.4)

where ∇̄ denotes the covariant differentiation with respect to g. Let M̄ be a hyper-

bolic contact metric manifold M̄ . According to [6] we say that M̄ is a quasi-Sasakian

manifold if and only if ξ is a Killing vector field and

(∇̄Xf)Y = g(∇̄fXξ, Y )ξ − η(Y )∇̄fXξ ∀X,Y εΓ(TM̄) (2.5)

Next we define a tensor field F of type (1, 1) by

FX = −∇̄Xξ ∀XεΓ(TM̄) (2.6)

From [6] we recall

Lemma 2.1. Let M̄ be a quasi-Sasakian manifold. Then we have

(a) (∇̄ξf)X = 0 ∀XεΓ(TM̄)

(b) f ◦ F = F ◦ f

(c) Fξ = 0 (2.7)

(d) g(FX, Y ) + g(X, FY ) = 0 ∀X,Y εΓ(TM̄)

(e) η ◦ F = 0

(f) (∇̄XF )Y = R̄(ξ,X)Y ∀X, Y εΓ(TM̄)

let M be a hyperbolic contact manifold of a quasi-sasakian manifold M̄ and denote

by N the unit vector field normal to M . Denote by the same symbol g the induced

tensor metric on M , by ∇ the induced Levi-Civita connection on M and by TM⊥

the normal vector bundle to M .The Gauss and Weingarten formulae are

(a) ∇̄XY = ∇XY + B(X,Y )N, (2.8)
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(b) ∇̄XN = −AX ∀X, Y εΓ(TM)

where A is the shape operator with respect to the section N . It follows that

B(X, Y ) = g(AX, Y ) ∀X,Y εΓ(TM) (2.9)

Because the position of the structure vector field with respect to M is very important
we prove the following results.
Theorem 2.1 Let M be a hyperbolic contact manifold of a quasi-sasakian manifold
M̄ . If the structure vector field ε is normal to M then M̄ is cosympletic manifold
and M is totally geodesic immersed in M̄ .

Proof. Because M̄ is hyperbolic contact manifold in a quasi-Sasakian manifold ,

then it is normal and dφ = 0 ([4]). By direct calculation using (2.8) (b), we infer

2dη(X,Y ) = g(∇̄Xξ, Y )− g(∇̄Y ξ, X) = g(AY, X)− g(AX, Y ) = 0 ∀X,Y εΓ(TM)

(2.10)

From (2.8) (b) and (2.10) we deduce

0 = dη(X, Y ) = g(Y, ∇̄Xξ) = −g(AX, Y ) = 0 ∀X,Y εΓ(TM) (2.11)

which proves that M is totally geodesic. From (2.11) we obtain ∇̄Xξ = 0 ∀XεΓ(TM)

By using (2.6),(2.7)(b)and (2.1) (d) from the above relation we state

∇̄Xξ = −f∇̄fXξ = 0 ∀XεΓ(TM̄) (2.12)

because fXεΓ(TM̄) ∀XεΓ(TM̄). Using (2.12) and the fact that ξ is a Killing
vector field, we deduce dη = 0 that is M̄ is a cosympletic manifold.

The proof is complete.

Next we consider only the hyperbolic contact manifold which are tangent to ξ.

Denote by U = fN and from (2.1) (f), we deduce g(U,U) = −1 . Moreover, it is

easy to see that UεΓ(TM) .Denote by D⊥ = Span(U) the 1-dimensional distribution

generated by U , and by D the orthogonal complement of D⊥ ⊕ (ξ) in TM . It is

easy to see that

fD = D; fD⊥ ⊆ TM⊥; TM = D ⊕D⊥ ⊕ (ξ) (2.13)

where ⊕ denote the orthogonal direct sum. According with [1] from (2.13) we deduce
that M is a CR-submanifold of M̄ .

A CR-submanifold M of a quasi-Sasakian manifold M̄ is called CR-product if
both distributions D⊕(ξ) and D⊥ are integrable and their leaves are totally geodesic
submanifold of M .

Denote by P the projection morphism of TM to D and using the decomposion in

(2.13) we deduce

X = PX + a(X)U + η(X)ξ ∀XεΓ(TM) (2.14)

Where a is a 1-form on M defined by a(X) = g(X, U), XεΓ(TM). From (2.14)

using (2.1) (a) we infer

fX = tX + a(X)N ∀XεΓ(TM) (2.15)

Where t is a tensor field defined by tX = fPX, XεΓ(TM)
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It is easy to see that

(a) tξ = 0 (b) tU 6= 0 (2.16)

3. Induced structures on a hyperbolic contact manifold in a

quasi-sasakian manifold

Let M be hyperbolic contact manifold in a quasi-sasakian manifold. From (2.1)

(a), (2.15) and (2.16) we obtain

t2X = X − a(X)U − η(X)ξ ∀XεΓ(TM) (3.1)

LEMMA 3.1.On a hyperbolic contact manifold M of a quasi-Sasakian manifold

M̄ the tensor field t satisfies

(a) g(tX, tY ) = −g(X, Y )− η(X)η(Y )− a(X)a(Y ) (3.2)

(b) g(tX, Y ) + g(X, tY ) = 0 ∀X, Y εΓ(TM)

Proof. From (2.1) (f), and (2.15) we deduce

−g(X,Y )− η(X)η(Y ) = g(fX, fY ) = g(tX + a(X)N, tY + a(Y )N)

= g(tX, tY ) + a(Y )g(tX, N) + a(X)g(N, tY ) + a(X)a(Y )g(N, N)

= g(tX, tY ) + a(X)a(Y ) ∀X,Y εΓ(TM)

g(tX, Y ) + g(X, tY ) = g(fX − a(X)N, Y ) + g(X, fY − a(Y )N)

= g(fX, Y )− a(X)g(N, Y ) + g(X, fY )− a(Y )g(X,N)

= g(fX, Y ) + g(X, fY ) = 0

LEMMA 3.2. Let M be a hyperbolic contact manifold in a quasi-sasakian manifold

M̄ . Then we have

(a) FU = −fAξ (b) FN = −Aξ (c) [U, ξ] 6= 0 (3.3)

Proof. We take X = U , and Y = ξ in (2.1) and obtain

f∇̄Uξ = −∇̄Nξ

Then using (2.1) (a), (2.6), (2.8)(b), we deduce the assertion (a). The assertion (b)

follows from (2.1) (a), (2.7) (b) and (2.8) (b) we derive

∇̄ξU = (∇̄ξf)N + f∇̄ξN = −fAξ = FU = −∇̄Uξ,

[U, ξ] = ∇̄Uξ − ∇̄ξU = ∇̄Uξ + ∇̄Uξ 6= 0

Which prove assertion (c). By using the decomposition TM̄ = TM ⊕ TM⊥, we

deduce

FX = αX − η(AX)N, ∀XεΓ(TM̄) (3.4)

where α is a tensor field of type (1, 1) on M , since g(FX, N) = −g(X,FN) =

g(X,Aξ) = η(AX) ∀XεΓ(TM̄). By using (2.5), (2.6), (2.8), (2.15) and (3.1), we

obtain
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THEOREM 3.2. Let M be a hyperbolic contact manifold in a quasi-sasakian

manifold M̄ . Then the covariant derivative of a tensors t, a, η and α are given by

(a) (∇Xt)Y = g(FX, fY )ξ + η(Y )[αtX − η(AX)U ]

−a(Y )AX + B(X, Y )U

(b) (∇Xa)Y = B(X, tY ) + η(Y )η(AtX) (3.5)

(c) (∇Xη)(Y ) = g(Y,∇Xξ) and

(d) (∇Xα)Y = R(ξ, X)− η(AY )AX − g(AX, Y )Aξ ∀X, Y εΓ(TM)

respectively, where R is the curvature tensor field of M .
From (2.5), (2.6), (2.16) (a) (b) and (3.5) (a) we get

PROPOSITION 3.1 On a hyperbolic contact manifold M of a quasi-sasakian

manifold M̄ , we have

(a) ∇XU = −tAX + η(AtX)ξ

(b) B(X,U) = a(AX) ∀XεΓ(TM) (3.6)

Next we state

THEOREM 3.3 Let M be a hyperbolic contact manifold in a quasi-sasakian man-

ifold M̄ . The tensor field t is a parallel with respect to the Levi Civita connection

∇ on M iff

(a) AX = −η(AX)ξ − a(AX)U and (3.7)

(b) FX = η(AtX)U − η(AX)N ∀XεΓ(TM)

Proof. Suppose that the tensor field t is parallel with respect to ∇, that is ∇t = 0.

By using (3.5) (a), we deduce

η(Y )[αtX− η(AX)U ]+ g(FX, fY )ξ−a(Y )AX +B(X, Y )U = 0 ∀X, Y εΓ(TM)

(3.8)

Take Y = U in (3.8) and using (2.8) (b), (2.9), (3.6) (b) we infer

η(U)[αtX − η(AX)U ]− a(U)AX + g(FX, fU)ξ + B(X, U)U = 0

η(U) = g(U, ξ) = 0, a(U) = −1 and g(X, N) = 0

AX = −g(FX, fU)ξ − a(AX)U = −g(FX, N)ξ − a(AX)U, fU = N

= −η(AX)ξ − a(AX)U

Next let Y = fZ, ZεΓ(D) in (2.12) and using (2.1) (f), (2.7) (b), (3.3) (a) (b),

(3.7) (a), we deduce

η(fZ)[αtX − η(AX)U ] + g(fX, fFZ)ξ − a(fZ)AX + B(X, fZ)U = 0

g(fX, fFZ)ξ + B(X, fZ)U = 0 η(fZ) = 0

−g(X, FZ)ξ − η(X)η(FZ)ξ + B(X, fZ)U = 0

−g(X, FZ)ξ + a(AX)a(fZ)U = 0
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g(X, FZ) = 0 ⇒ FX = η(AtX)U − η(AX)N ∀XεΓ(TM)

The proof is complete.

PROPOSITION 3.2. Let M be a hyperbolic contact manifold in a quasi-sasakian

manifold M̄ . Then we have the assertions

(a) (∇Xa)Y = 0 ⇔ ∇XU = 0

(b) (∇Xη)Y = 0 ⇔ ∇Xξ = 0 ∀X, Y εΓ(TM)

Proof. Let X,Y εΓ(TM) and using (2.9), (3.2) (b), (3.5) (b) and (3.6) (a) we obtain

g(∇XU, Y ) = g(−tAX + η(AtX)ξ, Y )

= g(−tAX, Y ) + η(AtX)g(ξ, Y )

= g(AX, tY ) + η(AtX)η(Y ) = B(X, tY ) + η(AtX)η(Y )

= (∇Xa)Y

g(∇XU, Y ) = (∇Xa)Y if ∇XU = 0

(b) (∇Xη) = g(Y,∇Xξ)

Killing vector ∇Xξ = 0

(∇Xη)Y = 0

4. Integrability of distributions on a hyperbolic contact manifold

in a quasi-sasakian manifold M̄

From Lemma 3.2 we obtain

COROLLARY 4.1 On a hyperbolic contact manifold M of a quasi-sasakian mani-

fold M̄ there exists a 2-dimensional foliation determined by the integral distribution

D⊥ ⊕ (ξ)

THEOREM 4.1 Let M be a hyperbolic contact manifold in a quasi-sasakian man-

ifold M̄ . Then (a) the distribution D ⊕ (ξ) is integrable iff

g(AfX + fAX, Y ) = 0, ∀X, Y εΓ(D), (4.1)

(b) the distribution D is integrable iff (3.7) holds and

FX = η(AtX)U − η(AX)N, (equivalent with FD ⊥ D) ∀XεΓ(D)

(c) The distribution D ⊕D⊥ is integrable iff FX = 0, ∀XεΓ(D).

Proof. Let X,Y εΓ(D). Since ∇ is a torsion free and ξ is a Killing vector field, we

infer

g([X, ξ], U) = g(∇̄Xξ, U)− g(∇̄ξX,U) (4.2)

= g(∇Xξ + B(X, ξ)N, U)− g(∇ξX + B(ξ,X)N, U) = 0 ∀XεΓ(D)

B(X, ξ) = g(AX, ξ) = η(AX)

= g(∇Xξ, U) + B(X, ξ)g(N, U)− g(∇ξX, U)−B(ξ, X)g(N,U)

= g(∇Xξ, U)− g(∇ξX,U) = 0
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Using (2.1) (a), (2.8) (a) we deduce

g([X, Y ], U) = g(∇̄XY − ∇̄Y X, U) = g(∇̄XY − ∇̄Y X, fN) (4.3)

= g(∇̄Y fX,N)− g(∇̄XfY, N) = g(−∇̄fXN, Y ) + g(f(−∇̄XN, Y )

= g(AfX + η(fX)N, Y ) + g(AfX + fη(X)N, Y )

= g(AfX, Y ) + g(fAX, Y ) + η(X)g(fN, Y ) = g(AfX + fAX, Y ) ∀X, Y εΓ(D)

Next by using (2.6) (2.7) (d) and the fact that ∇ is a metric connection we get

g([X, Y ], ξ) = g(∇̄XY, ξ)− g(∇̄Y X, ξ) (4.4)

= 2g(−∇̄Xξ, Y ) = 2g(FX, Y ) ∀X, Y εΓ(D)

The assertion (a) follows from (4.2), (4.3) and assertion (b) follows from (4.2)-(4.4).

Using (2.6) and (2.7) we obtain

g([X, U ], ξ) = g(∇̄XU, ξ)− g(∇̄UX, ξ) (4.5)

= g(−∇̄Xξ, U)− g(∇̄Xξ, U) = 2g(FX, U) ∀XεΓ(D)

Taking into account that

g(FX, N) = g(FfX, fN) = g(FfX, U) ∀XεΓ(D) (4.6)

The assertion (c) follows from (4.4) and (4.5).

THEOREM 4.2 Let M be a hyperbolic contact manifold in a quasi-sasakian man-

ifold M̄ . Then we have

(a) the distribution D is integrable and its leaves are totally geodesic immersed in

M if and only if

FD ⊥ D and AX = a(AX)U + η(AX)ξ, ∀XεΓ(D) (4.7)

(b) the distribution D⊕(ξ) is integrable and its leaves are totally geodesic immersed

in if and only if

AX = a(AX)U, XεΓ(D) and FU = 0 (4.8)

(c) the distribution D⊕D⊥ is integrable and its leaves are totally geodesic immersed

in M if and only if

FX = 0, XεΓ(D).

Proof. Let M∗
1 be a leaf of integrable distribution D and h∗1 the second fundamental

form of immersion M∗
1 → M . Then by direct calculation we infer

g(h∗1(X, Y ), U) = g(∇̄XY, U) = −g(Y,∇XU) = −g(AX, tY ), (4.9)

and

g(h∗1(X,Y ), ξ) = g(∇̄XY, ξ) = g(FX, Y ) ∀X, Y εΓ(D) (4.10)

Now suppose M∗
1 is a totally submanifold of M . Then (4.7) follows from (4.9)

and (4.10). Conversely suppose that (4.7) is true. Then using the assertion (b) in

Theorem 4.1 it is easy to see that the distribution D is integrable. Next the proof

follows by using (4.9) and (4.10). Next, suppose that the distribution D ⊕ (ξ) is
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integrable and its leaves are totally geodesic submanifolds of M . Let M1 be a leaf

of D ⊕ (ξ) and h1 the second fundamental form of immersion M1 → M . By direct

calculations, using (2.6), (2.8) (b), (3.2) (b) and (3.6) (c), we deduce

g(h1(X, Y ), U) = g(∇̄XY, U) = −g(AX, tY ), ∀X, Y εΓ(D) (4.11)

and

g(h1(X, ξ), U) = g(∇̄Xξ, U) = −g(FU,X), ∀XεΓ(D) (4.12)

Then the assertion (b) follows from (4.6), (4.11), (4.12) and the assertion (a) of

Theorem 4.1 . Next let M̄1 a leaf of the integrable distribution D ⊕D⊥ and h̄1 the

second fundamental form of the immersion M̄1 → M . By direct calculation we get

g(h̄1(X, Y ), ξ) = g(FX, Y ), ∀XεΓ(D), Y εΓ(D ⊕D⊥). (4.13)

The assertion (c) follows from (2.7) (c), (4.6) and (4.13)
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