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AN APPLICATION OF MODIFIED REDUCTIVE PERTURBATION
METHOD TO SYMMETRIC REGULARIZED-LONG-WAVE

EQUATIONS

H. DEMIRAY1 §

Abstract. In this work, we extended the application of ”the modified reductive pertur-

bation method” to symmetrical regularized long waves with quadratic nonlinearity and

obtained various form of KdV equations as the governing equations. Seeking a localized

travelling wave solutions to these evolution equations we determined the scale parame-

ters g1 and g2 so as to remove the possible secularities that might occur. To indicate

the power and elegance of the present method, we compared our result with the exact

travelling wave solution of the symmetric regularized long-wave equation with quadratic

nonlinearity. These results show that for weakly nonlinear case the solutions for both

approaches coincide with each other. The present method is seen to be fairly simple as

compared to the renormalization method of Kodama and Taniuti [4] and the multiple

scale expansion method of Kraenkel et al [6].
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1. Introduction

In collisionless cold plasma, in fluid-filled elastic tubes and in shallow-water waves,
due to nonlinearity of the governing equations, for weakly dispersive case one obtains the
Korteweg-de Vries (KdV) equation for the lowest order term in the perturbation expansion,
the solution of which may be described by solitons (Davidson [1]). To study the higher
order terms in the perturbation expansion, the reductive perturbation method has been
introduced by use of the stretched time and space variables (Taniuti [2]). However, in
such an approach some secular terms appear which can be eliminated by introducing
some slow scale variables (Sugimoto and Kakutani [3]) or by a renormalization procedure
of the velocity of the KdV soliton (Kodama and Taniuti [4]). Nevertheless, this approach
remains somewhat artificial, since there is no reasonable connection between the smallness
parameters of the stretched variables and the one used in the perturbation expansion
of the field variables. The choice of the former parameter is based on the linear wave
analysis of the concerned problem and the wave number or the frequency is taken as the
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perturbation parameter (Washimi and Taniuti [5]). On the other hand, at the lowest order,
the amplitude and the width of the wave are expressed in terms of the unknown perturbed
velocity, which is also used as the smallness parameter. This causes some ambiguity over
the correction terms. Another attempt to remove such secularities is made by Kraenkel
et al [6] for long water waves by use of the multiple time scale expansion but could not
obtain explicitly the correction terms to the wave speed.

In order to remove these uncertainities, Malfliet and Wieers [7] presented a dressed
solitary wave approach, which is based on the assumption that the field variables admit
localized travelling wave solution. Then, for the longwave limit, they expanded the field
variables and the wave speed into a power series of the wave number, which is assumed to
be the only smallness parameter, and obtained the explicit solution for various order terms
in the expansion. However, this approach can only be used when one studies progressive
wave solution to the original nonlinear equations and it does not give any idea about
the form of evolution equations governing the various order terms in the perturbation
expansion. In our previous paper [8], we have presented a method so called ”the modified
reductive perturbation method” to examine the contributions of higher order terms in the
perturbation expansion and applied it to weakly dispersive ion-acoustic plasma waves and
solitary waves in a fluid filled elastic tube [9]. In these works, we have shown that the
lowest order term in the perturbation expansion is governed by the nonlinear Korteweg-
de Vries equation, whereas the higher order terms in the expansion are governed by the
degenerate Korteweg-de Vries equation with non-homogeneous term. By employing the
hyperbolic tangent method a progressive wave type of solution was sought and the pos-
sible secularities were removed by selecting the scaling parameter in a special way. The
basic idea in this method was the inclusion of higher order dispersive effects through the
introduction of the scaling parameter g, to balance the higher order nonlinearities with
dispersion. The negligence of higher order dispersive effects in the classical reductive per-
turbation method leads to the imbalance between the nonlinearity and the dispersion,
which resulted in some secular terms in the solution of evolution equations. As a matter
of fact, the renormalization method presented by Kodama and Taniuti [4] is different but
rather involved formulation of the same idea.

In the present work, we extended the application of ”the modified reductive perturba-
tion method” to the symmetrical regularized long waves with quadratic nonlinearity and
obtained various form of KdV equations as the governing equations. Seeking a localized
travelling wave solutions to these evolution equations we determined the scale parameters
g1 and g2 so as to remove the possible secularities that might occur. To indicate the power
and elegance of the present method, we compared our result with the exact travelling
wave solution of the symmetric regularized long-wave equation with quadratic nonlinear-
ity. These results show that for weakly nonlinear case the solutions for both approaches
coincide with each other. The present method is seen to be fairly simple as compared to
the renormalization method of Kodama and Taniuti [4] and the multiple scale expansion
method of Kraenkel et al [6].
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2. Modified reductive perturbation formalism

In this section we focus our attention to the examination of a symmetrical regular long
wave equation [10] given by

ut − vx + (u2)x − uxxt = 0, vt = ux, (1)

where u is the velocity in the x direction and v is the charge density of the plasma. The
equation (1) describes the propagation of ion-plasma acoustic waves in space under weakly
nonlinear action. Eliminating v between the equations (1), the following single equation
is obtained

utt − uxx +
1
2
(u2)xt − uxxtt = 0. (2)

The dispersion relation of the linearized form of equation (2) may be given by

ω = k(1 + k2)−1/2, (3)

where ω is the angular frequency and k is the wave number. For small wave numbers (long
wave length) the dispersion relation reduces to

ω = k(1− 1
2
k2). (4)

Motivated with the dispersion relation (4), for the long-wave approximation, it is conve-
nient to introduce the following stretched coordinates

ξ = ε1/2(x− ct), τ = ε3/2gt, (5)

where ε is a parameter which measures the smallness of nonlinearity, c and g are some
constants to be determined from the solution of the field equations. Introducing (5) into
the equation (2) gives

(c2 − 1)
∂2u

∂ξ2
− 2cgε

∂2u

∂ξ∂τ
+ ε2g2 ∂2u

∂τ2
− c

2
∂2(u2)
∂ξ2

+ε
g

2
∂2(u2)
∂ξ∂τ

− εc2 ∂4u

∂ξ4
+ ε22cg

∂4u

∂ξ3∂τ

−ε3g2 ∂4u

∂ξ2∂τ2
= 0. (6)

Throughout this work we shall assume that the field variable u and the scale parameter g

can be expressed as asymptotic series in ε as

u =
∞∑

k=1

εkuk(ξ, τ), g = 1 +
∞∑

k=1

εkgk, (7)

where the coefficient functions uk(ξ, τ) and the constants gk are to be determined from
the solution of the field equations. Introducing (7) into the equation (6) and setting the
coefficients of the like powers of ε equal to zero, the following sets of differential equations
are obtained:

O(ε) equation:

(c2 − 1)
∂2u1

∂ξ2
= 0. (8)
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O (ε2) equation:

(c2 − 1)
∂2u2

∂ξ2
− 2c

∂2u1

∂ξ∂τ
− c

2
∂2(u2

1)
∂ξ2

− c2 ∂4u1

∂ξ4
= 0. (9)

O(ε3) equation:

(c2 − 1)
∂2u3

∂ξ2
− 2c

∂2u2

∂ξ∂τ
− 2cg1

∂2u1

∂ξ∂τ
+

∂2u1

∂τ2
− c

∂2

∂ξ2
(u1u2)

+
1
2

∂2(u2
1)

∂ξ∂τ
− c2 ∂4u2

∂ξ4
+ 2c

∂4u1

∂ξ3∂τ
= 0. (10)

O(ε4) equation:

(c2 − 1)
∂2u4

∂ξ2
− 2c

∂2u3

∂ξ∂τ
− 2cg1

∂2u2

∂ξ∂τ
− 2cg2

∂2u1

∂ξ∂τ

+
∂2u2

∂τ2
+ 2g1

∂2u1

∂τ2
− c

2
∂2(u2

2)
∂ξ2

− c
∂2(u1u3)

∂ξ2

+
∂2

∂ξ∂τ
(u1u2) +

g1

2
∂2

∂ξ∂τ
(u2

1)− c2 ∂4u3

∂ξ4

+2c
∂4u2

∂ξ3∂τ
+ 2cg1

∂4u1

∂ξ3∂τ
− ∂4u1

∂ξ2∂τ2
= 0. (11)

2.1. Solution of the field equations. In this sub-section we shall present the solution
to the field equations given in (8)-(11). The solution of the equation (8) yields

(c2 − 1)
∂2u1

∂ξ2
= 0. (12)

In order to have a non zero solution for u1(ξ, τ) we must have

c2 − 1 = 0, or c = 1, (13)

where u1(ξ, τ) is an unknown function whose governing equation will be obtained later.
Substituting the solution given in (13) into equation (9) it is seen that u2(ξ, τ) remains

an arbitrary function of its arguments. The remaining part of the equation (9) becomes

∂

∂ξ

[
∂u1

∂τ
+

1
2
u1

∂u1

∂ξ
+

1
2

∂3u1

∂ξ3

]
= 0. (14)

The integration of (14) with respect to ξ yields the following Korteweg-deVries (KdV)
equation

∂u1

∂τ
+

1
2
u1

∂u1

∂ξ
+

1
2

∂3u1

∂ξ3
= h1(τ). (15)

Here h1(τ) is an arbitrary function of its argument. Without loosing the generality of the
problem, for the present case, we may choose it to be zero. Thus, for the first term in the
perturbation expansion, the evolution equation reduces to the Korteweg-deVries (KdV)
equation

∂u1

∂τ
+

1
2
u1

∂u1

∂ξ
+

1
2

∂3u1

∂ξ3
= 0. (16)
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To obtain the solution for O(ε3) equation, given in (10), we substitute (13) and (16) into
(10) to have

−2
∂2u2

∂ξ∂τ
− ∂2

∂ξ2
(u1u2)− ∂4u2

∂ξ4
− 2g1

∂2u1

∂ξ∂τ

+
1
4

∂2

∂ξ∂τ
(u2

1) +
3
2

∂4u1

∂ξ3∂τ
= 0. (17)

Integrating (17) with respect to ξ and employing the previous reasoning, one gets the
following evolution equation

∂u2

∂τ
+

1
2

∂

∂ξ
(u1u2) +

1
2

∂3u2

∂ξ3
=

∂

∂ξ
[S1(u1)], (18)

where S1(u1) is defined by

S1(u1) =
g1

2
[
1
2
(u1)2 +

∂2u1

∂ξ2
]− 1

8
u1

∂2u1

∂ξ2

+
1
16

(
∂u1

∂ξ
)2 +

3
4

∂2u1

∂ξ∂τ
− 1

24
u3

1. (19)

The equation (19) is linear in u2 and contains the inhomogeneous term S1(u1). Here, one
should note that g1 remains as an unknown constant and it should be determined from
the requirement of removing possible secularities that might occur.

Finally, to obtain the solution for O(ε4) equation we substitute (13), (16) and (18) into
(11) to have

−2
∂2u3

∂ξ∂τ
− ∂2

∂ξ2
(u1u3)− ∂4u3

∂ξ4
− 2g1

∂2u2

∂ξ∂τ
− 2g2

∂2u1

∂ξ∂τ

−1
2

∂2

∂ξ2
(u2

2) +
∂2S1(u1)

∂ξ∂τ
+

3
2

∂4u2

∂ξ3∂τ
+ g1

∂4u1

∂ξ3∂τ

+
1
2

∂2

∂ξ∂τ
(u1u2)− ∂4u1

∂ξ2∂τ2
= 0. (20)

Organizing the terms in equation (20), the following evolution equation is obtained

∂u3

∂τ
+

1
2

∂

∂ξ
(u1u3) +

1
2

∂3u3

∂ξ3
= S2(u1, u2) (21)

where S2(u1, u2) is defined by

S2(u1, u2) = −g1
∂u2

∂τ
− g2

∂u1

∂τ
− 1

4
∂

∂ξ
(u2

2) +
1
2

∂S1(u1)
∂τ

+
3
4

∂3u2

∂ξ2∂τ
+

g1

2
∂3u1

∂ξ2∂τ
+

1
4

∂

∂τ
(u1u2)

−1
2

∂3u1

∂ξ∂τ2
. (22)

The equation (21) is linear in u3 and contains the inhomogeneous term S2(u1, u2). Here
one should note that g1 and g2 remain as some unknown constants and they should be
determined from the requirement of removing possible secularities.
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2.2. Progressive wave solution. In this sub-section we shall present a progressive wave
solution to the evolution equations given in (16), (18) and (21). For this purpose we shall
propose a solution of the form

uα = Uα(ζ), ζ = α(ξ − βτ), (α = 1, 2, 3), (23)

where α, β are two constants to be determined from the solution. Inserting (23) into (16)
we have

−βU
′
1 +

1
2
U1U1

′ +
1
2
α2U

′′′
1 = 0. (24)

Here a prime denotes the differentiation of the corresponding quantity with respect to ζ.
Integrating (24) with respect to ζ and employing the localization condition i.e., U1 and its
various order derivatives vanish as ζ → ±∞, one gets

−βU1 +
1
4
U2

1 +
1
2
α2U

′′
1 = 0. (25)

Now, we shall seek a solution to the equation (25) of the form

U1 = a sech2ζ, (26)

where a is the constant wave amplitude. Inserting (26) into (25) and equating the coeffi-
cient of various power of sechζ one obtains

α = (
a

12
)1/2, β =

a

6
. (27)

Here, as usual, it is seen that the wave speed β is proportional to the wave amplitude a.

Inserting (23) and (26) into equation (18) we have

−βU
′
2 +

1
2
(U1U2)

′
+

1
2
α2U

′′′
2 = S

′
1(U1). (28)

Integrating (28) with respect to ζ and employing the localization condition we have

U
′′
2 + 4(3sech2ζ − 1)U2 = a(4g1 − a)sech2ζ + a2sech4ζ. (29)

Employing the method of variation of parameters, the general solution of equation (29)
may be given by

U2 = d1sech2ζtanhζ + (ag1 − a2

12
)sech2ζ +

d2

2
tanh2ζ

+
d2

8
tanh2ζ(cosh2ζ + sinh2ζ) + (

15
8

d2 − ag1 +
a2

4
)ζsech2ζtanhζ. (30)

Here d1 and d2 are unknown integration constants. It is seen that the last two terms in
equation (30) cause to secularities( see, Sugimoto and Kakutani [3]). In order to avoid the
secularities the coefficients of these terms must vanish, i.e.,

d2 = 0, −ag1 +
a2

4
= 0, or, g1 =

a

4
. (31)

Here g1 represents O(ε) correction term to the wave speed. As a matter of fact, this result
could be obtained by setting the coefficient of sech2ζ in the right hand side of equation
(29) equal to zero. In other words, the existence of sech2ζ term in the right hand side of
equation (29) leads to secularity, and in order to remove the secularity the coefficient of
sech2ζ should be set equal to zero. Here the constant d1 remains undetermined. In order
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consider the effect of O(ε) term to higher order perturbation expansion one may set d1

equal to zero. Thus, the final form of the solution for U2 takes the following form

U2 =
a2

6
sech2ζ. (32)

Finally, inserting (23),(26) and (32) into equation (21) we have

−βU
′
3 +

1
2
(U1U3)

′
+

1
2
α2U

′′′
3 = T

′
2, (33)

where T2 is defined by

T2 = βg1U2 + βg2U1 − 1
4
U2

2 − βS1 − 3
4
α2βU

′′
2

−g1α
2

2
βU

′′
1 −

β

4
U1U2 − 1

2
α2β2U

′′
1 . (34)

Integrating (33) with respect to ζ and utilizing the localization condition the following
equation is obtained

U
′′
3 + 4(3sech2ζ − 1)U2 = a(4g2 − 5a2

18
)sech2ζ +

a4

4
sech4ζ. (35)

Again, in order to remove the secularities we must have

4g2 − 5a2

18
= 0, or g2 =

5a2

72
. (36)

Here g2 corresponds to O(ε3) correction term to to the wave speed. Then, the particular
integral for this order takes the following form

u3 =
a4

24
sech2ζ. (37)

Thus, the total solution up to and including O(ε3) terms is given by

u = (εa + ε2
a2

6
+ ε3

a3

24
)sech2ζ (38)

where, in terms of real physical quantities, the phase function ζ is defined by

ζ = ε1/2(
a

12
)1/2[x− t− ε

a

6
t− ε2

a2

24
t− ε3

5a3

432
t]. (39)

2.3. Comparison of the result with exact solution. In this sub-section we shall
compare the result obtained here through the modified reductive perturbation method
with the exact solution of the symmetric regularized-long-wave equation with quadratic
nonlinearity. For that purpose, we shall seek a progressive wave solution to the equation
(2) of the form

U = U(η), η = p(x− vt), (40)

where v is the speed of propagation and p is a constant to be determined from the solution.
Introducing (40) into (2) we have

(v2 − 1)U
′′ − v

2
(U2)

′′ − v2p2U (iv) = 0. (41)
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Here a prime denotes the differentiation of the corresponding quantity with respect to η.
Integrating (41) with respect to η and utilizing the localization condition, i.e. U and its
various order derivatives vanish as η → ±∞, we obtain

(v2 − 1)U − v

2
U2 − υ2p2U

′′
= 0. (42)

This equation admits a solitary wave solution of the form

U = A sech2η, (43)

where

p = (
v2 − 1
4v2

)1/2, A =
3(v2 − 1)

v
. (44)

Motivated with the progressive wave solution obtained in the previous section, we shall
set p = ε1/2(a/12)1/2. Here ε is a small parameter measuring the weakness of nonlinearity
and a is the amplitude of the lowest order weak wave. Expanding v and A into a power
series in terms ε we have

v = 1 + ε
a

6
+ ε2

a2

24
+ ε3

5a3

432
+ ...

A = εa + ε2
a2

6
+ ε3

a3

24
+ ... . (45)

Inserting these approximations in (43) we have

U = (εa + ε2
a2

6
+ ε3

a3

24
)sech2η,

η = ε1/2(
a

12
)[x− t− ε

a

6
t− ε2a2

24
t− ε35a3

432
t]. (46)

The approximation given in (46) is exactly the same with those given in (37) and (38).
This result shows that the modified reductive perturbation method can be effectively used
im examining the higher order terms in the perturbation expansion of the field quantities.

3. Concluding Remarks

The study of effects of higher order terms in the perturbation expansion of the field
quantities through the use of the classical perturbation expansion method leads to some
secularities. To remove such secularities various methods, like re-normalization method of
Kodama and Tanuiti [4], multiple scale expansion method of Kraenkel et al [6], have been
presented in the current literature. The result of the present report and those given in [8]
and [9] proved that the ” modified reductive perturbation method ” presented by us is the
most simplest and effective one. By use of this method, any order of the correction term
may be obtained without any serious difficulties.
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