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ASYMPTOTIC RESULTS FOR AN INVENTORY MODEL OF TYPE
(s, S) WITH A GENERALIZED BETA INTERFERENCE OF CHANCE

T. KHANIYEV1, C. AKSOP2 §

Abstract. In this study, asymptotic expansion for ergodic distribution of an inventory
control model of type (s, S) with generalized beta interference of chance is obtained,
when S − s → ∞. Moreover, weak convergence theorem is proved for ergodic distribu-
tion. Finally, the accuracy of the asymptotic expansion is examined with Monte Carlo
simulation method.
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1. Introduction

Random walks, renewal-reward process and their modifications are important math-
ematical tools which have a wide range of real-life application area (for examples, see
Alsmeyer [2], Aras and Woodroofe [3], Borovkov [4], Brown and Solomon [5], Gihman and
Skorohod [8], Khaniyev and Atalay [9], Khaniyev et. al. [10], Khaniyev and Mammadova
[11], Korolyuk and Borovskikh [12], Prabhu [14]). Despite their importance, calculation
of the proposed formulas in the literature for their ergodic distributions is very hard. In
this paper, we study the ergodic distribution of an inventory model of type (s, S).

Let us consider an inventory model where the initial stock level of a depot is equal to
X0 ≡ z ∈ (s, S). In addition, assume that there are demands for random amounts of
material at random times. Until the amounts of stock in this depot falls below a certain
control level s, these demands are met. If these demands cannot be met, that is the amount
of material in the depot is lower than the control level s, we re-fill the stock immediately
with a random amount of material. Let us denote these epochs with τn, n = 1, 2, . . ..
After the refillment, the process starts with a new initial level ζn ∈ (s, S), n = 1, 2, . . . and
continuous with a similar way. This type of models are known as ”inventory control model
of type (s, S)”, and in this study under some assumptions we prove a weak convergence
theorem for the ergodic distribution of this process.

This paper is organized as follows: in the next section, we give a brief mathematical
construction of the above-mentioned process. In Section 3, the ergodicity of the process
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is obtained and in Section 4 the exact and asymptotic forms are presented and a weak
convergence theorem is proved. The accuracy of the proposed asymptotic expansion is
examined with a Monte Carlo simulation in Section 5. In Section 6, a real-life application
of this model is given as a case study which was previously studied by Aliyev et.al. [1].
In the last section some discussions are given.

2. Mathematical Construction of the Process Xt

Let {(ξn, ηn, ζn)}, n ≥ 1 be a vector of independent and identically distributed random
variables. Here ξn is the inter-arrival time between consecutive demands and ηn is the
amount of nth demand. Refillment level ζn takes values in the interval [s, S], and represents
the initial level of the stock immediately after the nth refillment. Moreover, assume that
ξn, ηn and ζn are independent from each other and denote their distributions by Φ (t),
F (x) and π (z), respectively; that is,

Φ (t) = P {ξn ≤ t} , F (x) = P {ηn ≤ x} , π (z) = P {ζn ≤ z} , n = 1, 2, . . .

Everywhere in the sequel we assume that ζn has a generalized beta distribution with
parameters (s, S, α, β), α, β > 0, 0 ≤ s < S < ∞. In other words, let

π (z) =
∫ z

s
f (x; s, S, α, β) dx

= C2γ

∫ z

s
(x− s)α−1 (S − x)β−1 dx, 0 ≤ s ≤ z ≤ S, α, β > 0.

Here

C2γ =
1

(2γ)α+β−1 B (α, β)
is the normalizing constant, γ ≡ (S − s) /2, and B (α, β) is beta function (for the properties
of generalized beta distribution, see Pham-Gia and Turkhan [13]).

Moreover, define renewal sequences Tn and Sn as follows:

T0 = S0 = 0,

Tn =
n∑

i=1

ξi, Sn =
n∑

i=1

ηi, n ≥ 1.

Tn is the time of the nth demand, and Sn is the sum of the amounts of the first n demands.
Put

N0 = 0;N1 = inf {k ≥ 1 : z − Sk < s} , z ∈ [s, S] ,

Nn+1 = inf {k ≥ Nn + 1 : ζn − Sk + SNn < s} , n ≥ 1,

τ0 = 0; τn = TNn =
Nn∑

i=1

ξi, n ≥ 1,

ν (t) = max {n ≥ 0 : Tn ≤ t} , t ≥ 0.

Note that Nn, n ≥ 1 is a sequence of integer-valued random variables and τ1 represents
the first time when the stock level drops below the control level s. Using these sequences
of random variables, we can now define the desired process as follows:

Xt = ζn −
(
ηNn+1 + ηNn+2 + · · ·+ ην(t)

)

= ζn −
(
Sν(t) − SNn

)
, t ∈ [τn, τn+1 ) , n ≥ 0.
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The process Xt represents the amount of material in the depot at time t > 0. A realization
of this process is given as in Figure 1.

Figure 1. A realization of the process Xt

Similarly to Khaniyev and Atalay [9], in this study the process Xt is called “a renewal-
reward process with a generalized beta interference of chance”. The purpose of this study
is to obtain an asymptotic expansion and to prove a weak convergence theorem for the
ergodic distribution of the process Xt as S−s →∞. To obtain this asymptotic expansion,
it is necessary to show that the process Xt is ergodic under some assumptions.

3. Ergodicity of the process Xt

We will use the following proposition from Khaniyev and Atalay [9] to state the ergod-
icity of the process Xt.

Proposition 3.1. (Khaniyev and Atalay [9, Proposition 3.1]) Let the sequence of the
random variables {(ξn, ηn, ζn)} satisfy the following supplementary conditions:

(1) 0 < E (ξ1) < ∞,
(2) 0 < E (η1) < ∞,
(3) η1 is a non-arithmetic random variable.

Then, the process Xt is ergodic and the following expression is correct for each measurable
bounded function f : (s, S) → R, with probability 1:

lim
t→∞

1
t

∫ t

0
f (Xu) du =

∫ S
s

∫ S
s f (x) [Uη (z − s)− Uη (z − x)] dπ (z) dx∫ S

s Uη (z − s) dπ (z)

where

Uη (x) =
∞∑

n=0

F ∗n (x) (1)

is the renewal function generated by the sequence {ηn}.
A direct result of this proposition can be given as follows:
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Corollary 3.1. Let the process Xt be satisfied the conditions of Proposition 3.1. Then,
the ergodic distribution of the process Xt is given as follows:

QX (v) ≡ lim
t→∞P {Xt ≤ v}

= 1−
∫ S
v Uη (z − v) dπ (z)∫ S
s Uη (z − s) dπ (z)

, v ∈ [s, S] .

Proof. Proof follows from Proposition 3.1 by choosing the f to be an indicator function. ¤
Now, let define a new process Yt as a standardized version of the process Xt as follows:

Yt =
Xt − s

γ
, γ =

S − s

2
.

Moreover, denote the ergodic distribution of Yt with

QY (v) ≡ lim
t→∞P {Yt ≤ v} , v ∈ [0, 2] .

4. Exact and asymptotic results for process Yt

In this section, exact and asymptotic results for the process Yt is presented.

Proposition 4.1. Under the conditions of Proposition 3.1, the ergodic distribution func-
tion QY (v) of the process Yt is given as follows:

QY (v) = 1−
∫ 2γ
γv Uη (x− γv) f (x; 0, 2γ, α, β) dx

∫ 2γ
0 Uη (x) f (x; 0, 2γ, α, β) dx

, v ∈ (0, 2) . (2)

Proof. From the definition of the process Yt, for all v ∈ (0, 2) we have

QY (v) = QX (γv + s) = 1−
∫ 2γ+s
γv+s Uη (z − γv − s) dπ (z)

∫ 2γ+s
s Uη (z − s) dπ (z)

.

On the other, since ζn has a generalized beta distribution with parameters (s, S, α, β),
the random variable ζ̃n ≡ ζn − s will have the same distribution but with parameters
(0, 2γ, α, β). Therefore, we have

QY (v) = 1−
∫ 2γ
γv Uη (x− γv) f (x; 0, 2γ, α, β) dx

∫ 2γ
0 Uη (x) f (x; 0, 2γ, α, β) dx

.

This is the desired result. ¤
In general case, computation of the renewal function Uη (x) is very hard. For this reason,

under some additional weak assumptions, Feller [7] suggested to employ the expression in
the following lemma for this renewal function.

Lemma 4.1. (Feller [7, page 366]) Assume that η1 is a non-arithmetic random variable,
and the condition E

(
η2
1

)
< ∞ is satisfied. Then, the renewal function Uη (x) in (1) can

be written as follows:
Uη (x) =

x

m1
+

m2

2m2
1

+ g (x) . (3)

Here g (x) is a bounded function with limx→∞ g (x) = 0, and mk = E
(
ηk
1

)
, k = 1, 2, . . .

Following lemma will be used to prove the Theorem 4.1 where an asymptotic expansion
is suggested, and states that for some g functions, the limit of E (g (ζ1)) tends to zero as
the parameter γ tends to infinity.
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Lemma 4.2. For all measurable bounded g : R→ R functions with g (x) → 0 as x →∞,
the following limit holds for all u ∈ [s, S]:

lim
γ→∞

∫ S

u
g (z) f (z; s, S, α, β) dz = 0.

Here γ ≡ (S − s) /2.

Proof. Let t = (z − s) / (2γ). Then,
∣∣∣∣
∫ S

u
g (z) f (z; s, S, α, β) dz

∣∣∣∣ ≤
1

B (α, β)

∫ 1

(u−s)/(2γ)
|g (s + 2γt)| tα−1 (1− t)β−1 dt

≤ 1
B (α, β)

[I1 (ε) + I2 (ε)] . (4)

Here, ε is an arbitrary fixed positive number and

I1 (ε) =
∫ δ(ε)

0
|g (s + 2γt)| tα−1 (1− t)β−1 dt,

I2 (ε) =
∫ 1

δ(ε)
|g (s + 2γt)| tα−1 (1− t)β−1 dt.

Moreover δ (ε) defined as

δ (ε) = sup
{

δ > 0 :
∫ δ

0
tα−1 (1− t)β−1 dt ≤ ε

K

}
> 0

where K is a fixed integer number which will be defined later. Since g (x) → 0 as x →∞
and δ (ε) > 0, we can choose the parameter γ so large such that s + 2δ (ε) γ ≥ z (ε) holds
where

z (ε) = inf
{

z > 0 : sup
u≥z

|g (u)| ≤ ε

K

}
.

On the other hand, since g is given as a bounded function, there exists an M > 0 such
that supx≥0 |g (x)| ≡ M < ∞ holds. Thus we have,

I1 (ε) ≤ M
ε

K
(5)

and

I2 (ε) ≤ ε

K

∫ 1

δ(ε)
tα−1 (1− t)β−1 dt

≤ ε

K

∫ 1

0
tα−1 (1− t)β−1 dt =

ε

K
B (α, β) . (6)

Substituting inequalities (5) and (6) in (4) yields to
∣∣∣∣
∫ S

u
g (z) f (z; s, S, α, β) dz

∣∣∣∣ ≤
ε

K

(
M

B (α, β)
+ 1

)

By choosing K ≡ [M/B (α, β)] + 2 we obtain

M + B (α, β)
KB (α, β)

≤ 1.

Hence for all ε > 0, when γ →∞ we have
∣∣∣∣
∫ S

u
g (z) f (z; s, S, α, β) dz

∣∣∣∣ ≤ ε.
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Therefore,

lim
γ→∞

∫ S

u
g (z) f (z; s, S, α, β) dz = 0.

This completes the proof. ¤

For α, β > 0 and x ∈ [0, 1] let

Bx (α, β) =
∫ x

0
tα−1 (1− t)β−1 dt,

Ix (α, β) =
Bx (α, β)
B (α, β)

be the incomplete beta and regularized incomplete beta functions, respectively.

Lemma 4.3. For all v ∈ (0, 2), the following equation holds, as γ →∞,

J (v) ≡
∫ 2γ

γv
Uη (x− γv) f (x; 0, 2γ, α, β) dx

=
2γ

m1

{
B (α + 1, β)−Bv/2 (α + 1, β)

B (α, β)
− v

2
[
1− Iv/2 (α, β)

]}

+
m2

2m2
1

[
1− Iv/2 (α, β)

]
+ o (1) ,

where mk = E
(
ηk
1

)
, k = 1, 2, . . ..

Proof. Let g : R → R be a measurable bounded function with limx→∞ g (x) = 0. Then,
we have

J (v) =
∫ 2γ

γv
Uη (x− γv) f (x; 0, 2γ, α, β) dx

=
∫ 2γ

γv

(
x− γv

m1
+

m2

2m2
1

+ g (x)
)

C2γxα−1 (2γ − x)β−1 dx

=
1

m1

∫ 2γ

γv
C2γxα (2γ − x)β−1 dx

+
(
− γv

m1
+

m2

2m2
1

) ∫ 2γ

γv
C2γxα−1 (2γ − x)β−1 dx

+
∫ 2γ

γv
g (x) C2γxα−1 (2γ − x)β−1 dx

=
2γ

m1

{
B (α + 1, β)−Bv/2 (α + 1, β)

B (α, β)
− v

2
[
1− Iv/2 (α, β)

]}

+
m2

2m2
1

[
1− Iv/2 (α, β)

]
+ o (1) .

This completes the proof. ¤

By passing to the limit as v → 0 in Lemma 4.3, following result can be obtained.

Corollary 4.1. The following expansion holds as γ →∞,

J (0) =
2α

α + β

γ

m1
+

m2

2m2
1

+ o (1) .
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Theorem 4.1. In addition to the conditions in Proposition 4.1, assume that E
(
η2
1

)
< ∞.

Then, for all v ∈ (0, 2) the following asymptotic expansion can be written for the ergodic
distribution function QY (v) of the process Yt, as γ ≡ (S − s) /2 →∞,

QY (v) = G (v)− m21

γ
R (v) + o

(
1
γ

)

where

G (v) = Iv/2 (α + 1, β) +
(α + β) v

2α

[
1− Iv/2 (α, β)

]
, (7)

R (v) =
α + β

2α2

{
v (α + β)

2
[
1− Iv/2 (α, β)

]− vα (2− v)β

2α+βB (α, β)

}
.

and m21 = m2/ (2m1).

Proof. Using the Lemma 4.3 and Corollary 4.1, as γ →∞ we have

QY (v) = 1− J (v)
J (0)

=1−
[

2γ

m1

α

α + β
+

m2

2m2
1

+ o (1)
]−1

×
{

2γ

m1

B (α + 1, β)−Bv/2 (α + 1, β)
B (α, β)

+
(
− γv

m1
+

m2

2m2
1

) [
1− Iv/2 (α, β)

]
+ o (1)

}

=1− 4m1γα

4m1γα + (α + β) m2

{
1−G (v) +

α + β

α

m2

4m1γ

[
1− Iv/2 (α, β)

]}
+ o

(
1
γ

)

=1−
[
1− α + β

α

m2

4m1

1
γ

+ o

(
1
γ

)]

×
{

1−G (v) +
α + β

α

m2

4m1

[
1− Iv/2 (α, β)

] 1
γ

}
+ o

(
1
γ

)

=G (v)− m21

γ
R (v) + o

(
1
γ

)

¤

Now, the following weak convergence theorem can be given using the Theorem 4.1.

Theorem 4.2. Assume that the conditions of Theorem 4.1 are satisfied. Then, the ergodic
distribution (QY (v)) of Yt converges to G (v) as γ →∞; that is,

QY (v) → G (v)

where G (v) is defined in (7).



230 TWMS J. APP. ENG. MATH. V.1, N.2, 2011

Proof. Since for all v ∈ (0, 2), and α, β > 0, the regularized incomplete beta function
Iv/2 (α, β) takes values in the interval [0, 1], we have

|R (v)| =
∣∣∣∣∣
α + β

2α2

{
v (α + β)

2
[
1− Iv/2 (α, β)

]− vα (2− v)β

2α+βB (α, β)

}∣∣∣∣∣

≤ α + β

2α2

{∣∣∣∣
v (α + β)

2
[
1− Iv/2 (α, β)

]∣∣∣∣ +

∣∣∣∣∣
vβ (2− v)β

2α+βB (α, β)

∣∣∣∣∣

}

≤ α + β

2α2

(
α + β +

1
B (α, β)

)
< ∞.

Moreover, according to the conditions of Teorem 4.1 and Proposition 4.1 we have m2 ≡
E

(
η2
1

)
< ∞ and m1 ≡ E (η1) > 0, respectively. Therefore, as γ →∞ we have m21R (v) /γ →

0. Hence, from Theorem 4.1 as γ → ∞, QY (v) → G (v) holds. This completes the proof
of Theorem 4.2. ¤
Example 4.1. Particullarly, let choose α = β = 1

2 . Since, for each v ∈ (0, 2)

B

(
1
2
,
1
2

)
= π;

Bv/2

(
1
2
,
1
2

)
= 2 arcsin

(√
v/2

)
;

Iv/2 (α + 1, β) = Iv/2 (α, β)− (v/2)α (1− v/2)β

αB (α, β)
we have

Iv/2

(
1
2
,
1
2

)
=

2
π

arcsin
(√

v

2

)
,

Iv/2

(
3
2
,
1
2

)
=

2
π

arcsin
(√

v

2

)
−

√
v (2− v)

π
.

Therefore, for the ergodic distribution QY (v), v ∈ (0, 2) of Yt = (Xt − s) /γ, γ = (S − s) /2,
we have

QY (v) = G (v)− m21

γ
R (v) + o

(
1
γ

)

where the evidence forms of G (v) and R (v) are as follows:

G (v) =
v

2
−

√
v (2− v)

π
+

2
π

(
1− v

2

)
arcsin

(√
v

2

)
,

R (v) = v −
√

v (2− v)
π

− 2
π

v arcsin
(√

v

2

)
.

Remark 4.1. Since, the exact values of incomplete beta function is hard to calculate for
all values of α, β, and v, we examined the accuracy of the proposed asymptotic expansion
with using functions in GNU Octave [6].

5. Simulation Results

In this section, Monte Carlo simulation results are given for the examination of the
accuracy of the proposed asymptotic expansion in Theorem 4.1. For this purpose, we
choose η1 from an exponential distribution with a parameter λ = 1, and ζ1 from a general-
ized beta distribution with parameters (0, 2γ, 3, 1), γ = 3, 4, 5, 10. Let denote the ergodic
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distribution of Yt obtained by Monte Carlo simulation with Q̂Y (v) and the asymptotic
expansion in Theorem 4.1 with Q̃Y (v) using the reminder term; that is,

Q̃Y (v) ≡ G (v)− m21

γ
R (v) .

In this study, we will use absolute difference ∆ =
∣∣∣Q̂Y (v)− Q̃Y (v)

∣∣∣, relative error δ =

∆/Q̂Y (v)×100%, and accuracy percentage AP = 100− δ for the measure of the accuracy
of proposed asymptotic expansion. We simulated 106 trajectories to calculate the ergodic
distribution of the process Xt. Table 1 - Table 4 are presented the values of Q̃Y (v) and
simulated values of Q̂Y (v) with their comparisons for γ = 3, 4, 5, 10.

Table 1. Comparison of the asymptotic and the simulation values of the
ergodic distribution for the case γ = 3, (γ ≡ (S − s) /2)

v Q̂Y (v) Q̃Y (v) ∆ δ (%) AP (%)
0,1 0,05927 0,05437 0,00491 9,02273 90,97727
0,2 0,11860 0,10902 0,00958 8,78239 91,21761
0,3 0,17800 0,16385 0,01416 8,63963 91,36037
0,4 0,23745 0,21906 0,01839 8,39729 91,60271
0,5 0,29688 0,27450 0,02238 8,15118 91,84882
0,6 0,35616 0,32983 0,02633 7,98286 92,01714
0,7 0,41513 0,38523 0,02990 7,76222 92,23778
0,8 0,47360 0,44092 0,03268 7,41202 92,58798
0,9 0,53131 0,49669 0,03462 6,97002 93,02998
1,0 0,58796 0,55134 0,03663 6,64331 93,35669
1,1 0,64323 0,60564 0,03759 6,20618 93,79382
1,2 0,69671 0,65883 0,03788 5,74976 94,25024
1,3 0,74799 0,71054 0,03745 5,27054 94,72946
1,4 0,79660 0,76048 0,03612 4,74963 95,25037
1,5 0,84201 0,80852 0,03349 4,14210 95,85790
1,6 0,88367 0,85415 0,02952 3,45618 96,54382
1,7 0,92098 0,89616 0,02481 2,76869 97,23131
1,8 0,95327 0,93539 0,01788 1,91136 98,08864
1,9 0,97985 0,97004 0,00981 1,01157 98,98843
2,0 1,00000 1,00000 0,00000 0,00000 100,00000
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Table 2. Comparison of the asymptotic and the simulation values of the
ergodic distribution for the case γ = 4, (γ ≡ (S − s) /2)

v Q̂Y (v) Q̃Y (v) ∆ δ (%) AP (%)
0,1 0,06112 0,05703 0,00409 7,16724 92,83276
0,2 0,12228 0,11388 0,00839 7,36708 92,63292
0,3 0,18346 0,17130 0,01216 7,09985 92,90015
0,4 0,24462 0,22836 0,01626 7,12131 92,87869
0,5 0,30566 0,28629 0,01937 6,76542 93,23458
0,6 0,36644 0,34373 0,02271 6,60679 93,39321
0,7 0,42677 0,40149 0,02528 6,29541 93,70459
0,8 0,48640 0,45833 0,02807 6,12371 93,87629
0,9 0,54506 0,51492 0,03015 5,85454 94,14546
1,0 0,60243 0,57057 0,03186 5,58325 94,41675
1,1 0,65813 0,62515 0,03298 5,27549 94,72451
1,2 0,71173 0,67903 0,03270 4,81618 95,18382
1,3 0,76279 0,73055 0,03224 4,41303 95,58697
1,4 0,81077 0,78004 0,03074 3,94018 96,05982
1,5 0,85514 0,82647 0,02867 3,46874 96,53126
1,6 0,89529 0,87021 0,02508 2,88241 97,11759
1,7 0,93056 0,90970 0,02086 2,29329 97,70671
1,8 0,96028 0,94512 0,01516 1,60350 98,39650
1,9 0,98368 0,97561 0,00807 0,82760 99,17240
2,0 1,00000 1,00000 0,00000 0,00000 100,00000
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Table 3. Comparison of the asymptotic and the simulation values of the
ergodic distribution for the case γ = 5, (γ ≡ (S − s) /2)

v Q̂Y (v) Q̃Y (v) ∆ δ (%) AP (%)
0,1 0,06223 0,05877 0,00346 5,87959 94,12041
0,2 0,12448 0,11800 0,00648 5,49063 94,50937
0,3 0,18673 0,17648 0,01025 5,80979 94,19021
0,4 0,24892 0,23603 0,01290 5,46439 94,53561
0,5 0,31094 0,29534 0,01559 5,28013 94,71987
0,6 0,37261 0,35422 0,01839 5,19233 94,80767
0,7 0,43375 0,41273 0,02101 5,09050 94,90950
0,8 0,49408 0,47087 0,02321 4,92917 95,07083
0,9 0,55332 0,52831 0,02501 4,73408 95,26592
1,0 0,61111 0,58473 0,02638 4,51185 95,48815
1,1 0,66707 0,63978 0,02729 4,26498 95,73502
1,2 0,72075 0,69275 0,02799 4,04108 95,95892
1,3 0,77166 0,74404 0,02762 3,71187 96,28813
1,4 0,81928 0,79300 0,02628 3,31387 96,68613
1,5 0,86302 0,83885 0,02417 2,88142 97,11858
1,6 0,90226 0,88106 0,02120 2,40641 97,59359
1,7 0,93632 0,91873 0,01759 1,91444 98,08556
1,8 0,96448 0,95160 0,01288 1,35319 98,64681
1,9 0,98598 0,97888 0,00710 0,72528 99,27472
2,0 1,00000 1,00000 0,00000 0,00000 100,00000

As can be seen from these tables, the accuracy percentage is greater than 96% for
γ ≥ 10. This indicates that the proposed asymptotic expansion can be applied to different
problems of inventory models even for not too large values of the parameter γ ≡ (S − s) /2.

6. Case Study

A company operating in the energy sector in Turkey distributes liquefied petrole-um gas
(LPG) to 30 dealers with pipelines and land transport. LPG is distributed with tankers
from LPG production center to a dealer if there is no pipeline installation between them.
Each tanker has a capacity of 22 m3 (approx. 10-11 tons) and 35 m3 (approx. 17-18 tons).

Each dealer has a storage capacity of S = 30m3 (approx. 15 tons). Random amount of
LPG (ηn) are sold from these storage tanks at random inter-arrival times (ξn). Since the
amount and arrival times of these sales are random, the gas level falls below the control
level s = S/5 (approx. 3 tons) at random moments τn, n ≥ 1. Whenever this happens,
an on-line signal automatically sent to the production center. The demands of the dealer
are met by the nearest tanker around it. If there is no such tanker, a tanker with full
storage is sent from the production center. After delivering the needed amount of gas to
the dealer, if more than 10 % of the capacity of the tanker is left over, the tanker waits
its position until the next order take place.

For security concerns, each dealer usually prefers to fill their storage up to 85 % of their
capacity (that is approx. 13.2 tons). But in some rare situations, the dealers may choose
to use their storage capacity more or less than 85 % of their capacity.

For a more detailed description of this model see Aliyev et. al. [1].
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Table 4. Comparison of the asymptotic and the simulation values of the
ergodic distribution for the case γ = 10, (γ ≡ (S − s) /2)

v Q̂Y (v) Q̃Y (v) ∆ δ (%) AP (%)
0,1 0,06445 0,06200 0,00245 3,94948 96,05052
0,2 0,12889 0,12459 0,00430 3,44717 96,55283
0,3 0,19328 0,18709 0,00619 3,30725 96,69275
0,4 0,25753 0,24946 0,00807 3,23330 96,76670
0,5 0,32148 0,31195 0,00953 3,05638 96,94362
0,6 0,38496 0,37384 0,01112 2,97447 97,02553
0,7 0,44770 0,43520 0,01251 2,87408 97,12592
0,8 0,50944 0,49600 0,01344 2,71009 97,28991
0,9 0,56982 0,55521 0,01462 2,63278 97,36722
1,0 0,62847 0,61326 0,01521 2,48055 97,51945
1,1 0,68495 0,66945 0,01550 2,31524 97,68476
1,2 0,73877 0,72289 0,01589 2,19748 97,80252
1,3 0,78941 0,77375 0,01566 2,02433 97,97567
1,4 0,83629 0,82132 0,01497 1,82292 98,17708
1,5 0,87878 0,86502 0,01376 1,59026 98,40974
1,6 0,91620 0,90385 0,01235 1,36589 98,63411
1,7 0,94782 0,93763 0,01020 1,08757 98,91243
1,8 0,97289 0,96545 0,00744 0,77031 99,22969
1,9 0,99057 0,98670 0,00387 0,39238 99,60762
2,0 1,00000 1,00000 0,00000 0,00000 100,00000

Therefore, in our opinion, the process which explains the working of the storage ex-
plained above can be considered as a stochastic process with a generalized beta distributed
interference of chance.

It’s known that if ζ1 ∼ Beta (s, S, α, β), then E (ζ1) = sβ+Sα
α+β and its mode is s(β−1)+S(α−1)

α+β−2 .
We will choose the parameters as α = 2 and β = 22/3, so in this case we have

P {ζ1 ≤ κ} = 0.85,

where κ is the mode of generalized beta distribution with parameters (3, 15, 2, 22/3)
Using the Theorem 4.2, the ergodic distribution of the process Yt weakly convergence

to G (v), where

G (v) = Iv/2 (3, 22/3) +
7
3
v

[
1− Iv/2 (2, 22/3)

]
.

Table 5. Table Values of G (v)

v 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
G (v) 0.43200 0.73004 0.89251 0.96506 0.99122 0.99845 0.99984 0.99999 1.00000

7. Conclusion

In this paper an inventory control model of type (s, S) is studied. Particularly, under
the assumption of there exist interferences with a generalized beta distribution, we obtain
the ergodic distribution of the underlying process. Since the exact forms are not useful
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for practical calculations, using the results of Feller [7] and Khaniyev and Atalay [9], we
obtain an asymptotic expansion, when γ ≡ (S − s) /2 →∞. The accuracy of the proposed
asymptotic expansion is examined with a Monte Carlo simulation. Results are indicate
that the accuracy of the proposed asymptotic expansion is fairly good even not too large
values of the parameter γ.
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