
TWMS J. App. Eng. Math. V.2, N.1, 2012, pp. 1-18

NEW SUFFICIENT CRITERIA FOR GLOBAL ROBUST STABILITY

OF NEURAL NETWORKS WITH MULTIPLE TIME DELAYS

E. YÜCEL1, S. ARIK2 §

Abstract. In this paper, we study global robust asymptotic stability of the equilibrium
point for neural networks with multiple time delays. By employing suitable Lyapunov
functionals, we derive a set of delay independent sufficient conditions for global robust
asymptotic stability of this class of neural networks. Some examples are constructed to
compare the reported results with the related existing results. This comparison proves
that our results establish a new set of robust stability criteria for delayed neural networks.
It is also demonstrated that the reported results can be easily verified as they can be
expressed in terms of the network parameters only.
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1. INTRODUCTION

In recent years, neural networks have been applied to various signal processing problems
such as optimization, image processing and associative memory design. In such applica-
tions, it is important to know the convergence properties of the designed neural network.
One of the key convergence properties of neural networks is the existence, uniqueness and
global asymptotic stability of the equilibrium point. One may refer to [1]-[22] and the
references therein for various stability results for different neural network models with or
without delays. In the physical implementation of neural networks, the network parame-
ters may be subject to some random errors. In such cases, it is important to investigate
robust stability properties of neural networks. Recently, some important results concern-
ing the equilibrium and stability properties of different classes of neural networks with
time delays have been reported [23]-[34]. In the present paper, we will obtain new suffi-
cient conditions for the global robust asymptotic stability of neural networks with multiple
time delays.
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The delayed neural network model we consider is described by the following differential
equations :

dxi(t)

dt
= −cixi(t) +

n∑
j=1

aijfj(xj(t)) +

n∑
j=1

bijfj(xj(t− τij)) + ui, i = 1, 2, ..., n (1)

where n is the number of the neurons, xi(t) denotes the state of the neuron i at time t,
fi(·) denote activation functions, aij and bij denote the strengths of connectivity between
neurons j and i at time t and t − τij , respectively; τij represents the time delay required
in transmitting a signal from the neuron j to the neuron i, ui is the constant input to the
neuron i, ci is the charging rate for the neuron i.

For τij = τj , neural network model (1) is of the form :

ẋi(t) = −cixi(t) +
n∑

j=1

aijfj(xj(t)) +
n∑

j=1

bijfj(xj(t− τj)) + ui, i = 1, 2, ..., n

which can be written in the compact form as follows

ẋ(t) = −Cx(t) +Af(x(t)) +Bf(x(t− τ)) + u (2)

where x(t) = (x1(t), x2(t), ..., xn(t))
T ∈ Rn, C = diag(ci > 0)n×n A = (aij)n×n ,

B = (bij)n×n , u = (u1, u2, ..., un)
T and f(x(t)) = (f1(x1(t)), f2(x2(t)), ..., fn(xn(t)))

T

and f(x(t− τ)) = (f1(x1(t− τ1)), f2(x2(t− τ2)), ..., fn(xn(t− τn)))
T .

The parameters A = (aij), B = (bij) and C = diag(ci > 0) are assumed to be interval-
ized as follows

CI := {C = diag(ci) : 0 < C≤C≤C, i.e., 0 < ci≤ci≤ci, i = 1, 2, ..., n}
AI := {A = (aij) : A≤A≤A, i.e., aij≤aij≤aij , i, j = 1, 2, ..., n} (3)

BI := {B = (bij) : B≤B≤B, i.e., bij≤bij≤bij , i, j = 1, 2, ..., n}

We will assume that the functions fi satisfy the following condition :

There exist some positive constants µi such that

0≤fi(x)− fi(y)

x− y
≤µi, i = 1, 2, ..., n, ∀x, y ∈ R, x ̸=y

This class of functions will be denoted by f ∈ K.

2. PRELIMINARIES

The concept of robust stability for neural networks is given by the following definition :

Definition 1 (31). The neural network defined by (1) or (2) with the parameter ranges
defined by (3) is globally asymptotically robust stable if the unique equilibrium point x∗ =
(x∗1, x

∗
2, ..., x

∗
n)

T of the neural system is globally asymptotically stable for all C ∈ CI , A ∈ AI

and B ∈ BI .
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We view some basic facts about norms of vectors and matrices. Let v = (v1, v2, ..., vn)
T ∈

Rn. The three commonly used vector norms are ||v||1, ||v||2, ||v||∞ which are defined as :

||v||1 =
n∑

i=1

|vi|, ||v||2 =

√√√√ n∑
i=1

v2i , ||v||∞ = max
1≤i≤n

|vi|

If Q = (qij)n×n, then ||Q||1, ||Q||2 and ||Q||∞ are defined as follows :

||Q||1 = max
1≤i≤n

n∑
j=1

|qji|, ||Q||2 = [λmax(Q
TQ)]1/2, ||Q||∞ = max

1≤i≤n

n∑
j=1

|qij |

Throughout this paper, for v = (v1, v2, ..., vn)
T , |v| will denote |v| = (|v1|, |v2|, ..., |vn|)T .

For any real matrix Q = (qij)n×n, the matrix |Q| will denote |Q| = (|qij |)n×n, and λm(Q)
and λM (Q) will denote the minimum and maximum eigenvalues of Q, respectively. If
Q = (qij)n×n is a symmetric matrix, then, Q > 0(< 0) will imply that Q is positive
(negative) definite,i.e., Q has all positive (negative) eigenvalues. For any two real matrices
P = (pij)n×n and Q = (qij)n×n, P ≤ Q will imply that pij ≤ qij for i, j = 1, 2, ..., n.

We will now express some key results that will play an important role in determining
the sufficient conditions for the global robust stability of the equilibria of neural networks
(1) and (2). Before proceeding any further, we will first observe the following :

Let define A as A ∈ AI := {A = (aij) : A≤A≤A, i.e., aij≤aij≤aij , i, j = 1, 2, ..., n}.
Then, aij can be expressed as follows :

aij =
1

2
(aij + aij) +

1

2
σij(aij − aij),

−1 ≤ σij ≤ 1, i, j = 1, 2, ..., n

Define A∗ = 1
2(A+A), A∗ =

1
2(A−A), and Ã = (ãij)n×n with ãij =

1
2σij(aij −aij), where

−1 ≤ σij ≤ 1, i, j = 1, 2, ..., n. In this case, A can be expressed as follows :

A =
1

2
(A+A) + Ã = A∗ + Ã

We are now in a position to prove the following result :

Lemma 1. Let x = (x1, x2, ..., xn)
T ∈ Rn. If

A ∈ AI := {A = (aij) : A≤A≤A, i.e., aij≤aij≤aij , i, j = 1, 2, ..., n}

, then, the following inequality holds :

xT (A+AT )x ≤ xT (A∗ +A∗T + ||A∗ +AT
∗ ||2I)x

where A∗ = 1
2 (A+A), A∗ =

1
2 (A−A).

Proof. For x = (x1, x2, ..., xn)
T ∈ Rn, we have

xT (A+AT )x = xT (A∗ +A∗T )x+ xT (Ã+ ÃT )x

= xT (A∗ +A∗T )x+ xT Ãx+ xT ÃTx

≤ xT (A∗ +A∗T )x+ |xT ||Ã||x|+ |xT ||ÃT ||x|
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The fact that |ãij |≤1
2(aij − aij), i, j = 1, 2, ..., n implies that |Ã|≤A∗. Hence, it directly

follows that |xT ||Ã||x|≤|xT |A∗|x|. Hence, we can write

xT (A+AT )x ≤ xT (A∗ +A∗T )x+ |xT |A∗|x|+ |xT |AT
∗ |x|

= xT (A∗ +A∗T )x+ |xT |(A∗ +AT
∗ )|x|

≤ xT (A∗ +A∗T )x+ ||A∗ +AT
∗ ||2xTx

= xT (A∗ +A∗T + ||A∗ +AT
∗ ||2I)x

implying that

xT (A+AT )x≤xT (A∗ +A∗T + ||A∗ +AT
∗ ||2I)x

�
We will also make use of the following lemmas :

Lemma 2 (31). If A ∈ AI := {A = (aij) : A≤A≤A, i.e., aij≤aij≤aij , i, j = 1, 2, ..., n},
then, the following inequality holds :

||A||2≤||A∗||2 + ||A∗||2
where A∗ = 1

2(A+A), A∗ =
1
2(A−A).

Lemma 3 (1). If H(x) ∈ C0 satisfies the following conditions

(i) H(x) ̸= H(y) for all x ̸= y,

(ii) ||H(x)||→∞ as ||x||→∞,

then, H(x) is homeomorphism of Rn.

3. Global Robust Stability Analysis

In this section, we present new sufficient conditions under which the neural systems
defined by (1) and (2) asymptotically converge to a unique equilibrium point with the pa-
rameter uncertainties given by (3). In order to simplify the proofs, we will need to shift the
equilibrium point x∗ of system (1) to the origin. If we let zi(·) = xi(·)−x∗i , i = 1, 2, ..., n,
then, we note that the zi(·) are governed by :

żi(t) = −cizi(t) +

n∑
j=1

aijgj(zj(t)) +

n∑
j=1

bijgj(zj(t− τij)), i = 1, 2, ..., n (4)

where gi(zi(·)) = fi(zi(·) + x∗i ) − fi(x
∗
i ), i = 1, 2, ..., n. It can easily be verified that the

functions gi satisfy the assumptions on fi, i.e., f ∈ K implies that g ∈ K. We also note
that gi(0) = 0, i = 1, 2, ..., n. It is thus sufficient to prove the stability of the origin of the
transformed system (4) instead of considering the stability of x∗ of system (1).

For τij = τj , (4) takes form :

ż(t) = −Cz(t) +Ag(z(t)) +Bg(z(t− τ)) (5)

where z(t) = (z1(t), z2(t), ..., zn(t))
T , g(z(t)) = (g1(z1(t)), g2(z2(t)), ..., gn(zn(t)))

T and
g(z(t− τ)) = (g1(z1(t− τ1)), g2(z2(t− τ2)), ..., gn(zn(t− τn)))

T .
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We now proceed with following result :

Theorem 1. Let f ∈ K. Then, the neural network model (2) is globally asymptotically
robust stable, if

Φ = 2rI −A∗ −A∗T − ||A∗ +AT
∗ ||2I − 2(||B∗||2 + ||B∗||2)I > 0

where A∗ = 1
2(A+A), A∗ =

1
2(A−A), B∗ = 1

2(B+B), B∗ =
1
2(B−B) and r = min(

ci
µi
).

Proof. We first show that the conditions in Theorem 1 implies the existence and uniqueness
of the equilibrium point. Define the following mapping associated with (2) :

H(x) = −Cx+Af(x) +Bf(x) + u (6)

We know that if x∗ is an equilibrium point of (2), then it satisfies

−Cx∗ +Af(x∗) +Bf(x∗) + u = 0

It is clear that every solution of H(x) = 0 is an equilibrium point of (1). Therefore, we can
conclude from Lemma 3 that, for the neural system defined by (2), there exists a unique
equilibrium point for every input vector u if H(x) is homeomorphism of Rn. In order to
prove that H(x) is a homeomorphism of Rn, we consider two vectors x ∈ Rn and y ∈ Rn

such that x ̸= y. For H(x) defined by (6), we can write

H(x)−H(y) = −C(x− y) +A(f(x)− f(y)) +B(f(x)− f(y)) (7)

For the functions belonging to class K, x ̸= y implies that f(x)−f(y) = 0 or f(x)−f(y) ̸=
0. For case where x ̸= y and f(x)− f(y) = 0, we obtain

H(x)−H(y) = −C(x− y)

in which x− y ̸= 0 implies that H(x) ̸= H(y) since C is a positive diagonal matrix. Now
consider the case where x− y ̸= 0 and f(x)− f(y) ̸= 0. Multiplying both sides of (7) by
2(f(x)− f(y))T results in

2(f(x)− f(y))T (H(x)−H(y)) = −2(f(x)− f(y))TC(x− y)

+2(f(x)− f(y))TA(f(x)− f(y))

+2(f(x)− f(y))TB(f(x)− f(y)) (8)

We can write the following :

2(f(x)− f(y))TA(f(x)− f(y)) = (f(x)− f(y))T (A+AT )(f(x)− f(y))

From Lemma 1, we know that

(f(x)− f(y))T (A+AT )(f(x)− f(y)) ≤ (f(x)− f(y))T (A∗ +A∗T )(f(x)− f(y))

+(f(x)− f(y))T (||A∗ +AT
∗ ||2I)(f(x)− f(y))

Hence, we obtain

(f(x)− f(y))T (A+AT )(f(x)− f(y))≤ (f(x)− f(y))T (A∗ +A∗T )(f(x)− f(y))

+||A∗ +AT
∗ ||2(f(x)− f(y))T (f(x)− f(y)) (9)

We also know from Lemma 2 that ||B||2≤(||B∗||2 + ||B∗||2). Therefore, we can write

2(f(x)− f(y))TB(f(x)− f(y))≤2||B||2||f(x)− f(y)||22
≤2(||B∗||2 + ||B∗||2)(f(x)− f(y))T (f(x)− f(y)) (10)
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We also note the following ,

−2(f(x)− f(y))TC(x− y) = −2

n∑
i=1

ci(fi(xi)− fi(yi))(xi − yi)

≤ −2

n∑
i=1

ci
µi

(fi(xi)− fi(yi))
2

≤ −2r

n∑
i=1

(fi(xi)− fi(yi))
2

= −2r(f(x)− f(y))T (f(x)− f(y)) (11)

where r = min(
ci
µi
).

Using (9)-(11) in (8) results in

2(f(x)− f(y))T (H(x)−H(y))≤−2r(f(x)− f(y))T (f(x)− f(y))

+(f(x)− f(y))T (A∗ +A∗T )(f(x)− f(y))

+||A∗ +AT
∗ ||2(f(x)− f(y))T (f(x)− f(y))

+2(||B∗||2 + ||B∗||2)(f(x)− f(y))T (f(x)− f(y))(12)

(12) is equivalent to the following :

2(f(x)− f(y))T (H(x)−H(y)) ≤ −(f(x)− f(y))TΦ(f(x)− f(y)) (13)

If f(x)− f(y) ̸= 0 and Φ > 0, then the following inequality holds :

2(f(x)− f(y))T (H(x)−H(y)) < 0

f(x) − f(y) ̸= 0 implies that H(x) ̸= H(y). It directly follows that H(x) ̸= H(y) for all
x ̸= y.

For y = 0, (13) takes the form :

2(f(x)− f(0))T (H(x)−H(0)) ≤ −(f(x)− f(0))TΦ(f(x)− f(0))

from which one would obtain

|2(f(x)− f(0))T (H(x)−H(0))| ≥ (f(x)− f(0))TΦ(f(x)− f(0))

which yields

2||f(x)− f(0)||∞||H(x)−H(0)||1 > λm(Φ)||f(x)− f(0)||22
Using the facts that ||f(x)−f(0)||∞≤||f(x)−f(0)||2, ||H(x)−H(0)||1≤||H(x)||1+||H(0)||1
and ||f(x)− f(0)||2≥||f(x)||2 − ||f(0)||2, we obtain

||H(x)||1 >
λm(Φ)||f(x)||2 − λm(Φ)||f(0)||2 − 2||H(0)||1

2

Since, ||H(0)||1 and ||f(0)||2 are finite, then ||H(x)|| → ∞ as ||f(x)|| → ∞. Thus, it
follows from Lemma 3 that the map H(x) : Rn → Rn is homeomorphism of Rn, hence
there exists a unique x∗ such H(x∗) = 0 which is a solution of (1). Hence, the proof of
the existence and uniqueness of the equilibrium point is completed.



E. YÜCEL, S. ARIK: NEW SUFFICIENT CRITERIA FOR GLOBAL ROBUST STABILITY OF ... 7

In order to show that Φ > 0 also implies the global asymptotic stability of the origin of
system (5), we construct the following positive definite Lyapunov functional :

V (z(t)) = zT (t)z(t) + 2α

n∑
i=1

∫ zi(t)

0
gi(s)ds+ (αγ + β)

n∑
i=1

∫ t

t−τi

g2i (zi(ζ))dζ

where α, β and γ are some positive constants to be determined later. The time derivative
of the functional along the trajectories of system (5) is obtained as follows

V̇ (z(t)) = −2zT (t)Cz(t) + 2zT (t)Ag(z(t)) + 2zT (t)Bg(z(t− τ))

−2αgT (z(t))Cz(t) + 2αgT (z(t))Ag(z(t)) + 2αgT (z(t))Bg(z(t− τ))

+αγ||g(z(t))||22 − αγ||g(z(t− τ))||22 + β||g(z(t))||22 − β||g(z(t− τ))||22(14)

We can write the following inequalities :

−zT (t)Cz(t) + 2zT (t)Ag(z(t)) ≤ gT (z(t))ATC−1Ag(z(t)) ≤ ||A||22||C−1||2||g(z(t))||22 (15)

−zT (t)Cz(t) + 2zT (t)Bg(z(t− τ)) ≤ gT (z(t− τ))BTC−1Bg(z(t− τ))

≤ ||B||22||C−1||2||g(z(t− τ))||22 (16)

2αgT (z(t))Bg(z(t− τ)) ≤ 2α||B||2||g(z(t))||2||g(z(t− τ))||2
≤ α||B||2||g(z(t))||22 + α||B||2||g(z(t− τ))||22 (17)

−2αgT (z(t))Cz(t) ≤ −2αr||g(z(t))||22 (18)

Using (15)-(18) in (14) results in :

V̇ (z(t)) ≤ ||A||22||C−1||2||g(z(t))||22 + ||B||22||C−1||2||g(z(t− τ))||22 − 2αr||g(z(t))||22
+αgT (z(t))(A+AT )g(z(t)) + α||B||2||g(z(t))||22 + α||B||2||g(z(t− τ))||22
+αγ||g(z(t))||22 − αγ||g(z(t− τ))||22 + β||g(z(t))||22 − β||g(z(t− τ))||22

From Lemma 1, we can write

gT (z(t))(A+AT )g(z(t))≤gT (z(t))(A∗ +A∗T + ||A∗ +AT
∗ ||2I)g(z(t))

From lemma 2, we can write the inequalities ||A||2≤||A∗||2 + ||A∗||2 and ||B||2≤||B∗||2 +
||B∗||2. We also have ||C−1||2 ≤ ||C−1||2. Hence, V̇ (z(t)) can be written as follows :

V̇ (z(t)) ≤ (||A∗||2 + ||A∗||2)2||C−1||2||g(z(t))||22
+(||B∗||2 + ||B∗||2)2||C−1||2||g(z(t− τ))||22 − 2αr||g(z(t))||22
+αgT (z(t))(A∗ +A∗T + ||A∗ +AT

∗ ||2I)g(z(t))
+α||P ||2(||B∗||2 + ||B∗||2)||g(z(t))||22
+α||P ||2(||B∗||2 + ||B∗||2)||g(z(t− τ))||22
+αγ||g(z(t))||22 − αγ||g(z(t− τ))||22
+β||g(z(t))||22 − β||g(z(t− τ))||22
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If we let β = (||B∗||2+ ||B∗||2)2||C−1||2 and γ = (||B∗||2+ ||B∗||2), then, V̇ (z(t)) takes the
form

V̇ (z(t)) ≤ ((||A∗||2 + ||A∗||2)2 + (||B∗||2 + ||B∗||2)2)||C−1||2||g(z(t))||22 − 2αr||g(z(t))||22
+αgT (z(t))(A∗ +A∗T + ||A∗ +AT

∗ ||2)g(z(t))
+2α(||B∗||2 + ||B∗||2)||g(z(t))||22

= ((||A∗||2 + ||A∗||2)2 + (||B∗||2 + ||B∗||2)2)||C−1||2||g(z(t))||22
−αgT (z(t))Φg(z(t))

≤ ((||A∗||2 + ||A∗||2)2 + (||B∗||2 + ||B∗||2)2)||C−1||2||g(z(t))||22
−αλm(Φ)||g(z(t))||22

The choice

α >
||C−1||2((||A∗||2 + ||A∗||2)2 + (||B∗||2 + ||B∗||2)2)

λm(Φ)

ensures that V̇ (z(t)) is negative definite for all g(z(t)) ̸= 0. (It should be noted here that
g(z(t)) ̸= 0 implies that z(t) ̸= 0). Now consider the case where g(z(t)) = 0 and z(t) ̸= 0.

In this case, V̇ (z(t)) satisfies

V̇ (z(t)) = −2zT (t)Cz(t) + 2zT (t)Bg(z(t− τ))− βgT (z(t− τ))g(z(t− τ))

−αγgT (z(t− τ))g(z(t− τ))

≤ −2zT (t)Cz(t) + 2zT (t)Bg(z(t− τ))− βgT (z(t− τ))g(z(t− τ))

Since

−zT (t)Cz(t) + 2zT (t)Bg(z(t− τ))− βgT (z(t− τ))g(z(t− τ)) ≤ 0

then, V̇ (z(t)) ≤ −zT (t)Cz(t). It follows that V̇ (z(t)) is negative definite for all z(t) ̸= 0
with g(z(t)) = 0. Finally, consider the case where g(z(t)) = 0 and z(t) = 0. This case
implies that

V̇ (z(t)) = −βgT (z(t− τ))g(z(t− τ))− αγgT (z(t− τ))g(z(t− τ))

Obviously, V̇ (z(t)) is negative definite for all g(z(t − τ)) ̸= 0. Hence, it follows that

V̇ (z(t)) = 0 if and only if z(t) = g(z(t)) = g(z(t − τ)) = 0, otherwise V̇ (z(t)) < 0.
Moreover, V (z(t)) is radially unbounded since V (z(t)) → ∞ as ||z(t)|| → ∞. Thus, it can
be concluded that the origin of system (5), or equivalently the equilibrium point of system
(2) is globally asymptotically stable.

�

The other main result of this paper is given in the following :

Theorem 2. Let f ∈ K. Then, the neural network model (1) is globally asymptotically
robust stable, if

Θ = 2rI −A∗ −A∗T − ||A∗ +AT
∗ ||2I − (||B̂||1 + ||B̂||∞)I > 0

where A∗ = 1
2(A + A), A∗ = 1

2(A − A), B̂ = (b∗ij)n×n, b∗ij = max{|bij |, |bij |}, and

r = min(
ci
µi
).
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Proof. We first note the following inequality

2(f(x)− f(y))TB(f(x)− f(y)) =

n∑
i=1

n∑
j=1

2bij(fi(xi)− fi(yi))(fj(xj)− fj(yj))

≤
n∑

i=1

n∑
j=1

2|bij ||fi(xi)− fi(yi)||fj(xj)− fj(yj)|

≤
n∑

i=1

n∑
j=1

|bij |((fi(xi)− fi(yi))
2 + (fj(xj)− fj(yj))

2)

=
n∑

i=1

n∑
j=1

|bij |(fi(xi)− fi(yi))
2

+
n∑

i=1

n∑
j=1

|bji|(fi(xi)− fi(yi))
2

≤
n∑

i=1

n∑
j=1

|b∗ij |(fi(xi)− fi(yi))
2

+

n∑
i=1

n∑
j=1

|b∗ji|(fi(xi)− fi(yi))
2

≤ (||B̂||∞ + ||B̂||1)(f(x)− f(y))T (f(x)− f(y)) (19)

Now, using (9), (11) and (19) in (8), we obtain

2(f(x)− f(y))T (H(x)−H(y)) ≤ −2r(f(x)− f(y))T (f(x)− f(y))

+(f(x)− f(y))T (A∗ +A∗T )(f(x)− f(y)

+||A∗ +AT
∗ ||2(f(x)− f(y))T (f(x)− f(y))

+(||B̂||∞ + ||B̂||1)(f(x)− f(y))T (f(x)− f(y))(20)

which is equivalent to

2(f(x)− f(y))TP (H(x)−H(y)) ≤ −(f(x)− f(y))TΘ(f(x)− f(y)) (21)

Note that (21) is exactly in the same form as (13). When replacing Φ in (13) by Θ yields
(21). For (13), we have already proved that if Φ > 0, then ||H(x)|| → ∞ as ||x|| → ∞,
and H(x) ̸= H(y) for all x ̸= y. Therefore, we can directly conclude that if Θ > 0, then
||H(x)|| → ∞ as ||x|| → ∞, and H(x) ̸= H(y) for all x ̸= y. Hence, the proof of the
existence and uniqueness of the equilibrium point is complete.

We will now prove that Θ > 0 is also a sufficient condition for global asymptotic stabil-
ity of the origin of (5). To this end, we consider the following positive definite Lyapunov
functional :

V (z(t)) =
n∑

i=1

nz2i (t) + 2α
n∑

i=1

∫ zi(t)

0
gi(s)ds+

n∑
i=1

n∑
j=1

(ε+ αb∗ij)

∫ t

t−τij

g2j (zj(ξ))dξ

+
n∑

i=1

n∑
j=1

1

ci
n2(b∗ij)

2

∫ t

t−τij

g2j (zj(ξ))dξ
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where b∗ij = max{|bij |, |bij |}, a∗ij = max{|aij |, |aij |}, α and ε are positive constants to be
determined later. The time derivative of the functional along the trajectories of system
(5) is obtained as follows

V̇ (z(t)) = −2
n∑

i=1

nciz
2
i (t) +

n∑
i=1

n∑
j=1

2naijzi(t)gj(zj(t))

+

n∑
i=1

n∑
j=1

2nbijzi(t)gj(zj(t− τij))− 2α

n∑
i=1

cizi(t)gi(zi(t))

+α

n∑
i=1

n∑
j=1

2aijgi(zi(t))gj(zj(t)) + α

n∑
i=1

n∑
j=1

2bijgi(zi(t))gj(zj(t− τij))

+α

n∑
i=1

n∑
j=1

b∗ijg
2
j (zj(t))− α

n∑
i=1

n∑
j=1

b∗ijg
2
j (zj(t− τij))

+

n∑
i=1

n∑
j=1

εg2j (zj(t))−
n∑

i=1

n∑
j=1

εg2j (zj(t− τij))

+

n∑
i=1

n∑
j=1

1

ci
n2(b∗ij)

2g2j (zj(t))−
n∑

i=1

n∑
j=1

1

ci
n2(b∗ij)

2g2j (zj(t− τij))

We have

n∑
i=1

n∑
j=1

2naijzi(t)gj(zj(t)) ≤
n∑

i=1

n∑
j=1

ciz
2
i (t) +

n∑
i=1

n∑
j=1

1

ci
n2a2ijg

2
j (zj(t))

≤
n∑

i=1

nciz
2
i (t) +

n∑
i=1

n∑
j=1

1

ci
n2(a∗ij)

2g2j (zj(t))

n∑
i=1

n∑
j=1

2nbijzi(t)gj(zj(t− τij)) ≤
n∑

i=1

n∑
j=1

ciz
2
i (t) +

n∑
i=1

n∑
j=1

1

ci
n2b2ijg

2
j (zj(t− τij))

≤
n∑

i=1

nciz
2
i (t) +

n∑
i=1

n∑
j=1

1

ci
n2(b∗ij)

2g2j (zj(t− τij))

α
n∑

i=1

n∑
j=1

2bijgi(zi(t))gj(zj(t− τij)) ≤ α
n∑

i=1

n∑
j=1

|bij |g2i (zi(t)) + α
n∑

i=1

n∑
j=1

|bij |g2j (zj(t− τij))

≤ α
n∑

i=1

n∑
j=1

b∗ijg
2
i (zi(t)) + α

n∑
i=1

n∑
j=1

b∗ijg
2
j (zj(t− τij))
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In the light above inequalities, V̇ (z(t)) can be written as follows

V̇ (z(t)) ≤
n∑

i=1

n∑
j=1

1

ci
n2(a∗ij)

2g2j (zj(t)) +

n∑
i=1

n∑
j=1

1

ci
n2(b∗ij)

2g2j (zj(t))

−2α

n∑
i=1

cizi(t)gi(zi(t) + α

n∑
i=1

n∑
j=1

2aijgi(zi(t))gj(zj(t))

+α

n∑
i=1

n∑
j=1

b∗ijg
2
j (zj(t)) + α

n∑
i=1

n∑
j=1

b∗ijg
2
i (zi(t)) +

n∑
i=1

n∑
j=1

εg2i (zi(t))

=

n∑
i=1

n∑
j=1

1

ci
n2[(a∗ji)

2 + (b∗ji)
2]g2i (zi(t)) +

n∑
i=1

n∑
j=1

εg2i (zi(t))

−2α

n∑
i=1

cizi(t)gi(zi(t)) + α

n∑
i=1

n∑
j=1

2aijgi(zi(t))gj(zj(t))

+α
n∑

i=1

n∑
j=1

b∗jig
2
i (zi(t)) + α

n∑
i=1

n∑
j=1

b∗ijg
2
i (zi(t))

We also note the following inequalities

−2α

n∑
i=1

cizi(t)gi(zi(t)) ≤ −2αrgT (z(t))g(z(t))

α

n∑
i=1

n∑
j=1

2aijgi(zi(t))gj(zj(t)) = αgT (z(t))(A+AT )g(z(t))

≤ αgT (z(t))(A∗ +A∗T )g(z(t))

+αgT (z(t))||A∗ +AT
∗ ||2g(z(t))

α

n∑
i=1

n∑
j=1

b∗jig
2
i (zi(t)) ≤ α||B̂||1

n∑
i=1

g2i (zi(t)) = α||B̂||1gT (z(t))g(z(t))

α
n∑

i=1

n∑
j=1

b∗ijg
2
i (zi(t)) ≤ α||B̂||∞

n∑
i=1

g2i (zi(t)) = α||B̂||∞gT (z(t))g(z(t))

Let

δ = max(
1

ci
n2[(a∗ji)

2 + (b∗ji)
2])

Then, we have

V̇ (z(t)) ≤
n∑

i=1

n∑
j=1

δg2i (zi(t)) +

n∑
i=1

n∑
j=1

εg2i (zi(t))− 2αrgT (z(t))g(z(t))

+αgT (z(t))(A∗ +A∗T )g(z(t)) + αgT (z(t))||A∗ +AT
∗ ||2g(z(t))

+α||B̂||1gT (z(t))g(z(t)) + α||B̂||∞gT (z(t))g(z(t))

= n(δ + ε)||g(z(t))||22 − αgT (z(t))Θg(z(t))

≤ n(δ + ε)||g(z(t))||22 − αλm(Θ)||g(z(t))||22
= −(αλm(Θ)− n(δ + ε))||g(z(t))||22
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in which α > n(δ+ε)

λm(Θ̂)
implies that V̇ (z(t)) is negative definite for all g(z(t)) ̸= 0. ( We know

that g(z(t)) ̸= 0 implies that z(t) ̸= 0). Now let g(z(t)) = 0. In this case V̇ (z(t)) satisfies

V̇ (z(t)) = −2

n∑
i=1

nciz
2
i (t) +

n∑
i=1

n∑
j=1

2nbijzi(t)gj(zj(t− τij))

−α

n∑
i=1

n∑
j=1

b∗ijg
2
j (zj(t− τij))−

n∑
i=1

n∑
j=1

εg2j (zj(t− τij))

−
n∑

i=1

n∑
j=1

1

ci
n2(b∗ij)

2g2j (zj(t− τij))

≤ −2
n∑

i=1

nciz
2
i (t) +

n∑
i=1

n∑
j=1

2nbijzi(t)gj(zj(t− τij))

−
n∑

i=1

n∑
j=1

1

ci
n2(b∗ij)

2g2j (zj(t− τij))

Since

−
n∑

i=1

nciz
2
i (t) +

n∑
i=1

n∑
j=1

2nbijzi(t)gj(zj(t− τij))−
n∑

i=1

n∑
j=1

1

ci
n2(b∗ij)

2g2j (zj(t− τij))≤0

we obtain

V̇ (z(t)) ≤ −
n∑

i=1

nciz
2
i (t)

implying that V̇ (z(t)) < 0 for all z(t) ̸= 0. Now consider the case where g(z(t)) = z(t) = 0.

In this case, for V̇ (z(t)), we have

V̇ (z(t)) = −α

n∑
i=1

n∑
j=1

b∗ijg
2
j (zj(t− τij))−

n∑
i=1

n∑
j=1

εg2j (zj(t− τij))

−
n∑

i=1

n∑
j=1

1

ci
n2(b∗ij)

2g2j (zj(t− τij))

≤ −
n∑

i=1

n∑
j=1

εg2j (zj(t− τij))

in which V̇ (z(t)) < 0 if there exists at least one nonzero gj(zj(t − τij)). Hence, we can

conclude that V̇ (z(t)) = 0 if and only if g(z(t)) = z(t) = 0 and gj(zj(t − τij)) = 0 for all

i, j, V̇ (z(t)) < 0 otherwise. In addition, V (z(t)) is radially unbounded since V (z(t)) → ∞
as ||z(t)|| → ∞. Thus, the origin of system (5), or equivalently the equilibrium point of
system (1) is globally asymptotically stable.

�

4. Comparison and Examples

In this section, we will compare our results with the previous results derived in the
literature. In order to make the comparison precise, we first restate the previous results :
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Theorem 3 (31). Let f ∈ K. Then, the neural network model (2) is globally asymptoti-
cally robust stable, if there exists a positive definite matrix D > 0 such that

(i) the symmetric matrix S = (sij)n×n is positive definite

(ii) (||B∗||2 + ||B∗||2)2 ≤
2r − ||D||2
||D−1||2

where S = (sij)n×n with sii = −2aii, sij = −max(|aij + aji|, |aij + aji|) for i ̸= j,

B∗ = 1
2(B +B), B∗ =

1
2(B −B) and r = min(

pici
µi

).

Theorem 4 (32). Let f ∈ K. Then, the neural network model (2) is globally asymptotically
robust stable, if

Ω = 2rI + S − 2(||B∗||2 + ||B∗||2)I > 0

where S = (sij)n×n with sii = −2aii, sij = −max(|aij + aji|, |aij + aji|) for i ̸= j,

B∗ = 1
2(B +B), B∗ =

1
2(B −B) and r = min(

ci
µi
).

Theorem 5 (33). Let f ∈ K. Then, the neural network model (2) is globally exponentially
robust stable, if there exist positive constants αi, i = 1, 2, ..., n such that

αi(
ci
µi

− aii)−
n∑

j=1
j ̸=i

αja
∗
ji −

n∑
j=1

αjb
∗
ji > 0, i = 1, 2, ..., n

Theorem 6 (34). Let f ∈ K. Then, the neural network model (2) is globally asymptotically
robust stable, if

Ψ = 2rI −A∗ −A∗T − 2||A∗||2 − 2(||B∗||2 + ||B∗||2)I > 0

where A∗ = 1
2(A+A), A∗ =

1
2(A−A), B∗ = 1

2(B+B), B∗ =
1
2(B−B) and r = min(

ci
µi
).

We will now consider the following examples :

Example 1. Since Theorem 3 given in [31] requires that S be a positive definite matrix,
we will first give an example where the results of Theorem 1 hold when S is not positive
definite matrix. Assume that the network parameters of neural system (2) are given as
follows :

A = B =

 −a −a −a
−a −a −a
−a −a −a

 , A = B =

 a a a
a a a
a a a

 ,

C = C = C = I, µ1 = µ2 = µ3 = 1

where a > 0 is real number. We obtain the following matrices:

A∗ = B∗ =

 0 0 0
0 0 0
0 0 0

 , A∗ = B∗ =

 a a a
a a a
a a a


Then, Φ = 2rI−A∗ −A∗T −||A∗ +AT

∗ ||2I−2(||B∗||2+ ||B∗||2)I in Theorem 1 is obtained
as

Φ =

 2− 12a 0 0
0 2− 12a 0
0 0 2− 12a
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where a < 1
6 implies that Φ is positive definite. Hence, this example prove the advantages

of our results over the results of [31] when S is not positive definite.

Example 2. Assume that the network parameters of neural system (2) are given as follows
:

A =

 −a −a −a
0 −a 0

−2a 0 −a

 , A =

 a a a
2a a 2a
0 2a a


B =

 −a −a −a
−a −a −a
−a −a −a

 , B =

 a a a
a a a
a a a

 ,

C = C = C = I, µ1 = µ2 = µ3 = 1

where a > 0 is real number. We obtain the following matrices:

A∗ =

 0 0 0
a 0 a
−a a 0

 , A∗ =

 a a a
a a a
a a a


B∗ =

 0 0 0
0 0 0
0 0 0

 , B∗ =

 a a a
a a a
a a a


Then, Φ = 2rI−A∗ −A∗T −||A∗ +AT

∗ ||2I−2(||B∗||2+ ||B∗||2)I in Theorem 1 is obtained
as

Φ =

 2− 12a −a a
−a 2− 12a −2a
a −2a 2− 12a


Let a = 5

36 . In this case, Φ is of the form :

Φ =
1

36

 12 −5 5
−5 12 −10
5 −10 12


Since Φ is symmetric and its eigenvalues are all positive, it directly follows that Φ is
positive definite, thus implying that the condition of Theorem 1 holds.
Now let us check the condition of Theorem 4 for the same network parameters when a = 5

36 .
For the network parameters given in this example, we obtain

S =

 −2a −3a −3a
−3a −2a −4a
−3a −4a −2a


Then, for P = I, Φ = 2rI+S−2||P ||2(||B∗||2+ ||B∗||2)I > 0 in Theorem 4 is obtained as

Φ =

 2− 8a −3a −3a
−3a 2− 8a −4a
−3a −4a 2− 8a


For a = 5

36 , Φ is of the form :

Φ =
1

36

 32 −15 −15
−15 32 −20
−15 −20 32
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It is easy to see that the determinant of Φ is negative, thus meaning that Φ is not positive
definite. Therefore, the conditions Theorem 4 are not applicable to this example.

Example 3. Assume that the network parameters of neural system (1) are given as fol-
lows:

A = B =

 −a −a −a
−3a −a −a
−3a −3a −a

 , A = B =

 3a 3a 3a
a 3a 3a
a a 3a

 ,

C = C = C = I, µ1 = µ2 = µ3 = 1

where a > 0 is real number. We obtain the following matrices:

A∗ = B∗ =

 a a a
−a a a
−a −a a

 , A∗ = B∗ =

 2a 2a 2a
2a 2a 2a
2a 2a 2a

 , Â = B̂ =

 3a 3a 3a
3a 3a 3a
3a 3a 3a


Then, Θ = 2rI −A∗ −A∗T − ||A∗ +AT

∗ ||2I − (||B̂||1 + ||B̂||∞)I in Theorem 2 is obtained
as

Θ̂ =

 2− 32a 0 0
0 2− 32a 0
0 0 2− 32a


where Θ > 0 if a < 1

16 . When checking the conditions of Theorems 5 for the network
parameters given in this example, it is easy to see that Theorem 5 requires that the following
matrix be a nonsingular M-matrix :

I − Â− B̂ =

 1− 6a −6a −6a
−6a 1− 6a −6a
−6a −6a 1− 6a


Clearly, I − Â − B̂ is nonsingular M-matrix if and only if a < 1

18 . Obviously, for
1
18 ≤ a < 1

16 , our condition obtained in Theorem 2 is satisfied but the results of Theo-
rem 5 do not hold.

Finally we will show that Theorem 6 is a special case of Theorem 1. Since ||A∗ +AT
∗ ||2≤2||A∗||2,

it follows that Φ ≥ Ψ, thus directly implying that Theorem 6 is a special case of Theorem 1.

5. CONCLUSIONS

We have studied the global robust asymptotic stability of the equilibrium point for
delayed neural networks. By employing suitable Lyapunov functionals, we have derived
some easily verifiable delay independent sufficient conditions for the global robust stability
of the equilibrium point. We have also presented some numerical examples to illustrate
the effectiveness and advantages of our results over the previous relevant robust stability
results published in the literature. Since the obtained results proved to be a new set of
robust stability criteria, they can be used to expand significantly the application domain
of neural networks.
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