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PARTIAL CONE METRIC SPACE AND SOME FIXED POINT

THEOREMS
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Abstract. In the present paper, we have proved some convergence properties of a
sequence of elements in a partial cone metric space and thereby we have established
some fixed point theorems on it.
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1. Introduction

Partial metric space was originally developed by Matthews ([7], [8]) to provide mecha-
nism generalizing metric space theories. He introduced the notion of partial metric space
as a part of the study of denotational semantics of dataflow networks in computer science.
In particular, he established the precise relationship between partial metric spaces and the
so called weightable quasi-metric space (see [10]). In partial metric spaces, the distance
of a point in the self may not be zero. Introducing partial metric space, Matthews proved
Banach fixed point theorem [1] in this space.

Definition 1.1. (Partial metric space) A partial metric on a non-empty set X is a function
p : X ×X → R+ such that for all x, y, z ∈ X:
(p1): 0 ≤ p(x, x) ≤ p(x, y),
(p2): x = y ⇔ p(x, x) = p(x, y) = p(y, y),
(p3): p(x, y) = p(y, x),
(p4): p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

A partial metric space is a pair (X, p) such that X is a non-empty set and p is a partial
metric on X. It is clear that if p(x, y) = 0, then from (p1) and (p2) we obtain x = y.
But if x = y, p(x, y) may not be 0. A basic example of a partial metric space is the pair
(R+, p), where p(x, y) = max{x, y} for all x, y ∈ R+. Various application on this space
has been extensively investigated by many authors (see [5], [13] for details).
In 1980, Rzepecki [11] introduced a generalized metric dE on a set X in a way that
dE : X ×X → P , replacing the set of real numbers with a Banach space E in the metric
function where P is a normal cone in E with a partial order ≤. Seven years later, Lin [6]
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considered the notion of cone metric spaces by replacing real numbers with a cone P in
the metric function in which it is called a K-metric. On the otherhand, L.-G. Huang and
X. Zhang [3] replaced real numbers with an ordering Banach space to define cone metric
space, which is the same as either the definition of Rzepecki or of Lin. In the same paper,
they proved some important fixed point theorems including Banach’s fixed point theorem
in cone metric space.
Let E always be a real Banach space and P a subset of E. P is called a cone if
(C1): P is closed, non-empty and P ̸= {0},
(C2): ax+ by ∈ P for all x, y ∈ P and non-negative real numbers a, b,
(C3): P ∩ (−P ) = {0}.
For a given cone P ⊆ E, we can define a partial ordering ≤ on E with respect to P by
x ≤ y if and only if y − x ∈ P . We write x < y to indicate that x ≤ y but x ̸= y, while
x ≪ y will stand for y − x ∈ intP , intP denotes the interior of P . The cone P is called
normal if there is a constant number K > 0 such that for all x, y ∈ E

θ ≤ x ≤ y implies ∥x∥ ≤ K ∥y∥ .
The least positive number satisfying above is called the normal constant of P . The cone P
is called regular if every increasing sequence which is bounded from above is convergent.
That is, if {xn} is sequence such that x1 ≤ x2 ≤ ...xn ≤ ... ≤ y for some y ∈ E, then there
is x ∈ E such that ∥xn − x∥ → 0 as n → ∞. Equivalently the cone P is regular if and only
if every decreasing sequence which is bounded from below is convergent. It is well known
that a regular cone is a normal cone.
In the following we always suppose E is a Banach space, P a cone in E with intP ̸= Φ
and ≤ is partial ordering with respect to P .

Definition 1.2. (Cone metric space) Let X be a non-empty set. Suppose X the mapping
d : X ×X → E satisfies such that :
(CM1): θ ≤ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y,
(CM2): d(x, y) = d(y, x) for all x, y ∈ X,
(CM3): d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.
Motivated by this beautiful generalization of metric space, recently A.Sönmez [12] intro-
duced the notion of partial cone metric space and its topological characterization. He also
developed some important fixed point theorems in this generalized setting. We now state
the following definition of partial cone metric space due to A.Sönmez [12].

Definition 1.3. (Partial cone metric space) A partial cone metric on a non-empty set X
is a function p : X ×X → R+ such that for all x, y, z ∈ X:
(PCM1): θ ≤ p(x, x) ≤ p(x, y),
(PCM2): x = y ⇔ p(x, x) = p(x, y) = p(y, y),
(PCM3): p(x, y) = p(y, x),
(PCM4): p(x, y) ≤ p(x, z) + p(z, y)− p(z, z)

A partial cone metric space is a pair (X, p) such that X is a non-empty set and p is a
partial cone metric on X. It is clear that, if p(x, y) = θ, then from (PCM1) and (PCM2),
x = y. But if x = y, p(x, y) may not be equal to θ.
A cone metric space is a partial cone metric space, but there exists partial cone metric
spaces which are not cone metric space. The following examples supports our contention.

Example 1.1. (A.Sönmez [12]) Let E = R2,

P = {(x, y) ∈ E : x, y ≥ 0
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and X = R+ and p : X × X → E defined by p(x, y) = (max{x, y}, αmax{x, y}) where
α ≥ 0 is a constant. Then (X, p) is a partial cone metric space which is not a cone metric
space.

Example 1.2. (A.Sönmez [12]) Let E = l1,

P = {{xn} ∈ l1 : xn ≥ 0}

Also let X = {(xn) : (xn) ∈ (R+)w,
∑

xn < ∞} where (R+)w be the set of all infinite
sequences over R+, and p : X ×X → E defined by

p(x, y) = (x1 ∨ y1, x2 ∨ y2, ..., xn ∨ yn, ...)

where the symbol ∨ denotes the maximum, i.e. x∨y = max{x, y}. Then (X, p) is a partial
cone metric space which is not a cone metric space.

In the following sequel, (X, p) will denote a partial cone metric space. We now invite
the following definitions and theorems due to A.Sönmez [12]

Theorem 1.1. (Theorem 1, [12]) Any partial cone metric space (X, p) is a topological
space.

Theorem 1.2. (Theorem 2, [12]) Let (X, p) be a partial cone metric space and P be a
normal cone with normal constant K, then (X, p) is T0.

Definition 1.4. (Definition 3, [12]) Let (X, p) be a partial cone metric space. Let (xn) be
a sequence in X and x ∈ X. If for every c ∈ intP , there is N such that for all n > N ,
p(xn, x) ≪ c+ p(x, x), then (xn) is said to be convergent and (xn) converges to x, and x
is the limit of (xn). We denote this by lim

n→∞
xn = x or, xn → x(n → ∞)

Theorem 1.3. (Theorem 3, [12]) Let (X, p) be a partial cone metric space, P be a normal
cone with normal constant K. Let (xn) be a sequence in X. Then (xn) converges to x if
and only if p(xn, x) → p(x, x) (n → ∞)

Sönmez [12] also noted that if (X, p) is a partial cone metric space, P be a normal cone
with normal constant K and p(xn, x) → p(x, x) (n → ∞), then p(xn, xn) → p(x, x) (n →
∞).

Lemma 1.1. (Lemma 1, [12]) Let (xn) be a sequence in partial cone metric space (X, p).
If a point x is the limit of (xn) and p(y, y) = p(y, x) then y is the limit point of (xn).

Definition 1.5. (Definition 4, [12]) Let (X, p) be a partial cone metric space. (xn) be a
sequence in X. (xn) is Cauchy sequence if there is a ∈ P such that for every ϵ > 0 there
is N such that for all n,m > N

∥p(xn, xm)− a∥ < ϵ.

Definition 1.6. A partial cone metric space (X, p) is said to be complete if every Cauchy
sequence in (X, p) is convergent in (X, p).

Theorem 1.4. (Theorem 4, [12]) Let (X, p) be a partial cone metric space. If (xn) is a
Cauchy sequence in (X, p), then it is a Cauchy sequence in the cone metric space (X, d).

Following the current literature, there is ample vicinity to explore and improve this
new avenue of research area. Here we derive some important results of partial cone metric
space and then prove some classical fixed point theorems, which are extensions of Banach’s
[1] fixed point principle and Kannan’s [4] fixed point theorem in this new setting.
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2. Some properties of partial cone metric space

We first prove an analogue of important lemma (Lemma 5, L-G Huang et al.[3]) in
partial cone metric space.

Proposition 2.1. Let (X, p) be a partial cone metric space, P be a normal cone with
normal constant K. Let (xn) and (yn) be two sequences in X such that xn → x, yn →
x (n → ∞). Then p(xn, yn) → p(x, y) (n → ∞).

Proof. For every real ϵ > 0, choose c ∈ intP with ∥c∥ < ϵ
4K+2 . As xn → x, yn → y, there

is N, for all n > N , p(xn, x) ≪ c+ p(x, x) and p(yn, y) ≪ c+ p(y, y).
Then we have for all n > N,

p(xn, yn) ≤ p(xn, x) + p(x, y) + p(yn, y)− p(x, x)− p(y, y)

≤ p(x, y) + 2c

and

p(x, y) ≤ p(xn, x) + p(xn, yn) + p(yn, y)− p(xn, xn)− p(yn, yn)

≤ p(xn, yn) + 2c

Hence for all n > N , θ ≤ p(x, y) + 2c− p(xn, yn) ≤ 4c
and so for n > N ,

∥p(xn, yn)− p(x, y)∥ ≤ ∥p(x, y) + 2c− p(xn, yn)∥+ ∥2c∥
≤ (4K + 2) ∥c∥ < ϵ

Therefore p(xn, yn) → p(x, y) (n → ∞). �
Definition 2.1. Let (X, p) be a partial cone metric space. If for any sequence (xn) in X,
there is a subsequence (xni) of (xn) such that (xni) is convergent in X. Then X is called
a sequentially compact partial cone metric space.

Proposition 2.2. Let (X, p) be a partial cone metric space, (xn) be a sequence in X. If
(xn) converges to x, then (xn) is a Cauchy sequence.

Proof. For any ϵ > 0, choose c ∈ intP with K ∥c∥ < ϵ, there is N such that for all
n,m > N , p(xn, x) ≪ c

2 + p(x, x) and p(xm, x) ≪ c
2 + p(x, x). Then for n,m > N ,

p(xn, xm) ≤ p(xn, x) + p(x, xm)− p(x, x)

≤ c+ p(x, x)

So ∥p(xn, xm)− p(x, x)∥ ≤ K ∥c∥ < ϵ. Therefore (xn) is a Cauchy sequence. �

3. Fixed point theorems in partial cone metric space

Banach’s fixed point theorem [1] in partial cone metric space has been proved by
A.Sönmez [12]

Theorem 3.1. (Banach’s fixed point theorem ) Let (X, p) be a complete partial cone
metric space, P be a normal cone with constant K. Suppose that the mapping T : X → X
satisfies the contractive condition

p(Tx, Ty) ≤ αp(x, y) for all x, y ∈ X

where α ∈ (0, 1), is a constant. Then T has a unique fixed point in X, and for any x ∈ X,
the iterative sequence (Tnx) converges to the fixed point.

In the same paper [3], Kannan type mapping [4] is also considered to prove fixed point
theorem in this setting.



D. DEY, M. SAHA: PARTIAL CONE METRIC SPACE AND SOME FIXED POINT THEOREMS 5

Theorem 3.2. (Kannan’s fixed point theorem ) Let (X, p) be a complete partial cone
metric space, P be a normal cone with constant K. Supose that the mapping T : X → X
satisfies the contractive condition

p(Tx, Ty) ≤ b [p(x, Tx) + p(y, Ty)] for all x, y ∈ X

where b ∈ (0, 12), is a constant. Then T has a unique fixed point in X, and for any x ∈ X,
the iterative sequence (Tnx) converges to the fixed point.

Following theorem is an important result of L.-G. Huang et al. (Corollary 1, [3]) proved
here in partial cone metric space.

Theorem 3.3. Let (X, p) be a complete partial cone metric space, P be a normal cone with
constant K. For c ∈ intP and x0 ∈ X, set B(x0, c) = {x ∈ X : p(x0, x) ≤ c}. Suppose the
mapping T : X → X satisfies the contractive condition

p(Tx, Ty) ≤ αp(x, y) for all x, y ∈ X

where α ∈ [0, 1), is a constant and p(Tx0, x0) ≤ (1− α) c. Then T has a unique fixed point
in B(x0, c).

Proof. As a consequence of Theorem 1 of A.Sönmez [12], we need only to prove that
B(x0, c) is complete and Tx ∈ B(x0, c) for all x ∈ B(x0, c).
Suppose (xn) is a Cauchy sequence in B(x0, c). Then (xn) is also a Cauchy sequence in
X. By the completeness of X, there is x ∈ X such that xn → x (n → ∞). Now

p(x0, x) ≤ p(xn, x0) + p(xn, x)− p(xn, xn) (1)

As ∥∥∥ lim
n→∞

p(xn, x)− lim
n→∞

p(xn, xn)
∥∥∥ =

∥∥∥ lim
n→∞

[p(xn, x)− p(xn, xn)]
∥∥∥

= lim
n→∞

∥p(xn, x)− p(xn, xn)∥

= 0

So [p(xn, x)− p(xn, xn)] → θ (n → ∞). Then by taking n → ∞ in (1) we get p(x0, x) ≤ c
which implies that x ∈ B(x0, c). So B(x0, c) is closed and thus B(x0, c) is complete. Now
for x ∈ B(x0, c),

p(x0, Tx) ≤ p(x0, Tx0) + p(Tx0, Tx)− p(Tx0, Tx0)

≤ p(x0, Tx0) + αp(x0, x)

≤ (1− α)c+ αc

= c

showing that Tx ∈ B(x0, c). �

Next result is also a consequence of Theorem 1 of A.Sönmez [12].

Theorem 3.4. Let (X, p) be a complete partial cone metric space, P be a normal cone
with constant K. Suppose a mapping T : X → X satisfies for some positive integer n,

p(Tnx, Tny) ≤ αp(x, y) for all x, y ∈ X (2)

where α ∈ (0, 1), is a constant. Then T has a unique fixed point in X.
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Proof. Let S = Tn, then from (2)

p(Sx, Sy) ≤ αp(x, y) for all x, y ∈ X

So by Theorem 3.1, S i.e. Tn has a unique fixed point x0. But T
n(Tx0) = T (Tnx0) = Tx0.

So Tx0 is also a fixed point of Tn. Hence Tx0 = x0 i.e. x0 is a fixed point of T . Since the
fixed point of T is also fixed point of Tn, the fixed point of T is unique. �
Theorem 3.5. Let (X, p) be a sequentially compact partial cone metric space, P be a
regular cone. Suppose the mapping T : X → X satisfies

p(Tx, Ty) < p(x, y) for all x, y ∈ X, x ̸= y

Then T has a unique fixed point in X.

Proof. Choose x0 ∈ X. Set x1 = Tx0, x2 = Tx1 = T 2x0, . . . , xn+1 = Txn = Tn+1x0, .
. . . If for some n, xn+1 = xn, then xn is a fixed point of T , the proof is complete. So we
assume that for all n, xn+1 ̸= xn. Set dn = p(xn, xn+1), then

dn+1 = p(xn+1, xn+2) = p(Txn, Txn+1) < p(xn, xn+1) = dn.

Therefore (dn) is a decreasing sequence bounded below by 0. Since P is regular, there is
d∗ ∈ E such that dn → d∗ (n → ∞). From the sequence compactness of X, there are
subsequence (xni) of (xn) and x∗ ∈ X such that xni → x∗ (i → ∞). We have

p(Txni , Tx
∗) ≤ p(xni , x

∗), i = 1, 2, ..

So

∥p(Txni , Tx
∗)∥ ≤ ∥p(xni , x

∗)∥ → 0 (n → ∞)

where K is the normal constant of E. Hence Txni → Tx∗ (i → ∞). Similarly, T 2xni →
T 2x∗ (i → ∞). By using Proposition 2.1, we have p(Txni , xni) → p(Tx∗, x∗) (i → ∞) and
p(T 2xni , Txni) → p(T 2x∗, Tx∗) (i → ∞). It is obvious that p(Txni , xni) = dni → d∗ =
p(Tx∗, x∗) (i → ∞). Now we shall prove that Tx∗ = x∗. If Tx∗ ̸= x∗, then d∗ ̸= 0. We
have

d∗ = p(Tx∗, x∗) > p(T 2x∗, Tx∗) = lim
i→∞

p(T 2xni , Txni) = lim dni+1 = d∗

which is a contradiction. So Tx∗ = x∗. That is x∗ is a fixed point of T . The uniqueness
of fixed point is obvious. �

We now prove the fixed point theorem due to Chatterjea [2] in in partial cone metric
space.

Theorem 3.6. (Chatterjea fixed point theorem ) Let (X, p) be a complete partial cone
metric space, P be a normal cone with constant K. Supose that the mapping T : X → X
satisfies the contractive condition

p(Tx, Ty) ≤ b [p(Tx, y) + p(Ty, x)] for all x, y ∈ X

where b ∈ (0, 12), is a constant. Then T has a unique fixed point in X, and for any x ∈ X,
the iterative sequence (Tnx) converges to the fixed point.

Proof. Choose x0 ∈ X. Define the sequence (xn) as x1 = Tx0, x2 = Tx1 = T 2x0, ..., xn+1 =
Txn = Tn+1x0,... We have

p(xn+1, xn) = p(Txn, Txn−1)

≤ b [p(Txn, xn−1) + p(Txn−1, xn)]

≤ b [p(xn+1, xn−1) + p(xn, xn)]
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So

p(xn+1, xn) ≤ b [p(xn+1, xn) + p(xn, xn−1)− p(xn, xn)] + bp(xn, xn)

≤ b [p(xn+1, xn) + p(xn, xn−1)]

which imlies that

p(xn+1, xn) ≤
b

1− b
p(xn, xn−1) = hp(xn, xn−1)

where h = b
1−b < 1.

For m > n,

p(xm, xn) ≤ p(xm, xm−1) + p(xm−1, xm−2) + ...+ p(xn+1, xn)−
m−n−1∑
r=1

p(xm−r, xm−r)

≤ p(xm, xm−1) + p(xm−1, xm−2) + ...+ p(xn+1, xn)

≤ (hm−1 + hm−2 + ...+ hn)p(x1, x0)

≤ hn

1− h
p(x1, x0)

and

∥p(xm, xn)∥ ≤ hn

1− h
K ∥p(x1, x0)∥

This implies that p(xm, xn) → 0 (n,m → ∞). Hence (xn) is a Cauchy sequence. By
completeness of X, there is u ∈ X such that xn → u (n → ∞). Therefore

lim
n→∞

p(xn, u) = p(u, u) = lim
n→∞

p(xn, xn) = 0.

Since

p(Tu, u) ≤ p(Txn, Tu) + p(Txn, u)− p(Txn, Txn)

≤ p(Txn, Tu) + p(Txn, u)

≤ b [p(Txn, u) + p(Tu, xn)] + p(xn+1, u)

≤ b [p(xn+1, u) + p(Tu, u) + p(u, xn)− p(u, u)] + p(xn+1, u)

≤ b [p(xn+1, u) + p(Tu, u) + p(u, xn)] + p(xn+1, u)

gives

p(Tu, u) ≤ 1

1− b
[b(p(xn+1, u) + p(u, xn)) + p(xn+1, u)]

and

∥p(Tu, u)∥ ≤ b.
1

1− b
[b(∥p(xn+1, u)∥+ ∥p(u, xn)∥) + ∥p(xn+1, u)∥] → 0.

So ∥p(Tu, u)∥ = 0, which implies that Tu = u and so u is a fixed point of T .
Let v be another fixed point of T , then p(u, v) = p(Tu, Tv) ≤ b [p(Tu, v) + p(Tv, u)] =
2bp(u, v) ⇒ (1− 2b)p(u, v) ≤ 0. Since b ∈ [0, 12), p(u, v) = 0 i.e. u = v. So the fixed point
is unique. �

Following is the Reich’s [9] type contraction mapping considered here to prove an an-
other fixed point theorem in partial cone metric space.

Theorem 3.7. Let (X, p) be a complete partial cone metric space, P be a normal cone
with constant K. Supose that the mapping T : X → X satisfies the contractive condition

p(Tx, Ty) ≤ αp(Tx, x) + βp(Ty, y) + γp(x, y) for all x, y ∈ X
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where 0 ≤ α+ β+ γ < 1 and α, β, γ are non-negative. Then T has a unique fixed point in
X, and for any x ∈ X, the iterative sequence (Tnx) converges to the fixed point.

Proof. Choose x0 ∈ X. Define the sequence (xn) as x1 = Tx0, x2 = Tx1 = T 2x0, ..., xn+1 =
Txn = Tn+1x0,... We have

p(xn+1, xn) = p(Txn, Txn−1)

≤ αp(Txn, xn) + βp(Txn−1, xn−1) + γp(xn, xn−1)

≤ αp(xn+1, xn) + βp(xn, xn−1) + γp(xn, xn−1)

which implies that

p(xn+1, xn) ≤
β + γ

1− α
p(xn, xn−1) = hp(xn, xn−1)

where h = β+γ
1−α < 1. Proceeding as previous theorem, we see that (xn) is a Cauchy

sequence. By completeness of X, there is u ∈ X such that xn → u (n → ∞). Therefore

lim
n→∞

p(xn, u) = p(u, u) = lim
n→∞

p(xn, xn) = 0.

Now

p(Tu, u) ≤ p(Txn, Tu) + p(Txn, u)− p(Txn, Txn)

≤ p(Txn, Tu) + p(Txn, u)

≤ αp(Txn, xn) + βp(Tu, u) + γp(xn, u) + p(xn+1, u)

≤ αp(xn+1, xn) + βp(Tu, u) + γp(xn, u) + p(xn+1, u)

gives

p(Tu, u) ≤ 1

1− β
(αp(xn+1, xn) + γp(xn, u) + p(xn+1, u))

and

∥p(Tu, u)∥ ≤ K
1

1− β
(α ∥p(xn+1, xn)∥+ γ ∥p(xn, u)∥+ ∥p(xn+1, u)∥) → 0

So ∥p(Tu, u)∥ = 0, which implies that Tu = u and so u is a fixed point of T .
Let v be another fixed point of T , then p(u, v) = p(Tu, Tv) ≤ αp(Tu, u) + βp(Tv, v) +
γp(u, v) = γp(u, v) gives u = v. So the fixed point is unique. �

4. Conclusion

Some additional properties of partial cone metric space have been established in this
paper. We have generalized some more fixed point theorems due to Chatterjea [2] and
Reich [9] in partial cone metric space apart from A.Sönmez’s [12] work. However, these
results have vast potential in solving various nonlinear problems in functional analysis,
differential and integral equation and of course, in computer science and engineering.
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