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SOLVABILITY OF ITERATIVE SYSTEMS OF THREE-POINT

BOUNDARY VALUE PROBLEMS

K. R. PRASAD1, N. SREEDHAR2, K. R. KUMAR3 §

Abstract. We establish a criterion for the existence of at least one positive solution
for the iterative system of three-point boundary value problems by determining the
eigenvalues λi, 1 ≤ i ≤ n, using Guo–Krasnosel’skii fixed point theorem.
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1. Introduction

In this paper, we are concerned with determining the eigenvalues λi, 1 ≤ i ≤ n, for
which there exist positive solutions of the iterative system of second order differential
equations,

y
′′
i (t) + λipi(t)fi(yi+1(t)) =0, 1 ≤ i ≤ n, t ∈ [t1, t3],

yn+1(t) =y1(t), t ∈ [t1, t3],

}
(1)

satisfying the different three-point boundary conditions,

αiyi(t1)− βiy
′
i(t1) = 0 and γiyi(t3) + δiy

′
i(t3) = y

′
i(t2), 1 ≤ i ≤ n, (2)

where 0 ≤ t1 < t2 < t3, αi > 0, βi > 0, γi > 0 and δi > 1 are real numbers, for 1 ≤ i ≤ n.
We assume the following conditions hold throughout the paper:

(A1) fi : R+ → R+ is continuous, for 1 ≤ i ≤ n,
(A2) pi : [t1, t3] → R+ is continuous and pi does not vanish identically on any closed

subinterval of [t1, t3], for 1 ≤ i ≤ n,

(A3) αi > 0, βi > 0, γi > 0, δi > 1 and γi >
αiδi

αi(t2−t1)+βi
, for 1 ≤ i ≤ n,

(A4) each of

fi0 = lim
x→0+

fi(x)

x
and fi∞ = lim

x→∞

fi(x)

x
,

for 1 ≤ i ≤ n, exists as positive real number.
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Recently, the existence of positive solutions for the system of differential equations with
multi-point boundary conditions have been studied by many authors due to their striking
applications to almost all area of science, engineering and technology. In 2007, Henderson
and Ntouyas [6] established the existence of positive solutions for the system of nth order
differential equations,

u(n)(t) + λa(t)f(v(t)) = 0, 0 < t < 1,

v(n)(t) + λb(t)g(u(t)) = 0, 0 < t < 1,

satisfying the three-point nonlocal boundary conditions,

u(0) = 0, u′(0) = 0, · · ·, u(n−2)(0) = 0, u(1) = αu(η),

v(0) = 0, v′(0) = 0, · · ·, v(n−2)(0) = 0, v(1) = αv(η),

where 0 < η < 1 and 0 < αηn−1 < 1.
In 2008, Henderson, Ntouyas and Purnaras [7] deals the existence of positive solutions

for the system of second order differential equations,

u′′(t) + λa(t)f(v(t)) = 0, 0 < t < 1,

v′′(t) + λb(t)g(u(t)) = 0, 0 < t < 1,

satisfying the three-point boundary conditions,

u(0) = βu(η), u(1) = αu(η),

v(0) = βv(η), v(1) = αv(η),

where 0 < η < 1, 0 < α < 1
η , 0 < β < 1−αη

1−η , and also in the same year, same authors, (see

[8] in references) studied the existence of positive solutions for the system of second order
differential equations,

u′′(t) + λa(t)f(v(t)) = 0, 0 < t < 1,

v′′(t) + µb(t)g(u(t)) = 0, 0 < t < 1,

satisfying the four-point boundary conditions,

u(0) = αu(ξ), u(1) = βu(η),

v(0) = αv(ξ), v(1) = βv(η),

where 0 < ξ < η < 1, 0 ≤ α, β < 1.
Till now in the literature, the authors established results for the existence of positive

solutions for the system of two differential equations satisfying the same boundary condi-
tions. We wish to extend these results to system of n differential equations satisfying the
different boundary conditions.

The rest of the paper is organized as follows. In Section 2, we construct the Green’s
function for the homogeneous problem corresponding to (1)-(2) and estimate bounds for
the Green’s function. In Section 3, we determine the eigenvalues for which there exist
positive solutions of the boundary value problem (1)-(2) by using Guo–Krasnosel’skii fixed
point theorem for operators on a cone in a Banach space. Finally as an application, we
give an example to illustrate our result.

2. Green’s Function and Bounds

In this section, we construct the Green’s function for the homogeneous problem corre-
sponding to (1)-(2) and estimate bounds for the Green’s function.
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Let Gi(t, s) be the Green’s function for the homogeneous boundary value problem,

−y
′′
i (t) = 0, t ∈ [t1, t3], (3)

αiyi(t1)− βiy
′
i(t1) = 0 and γiyi(t3) + δiy

′
i(t3) = y

′
i(t2), (4)

for 1 ≤ i ≤ n.

Lemma 2.1. Let di = αi[γi(t3 − t1) + δi − 1] + βiγi ̸= 0, 1 ≤ i ≤ n. Then, for 1 ≤ i ≤ n,
the Green’s function Gi(t, s) for the homogeneous boundary value problem (3)-(4) is given
by

Gi(t, s) =



Gi(t,s)
t∈[t1,t2] =

 Gi1(t, s), t1 ≤ s ≤ t ≤ t2 < t3,
Gi2(t, s), t1 ≤ t ≤ s ≤ t2 < t3,
Gi3(t, s), t1 < t ≤ t2 ≤ s ≤ t3,

Gi(t,s)
t∈[t2,t3] =

 Gi4(t, s), t1 < t2 ≤ s ≤ t ≤ t3,
Gi5(t, s), t1 < t2 ≤ t ≤ s ≤ t3,
Gi6(t, s), t1 ≤ s ≤ t2 ≤ t < t3,

(5)

where

Gi1(t, s) =
1

di
[αi(s− t1) + βi][γi(t3 − t) + δi − 1],

Gi2(t, s) =
1

di
[αi(t− t1) + βi][γi(t3 − s) + δi − 1],

Gi3(t, s) =
1

di
[αi(t− t1) + βi][γi(t3 − s) + δi],

Gi4(t, s) =
1

di
[(αi(s− t1) + βi)(γi(t3 − t) + δi) + αi(t− s)],

Gi5(t, s) =
1

di
[αi(t− t1) + βi][γi(t3 − s) + δi],

Gi6(t, s) =
1

di
[αi(s− t1) + βi][γi(t3 − t) + δi − 1].

Lemma 2.2. Assume that the condition (A3) is satisfied. Then, for 1 ≤ i ≤ n, the
Green’s function Gi(t, s) of (3)-(4) is positive, for all (t, s) ∈ (t1, t3)× (t1, t3).

Proof. By simple algebraic calculations, we can easily establish the positivity of the Green’s
function. �
Lemma 2.3. Assume that the condition (A3) is satisfied. Then, for 1 ≤ i ≤ n, the
Green’s function Gi(t, s) in (5) satisfies the following inequality,

kiGi(s, s) ≤ Gi(t, s) ≤ Gi(s, s), for all (t, s) ∈ [t1, t3]× [t1, t3], (6)

where

ki = min

{
δi − 1

γi(t3 − t1) + δi − 1
,

βi
αi(t3 − t1) + βi

}
< 1.

Proof. For 1 ≤ i ≤ n, the Green’s function Gi(t, s) is given in (5). In each case, we prove
the inequality as in (6).

Case 1. For t1 ≤ s ≤ t ≤ t2 < t3,

Gi(t, s)

Gi(s, s)
=

Gi1(t, s)

Gi1(s, s)
=

γi(t3 − t) + δi − 1

γi(t3 − s) + δi − 1
≤ 1
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and also

Gi(t, s)

Gi(s, s)
=

Gi1(t, s)

Gi1(s, s)
=

γi(t3 − t) + δi − 1

γi(t3 − s) + δi − 1
≥ δi − 1

γi(t3 − t1) + δi − 1
.

Case 2. For t1 ≤ t ≤ s ≤ t2 < t3,

Gi(t, s)

Gi(s, s)
=

Gi2(t, s)

Gi2(s, s)
=

αi(t− t1) + βi
αi(s− t1) + βi

≤ 1

and also
Gi(t, s)

Gi(s, s)
=

Gi2(t, s)

Gi2(s, s)
=

αi(t− t1) + βi
αi(s− t1) + βi

≥ βi
αi(t3 − t1) + βi

.

Case 3. For t1 < t ≤ t2 ≤ s ≤ t3,

Gi(t, s)

Gi(s, s)
=

Gi3(t, s)

Gi3(s, s)
=

αi(t− t1) + βi
αi(s− t1) + βi

≤ 1

and also
Gi(t, s)

Gi(s, s)
=

Gi3(t, s)

Gi3(s, s)
=

αi(t− t1) + βi
αi(s− t1) + βi

≥ βi
αi(t3 − t1) + βi

.

Case 4. For t1 < t2 ≤ s ≤ t ≤ t3,

Gi(t, s)

Gi(s, s)
=

Gi4(t, s)

Gi4(s, s)
=

[αi(s− t1) + βi][γi(t3 − t) + δi] + αi(t− s)

[αi(s− t1) + βi][γi(t3 − s) + δi]

≤ γi(t3 − s) + δi
γi(t3 − s) + δi

= 1

and also

Gi(t, s)

Gi(s, s)
=

Gi4(t, s)

Gi4(s, s)
=

[αi(s− t1) + βi][γi(t3 − t) + δi] + αi(t− s)

[αi(s− t1) + βi][γi(t3 − s) + δi]

≥ δi − 1

γi(t3 − t1) + δi − 1
.

Similarly, we can easily establish the inequality, when the Green’s function Gi(t, s) =
Gi5(t, s) and Gi(t, s) = Gi6(t, s) as in case 3 and case 1 respectively. Hence the inequality
(6). �

Lemma 2.4. Assume that the condition (A3) is satisfied. Then, for 1 ≤ i ≤ n, the
Green’s function Gi(t, s) in (5) satisfies the following inequality,

Gi(t, s) ≥ kGi(s, s), for all (t, s) ∈ [t1, t3]× [t1, t3],

where k = min{k1, k2, · · ·, kn}.

We note that an n-tuple (y1(t), y2(t), · · ·, yn(t)) is a solution of the boundary value
problem (1)-(2) if and only if

y1(t) =λ1

∫ t3

t1

G1(t, s1)p1(s1)f1

(
λ2

∫ t3

t1

G2(s1, s2)p2(s2) · ··

fn−1

(
λn

∫ t3

t1

Gn(sn−1, sn)pn(sn)fn(y1(sn))dsn

)
· · · ds2

)
ds1, t ∈ [t1, t3],

yi(t) = λi

∫ t3

t1

Gi(t, s)pi(s)fi(yi+1(s))ds, 2 ≤ i ≤ n, t ∈ [t1, t3],
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where

yn+1(t) = y1(t), t ∈ [t1, t3].

To determine the eigenvalues for which the boundary value problem (1)-(2) has at least
one positive solution, we will employ the following Guo–Krasnosel’skii fixed point theorem.

Theorem 2.1. Let X be a Banach Space, κ ⊆ X be a cone and suppose that Ω1,Ω2 are
open subsets of X with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Suppose further that T : κ ∩ (Ω2\Ω1) → κ is
completely continuous operator such that either

(i) ∥Tu∥ ≤ ∥u∥, u ∈ κ ∩ ∂Ω1 and ∥Tu∥ ≥ ∥u∥, u ∈ κ ∩ ∂Ω2, or
(ii) ∥Tu∥ ≥ ∥u∥, u ∈ κ ∩ ∂Ω1 and ∥Tu∥ ≤ ∥u∥, u ∈ κ ∩ ∂Ω2 holds.

Then T has a fixed point in κ ∩ (Ω2\Ω1).

3. Positive Solutions in a Cone

In this section, we establish criteria to determine the eigenvalues for which the boundary
value problem (1)-(2) has at least one positive solution in a cone.

For our construction, let B = {x | x ∈ C[t1, t3]} be a Banach space with the norm

∥x∥ = sup
t∈[t1,t3]

|x(t)|.

Define a cone P ⊂ B by

P =
{
x ∈ B | x(t) ≥ 0 on [t1, t3] and min

t∈[t1,t3]
x(t) ≥ k∥x∥

}
,

where k is given in Lemma 2.4.
Now, we define an integral operator T : P → B, for y1 ∈ P , by

Ty1(t) =λ1

∫ t3

t1

G1(t, s1)p1(s1)f1

(
λ2

∫ t3

t1

G2(s1, s2)p2(s2) · ··

fn−1

(
λn

∫ t3

t1

Gn(sn−1, sn)pn(sn)fn(y1(sn))dsn

)
· · · ds2

)
ds1.

(7)

Notice from (A1), (A2) and Lemma 2.2 that, for y1 ∈ P , Ty1(t) ≥ 0 on [t1, t3]. Also, for
y1 ∈ P , we have from Lemma 2.3 that

Ty1(t) ≤ λ1

∫ t3

t1

G1(s1, s1)p1(s1)f1

(
λ2

∫ t3

t1

G2(s1, s2)p2(s2) · ··

fn−1

(
λn

∫ t3

t1

Gn(sn−1, sn)pn(sn)fn(y1(sn))dsn

)
· · · ds2

)
ds1

so that

∥Ty1∥ ≤ λ1

∫ t3

t1

G1(s1, s1)p1(s1)f1

(
λ2

∫ t3

t1

G2(s1, s2)p2(s2) · ··

fn−1

(
λn

∫ t3

t1

Gn(sn−1, sn)pn(sn)fn(y1(sn))dsn

)
· · · ds2

)
ds1.

(8)
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Next, if y1 ∈ P , we have from Lemma 2.4 and (8) that

min
t∈[t1,t3]

Ty1(t) = min
t∈[t1,t3]

{
λ1

∫ t3

t1

G1(t, s1)p1(s1)f1

(
λ2

∫ t3

t1

G2(s1, s2)p2(s2) · ··

fn−1

(
λn

∫ t3

t1

Gn(sn−1, sn)pn(sn)fn(y1(sn))dsn

)
· · · ds2

)
ds1

}
≥ λ1k

∫ t3

t1

G1(s1, s1)p1(s1)f1

(
λ2

∫ t3

t1

G2(s1, s2)p2(s2) · ··

fn−1

(
λn

∫ t3

t1

Gn(sn−1, sn)pn(sn)fn(y1(sn))dsn

)
· · · ds2

)
ds1

≥ k∥Ty1∥.

Hence, Ty1 ∈ P and so T : P → P . Further, the operator T is completely continuous
operator by an application of the Ascoli-Arzela Theorem.

Now, we seek suitable fixed points of T belonging to the cone P . For our first result,
define positive numbers M1 and M2 by

M1 = max
1≤i≤n

{[
k2

∫ t3

t1

Gi(s, s)pi(s)dsfi∞

]−1
}

and

M2 = min
1≤i≤n

{[∫ t3

t1

Gi(s, s)pi(s)dsfi0

]−1
}
.

Theorem 3.1. Assume that the conditions (A1)-(A4) are satisfied. Then, for each λ1, λ2, ··
·, λn satisfying

M1 < λj < M2, 1 ≤ j ≤ n, (9)

there exists an n-tuple (y1, y2, · · ·, yn) satisfying (1)-(2) such that yj(t) > 0, 1 ≤ j ≤ n, on
(t1, t3).

Proof. Let λj , 1 ≤ j ≤ n, be given as in (9). Now, let ϵ > 0 be chosen such that

max
1≤i≤n

{[
k2

∫ t3

t1

Gi(s, s)pi(s)ds(fi∞ − ϵ)

]−1
}

≤ min
1≤j≤n

λj

and

max
1≤j≤n

λj ≤ min
1≤i≤n

{[∫ t3

t1

Gi(s, s)pi(s)ds(fi0 + ϵ)

]−1
}
.

We seek fixed points of the completely continuous operator T : P → P defined by (7).
Now, from the definitions of fi0, 1 ≤ i ≤ n, there exists an H1 > 0 such that, for each
1 ≤ i ≤ n,

fi(x) ≤ (fi0 + ϵ)x, 0 < x ≤ H1.
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Let y1 ∈ P with ∥y1∥ = H1. We first have from Lemma 2.3 and the choice of ϵ, for
t1 ≤ sn−1 ≤ t3,

λn

∫ t3

t1

Gn(sn−1, sn)pn(sn)fn(y1(sn))dsn ≤ λn

∫ t3

t1

Gn(sn, sn)pn(sn)fn(y1(sn))dsn

≤ λn

∫ t3

t1

Gn(sn, sn)pn(sn)(fn0 + ϵ)y1(sn)dsn

≤ λn

∫ t3

t1

Gn(sn, sn)pn(sn)dsn(fn0 + ϵ)∥y1∥

≤ ∥y1∥ = H1.

It follows in a similar manner from Lemma 2.3 and the choice of ϵ that, for t1 ≤ sn−2 ≤ t3,

λn−1

∫ t3

t1

Gn−1(sn−2, sn−1)pn−1(sn−1)

fn−1

(
λn

∫ t3

t1

Gn(sn−1, sn)pn(sn)fn(y1(sn))dsn

)
dsn−1

≤ λn−1

∫ t3

t1

Gn−1(sn−1, sn−1)pn−1(sn−1)dsn−1(fn−1,0 + ϵ)H1

≤ H1.

Continuing with this bootstrapping argument, we have, for t1 ≤ t ≤ t3,

λ1

∫ t3

t1

G1(t, s1)p1(s1)f1

(
λ2

∫ t3

t1

G2(s1, s2)p2(s2) · · · fn(y1(sn))dsn · · · ds2
)
ds1 ≤ H1,

so that, for t1 ≤ t ≤ t3,

Ty1(t) ≤ H1.

Hence, ∥Ty1∥ ≤ H1 = ∥y1∥. If we set

Ω1 = {x ∈ B | ∥x∥ < H1},
then

∥Ty1∥ ≤ ∥y1∥, for y1 ∈ P ∩ ∂Ω1. (10)

Next, from the definitions of fi∞, 1 ≤ i ≤ n, there exists H2 > 0 such that, for each
1 ≤ i ≤ n,

fi(x) ≥ (fi∞ − ϵ)x, x ≥ H2.

Let

H2 = max
{
2H1,

H2

k

}
.

Choose y1 ∈ P and ∥y1∥ = H2. Then,

min
t∈[t1,t3]

y1(t) ≥ k∥y1∥ ≥ H2.

From Lemma 2.4 and choice of ϵ, for t1 ≤ sn−1 ≤ t3, we have that

λn

∫ t3

t1

Gn(sn−1, sn)pn(sn)fn(y1(sn))dsn ≥ kλn

∫ t3

t1

Gn(sn, sn)pn(sn)(fn∞ − ϵ)y1(sn)dsn

≥ k2λn

∫ t3

t1

Gn(sn, sn)pn(sn)dsn(fn∞ − ϵ)∥y1∥

≥ ∥y1∥ = H2.
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It follows in a similar manner from Lemma 2.4 and choice of ϵ, for t1 ≤ sn−2 ≤ t3,

λn−1

∫ t3

t1

Gn−1(sn−2, sn−1)pn−1(sn−1)

fn−1

(
λn

∫ t3

t1

Gn(sn−1, sn)pn(sn)fn(y1(sn))dsn

)
dsn−1

≥ kλn−1

∫ t3

t1

Gn−1(sn−1, sn−1)pn−1(sn−1)dsn−1(fn−1,∞ − ϵ)H2

≥ k2λn−1

∫ t3

t1

Gn−1(sn−1, sn−1)pn−1(sn−1)dsn−1(fn−1,∞ − ϵ)H2

≥ H2.

Again, using a bootstrapping argument, we have

λ1

∫ t3

t1

G1(t, s1)p1(s1)f1

(
λ2

∫ t3

t1

G2(s1, s2)p2(s2) · · · fn(y1(sn))dsn · · · ds2
)
ds1 ≥ H2,

so that

Ty1(t) ≥ H2 = ∥y1∥.
Hence, ∥Ty1∥ ≥ ∥y1∥. So, if we set

Ω2 = {x ∈ B | ∥x∥ < H2},
then

∥Ty1∥ ≥ ∥y1∥, for y1 ∈ P ∩ ∂Ω2. (11)

Applying Theorem 2.1 to (10) and (11), we obtain that T has a fixed point y1 ∈
P ∩ (Ω2\Ω1). As such, setting yn+1 = y1, we obtain a positive solution (y1, y2, · · ·, yn) of
(1)-(2) given iteratively by

yj(t) = λj

∫ t3

t1

Gj(t, s)pj(s)fj(yj+1(s))ds, j = n, n− 1, · · ·, 1.

The proof is completed. �

Prior to our next result, we define the positive numbers M3 and M4 by

M3 = max
1≤i≤n

{[
k2

∫ t3

t1

Gi(s, s)pi(s)dsfi0

]−1
}

and

M4 = min
1≤i≤n

{[∫ t3

t1

Gi(s, s)pi(s)dsfi∞

]−1
}
.

Theorem 3.2. Assume that the conditions (A1)-(A4) are satisfied. Then, for each λ1, λ2, ··
·, λn satisfying

M3 < λj < M4, 1 ≤ j ≤ n, (12)

there exists an n-tuple (y1, y2, · · ·, yn) satisfying (1)-(2) such that yj(t) > 0, 1 ≤ j ≤ n, on
(t1, t3).

Proof. Let λj , 1 ≤ j ≤ n be given as in (12). Now, let ϵ > 0 be chosen such that

max
1≤i≤n

{[
k2

∫ t3

t1

Gi(s, s)pi(s)ds(fi0 − ϵ)

]−1
}

≤ min
1≤j≤n

λj
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and

max
1≤j≤n

λj ≤ min
1≤i≤n

{[∫ t3

t1

Gi(s, s)pi(s)ds(fi∞ + ϵ)

]−1
}
.

Let T be the cone preserving, completely continuous operator that was defined by (7).
From the definitions of fi0, 1 ≤ i ≤ n, there exists H3 > 0 such that, for each 1 ≤ i ≤ n,

fi(x) ≥ (fi0 − ϵ)x, 0 < x ≤ H3.

Also, from the definitions of fi0, it follows that fi0(0) = 0, 1 ≤ i ≤ n, and so there exist
0 < Kn < Kn−1 < · · · < K2 < H3 such that

λifi(t) ≤
Ki−1∫ t3

t1
Gi(s, s)pi(s)ds

, t ∈ [0,Ki], 3 ≤ i ≤ n,

and

λ2f2(t) ≤
H3∫ t3

t1
G2(s, s)p2(s)ds

, t ∈ [0,K2].

Choose y1 ∈ P with ∥y1∥ = Kn. Then, we have

λn

∫ t3

t1

Gn(sn−1, sn)pn(sn)fn(y1(sn))dsn ≤ λn

∫ t3

t1

Gn(sn, sn)pn(sn)fn(y1(sn))dsn

≤
∫ t3
t1

Gn(sn, sn)pn(sn)Kn−1dsn∫ t3
t1

Gn(sn, sn)pn(sn)dsn

= Kn−1.

Continuing with this bootstrapping argument, it follows that

λ2

∫ t3

t1

G2(s1, s2)p2(s2)f2

(
λ3

∫ t3

t1

G3(s2, s3)p3(s3) · · · fn(y1(sn))dsn · · · ds3
)
ds2 ≤ H3.

Then,

Ty1(t) = λ1

∫ t3

t1

G1(t, s1)p1(s1)f1

(
λ2

∫ t3

t1

G2(s1, s2)p2(s2) · · · fn(y1(sn))dsn · · · ds2
)
ds1

≥ k2λ1

∫ t3

t1

G1(s1, s1)p1(s1)(f1,0 − ϵ)∥y1∥ds1

≥ ∥y1∥.

So, ∥Ty1∥ ≥ ∥y1∥. If we put

Ω3 = {x ∈ B | ∥x∥ < Kn},
then

∥Ty1∥ ≥ ∥y1∥, for y1 ∈ P ∩ ∂Ω3. (13)

Since each fi∞ is assumed to be a positive real number, it follows that fi, 1 ≤ i ≤ n, is
unbounded at ∞.

For each 1 ≤ i ≤ n, set

f∗
i (x) = sup

0≤s≤x
fi(s).

Then, it is straightforward that, for each 1 ≤ i ≤ n, f∗
i is a nondecreasing real-valued

function, fi ≤ f∗
i and

lim
x→∞

f∗
i (x)

x
= fi∞.
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Next, by definition of fi∞, 1 ≤ i ≤ n, there exists H4 > 0 such that, for each 1 ≤ i ≤ n,

f∗
i (x) ≤ (fi∞ + ϵ)x, x ≥ H4.

It follows that there exists H4 > max{2H3, H4} such that, for each 1 ≤ i ≤ n,

f∗
i (x) ≤ f∗

i (H4), 0 < x ≤ H4.

Choose y1 ∈ P with ∥y1∥ = H4. Then, using the usual bootstrapping argument, we
have

Ty1(t) = λ1

∫ t3

t1

G1(t, s1)p1(s1)f1(λ2 · ··)ds1

≤ λ1

∫ t3

t1

G1(t, s1)p1(s1)f
∗
1 (λ2 · ··)ds1

≤ λ1

∫ t3

t1

G1(s1, s1)p1(s1)f
∗
1 (H4)ds1

≤ λ1

∫ t3

t1

G1(s1, s1)p1(s1)ds1(f1∞ + ϵ)H4

≤ H4 = ∥y1∥.

Hence, ∥Ty1∥ ≤ ∥y1∥. So, if we let

Ω4 = {x ∈ B | ∥x∥ < H4},

then

∥Ty1∥ ≤ ∥y1∥, for y1 ∈ P ∩ ∂Ω4. (14)

Applying Theorem 2.1 to (13) and (14), we obtain that T has a fixed point y1 ∈
P ∩ (Ω4\Ω3), which in turn with yn+1 = y1, yields an n-tuple (y1, y2, · · ·, yn) satisfying
(1)-(2) for the chosen values of λi, 1 ≤ i ≤ n. The proof is completed. �

Example 3.1. Let us consider an example to illustrate the above result. Take n = 3, t1 =
0, t2 = 1

2 , t3 = 1, α1 = 2, β1 = 1, γ1 = 4, δ1 = 3, α2 = 1, β2 = 2, γ2 = 3, δ2 = 4, α3 = 3, β3 =
1, γ3 = 4, δ3 = 2, p1(t) = p2(t) = p3(t) = 1 and

f1(y2) = y2(800− 795.5e−y2)(900− 899.5e−2y2),

f2(y3) = y3(1400− 1398.5e−3y3)(600− 596.5e−y3),

f3(y1) = y1(2000− 1997.5e−2y1)(260− 258.5e−4y1).

The Green’s functions Gi(t, s), for i = 1, 2, 3, in Lemma 2.1 is

Gi(t, s) =



Gi(t,s)

t∈[0, 1
2
]
=


Gi1(t, s), 0 ≤ s ≤ t ≤ 1

2 < 1,
Gi2(t, s), 0 ≤ t ≤ s ≤ 1

2 < 1,
Gi3(t, s), 0 < t ≤ 1

2 ≤ s ≤ 1,

Gi(t,s)

t∈[ 1
2
,1]

=


Gi4(t, s), 0 < 1

2 ≤ s ≤ t ≤ 1,
Gi5(t, s), 0 < 1

2 ≤ t ≤ s ≤ 1,
Gi6(t, s), 0 ≤ s ≤ 1

2 ≤ t < 1,
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where

G11(t, s) =
1

16
[2s+ 1][6− 4t], G12(t, s) =

1

16
[2t+ 1][6− 4s],

G13(t, s) =
1

16
[2t+ 1][7− 4s], G14(t, s) =

1

16
[(2s+ 1)(7− 4t) + 2(t− s)],

G15(t, s) =
1

16
[2t+ 1][7− 4s], G16(t, s) =

1

16
[2s+ 1][6− 4t],

G21(t, s) =
1

12
[s+ 2][6− 3t], G22(t, s) =

1

12
[t+ 2][6− 3s],

G23(t, s) =
1

12
[t+ 2][7− 3s], G24(t, s) =

1

12
[(s+ 2)(7− 3t) + t− s],

G25(t, s) =
1

12
[t+ 2][7− 3s], G26(t, s) =

1

12
[s+ 2][6− 3t],

G31(t, s) =
1

19
[3s+ 1][5− 4t], G32(t, s) =

1

19
[3t+ 1][5− 4s],

G33(t, s) =
1

19
[3t+ 1][6− 4s], G34(t, s) =

1

19
[(3s+ 1)(6− 4t) + 3(t− s)],

G35(t, s) =
1

19
[3t+ 1][6− 4s], G36(t, s) =

1

19
[3s+ 1][5− 4t].

From Lemma 2.4, we get k = 1
5 . We found that

f10 = 2.25, f20 = 5.25, f30 = 3.75, f1∞ = 720000, f2∞ = 840000, f3∞ = 520000,

M1 = max{0.00001129943503, 0.00002886002886, 0.00011242603},
and

M2 = min{0.8284789644, 0.184704184, 0.6235897436}.
Employing Theorem 3.1, we get an eigenvalue interval 0.00011242603 < λi < 0.184704184,
i = 1, 2, 3, for which the boundary value problem (1)-(2) has a positive solution.

4. Conclusion

We derived sufficient conditions for the existence of positive solutions for the iterative
system of second order differential equations satisfying the general three-point boundary
conditions. We determine the eigenvalue intervals of the parameters for which the three-
point boundary value problems possess a positive solution.

Acknowledgement: The authors thank the referees for their valuable suggestions.
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