CERTAIN CLASS OF HARMONIC MAPPINGS RELATED TO STARLIKE FUNCTIONS

YASEMIN KAHRAMANER ${ }^{1} \S$

Abstract

Let S^{*} be the class of starlike functions and let S_{H} be the class of harmonic mappings in the plane. In this paper we investigate harmonic mapping related to the starlike functions.

Keywords: Harmonic mappings, Distortion theorem, Growth theorem, Coefficient inequality.

AMS Subject Classification: Primary 30C45, Secondary 30C55.

1. Introduction

Let Ω be the family of functions $\phi(z)$ regular in the open unit disc $\mathbb{D}=\{z \in \mathbb{C} \| z \mid<1\}$ and satisfying the conditions $\phi(0)=0, \phi(z)<1$ for every $z \in \mathbb{D}$.
Next, for arbitrary fixed numbers $A, B,-1 \leq B<A \leq 1$, we denote by $P(A, B)$, the family of functions $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$ regular in \mathbb{D} and such that $p(z)$ is in $P(A, B)$ if and only if

$$
\begin{equation*}
p(z)=\frac{1+A \phi(z)}{1+B \phi(z)} \tag{1}
\end{equation*}
$$

for some function $\phi(z) \in \Omega$ and every $z \in \mathbb{D}$. (Janowski) [5].
Moreover, let $S^{*}(A, B)$ denote the family of functions $h(z)=z+a_{2} z^{2}+\ldots$ regular in \mathbb{D} and such that $h(z)$ is in $S^{*}(A, B)$ if and only if

$$
\begin{equation*}
z \frac{h^{\prime}(z)}{h(z)}=\frac{1+A \phi(z)}{1+B \phi(z)} \tag{2}
\end{equation*}
$$

for some $\phi(z) \in \Omega$ and all $z \in \mathbb{D}$.
Let $F(z)=z+\alpha_{2} z^{2}+\alpha_{3} z^{3}+\ldots$ and $G(z)=z+\beta_{2} z^{2}+\beta_{3} z^{3}+\ldots$ be analytic functions in the open unit disc. If there exists a function $\phi(z) \in \Omega$ such that $F(z)=G(\phi(z))$ for all $z \in \mathbb{D}$, then we say that $F(z)$ is subordinated to $G(z)$ and we write $F(z) \prec G(z)$. Specially if $F(z)$ is univalent in \mathbb{D}, then $F(z) \prec G(z)$ if and only if $F(\mathbb{D}) \subset G(\mathbb{D})$, implies $F\left(\mathbb{D}_{r}\right) \subset G\left(\mathbb{D}_{r}\right)$, where $\mathbb{D}_{r}=\{z| | z \mid<r, 0<r<1\}$ (Subordination and Lindelof Principle [3]) Finally, a planar harmonic mapping in the open unit disc \mathbb{D} is a complex valued harmonic function f, which maps \mathbb{D} onto the some planar domain $f(\mathbb{D})$. Since \mathbb{D} is a simply connected

[^0]domain, the mapping f has a canonical decomposition $f=h(z)+\overline{g(z)}$, where $h(z)$ and $g(z)$ are analytic in \mathbb{D} and have the following power series expansions,
\[

$$
\begin{gathered}
h(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \\
g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}, z \in \mathbb{D}
\end{gathered}
$$
\]

where $a_{n}, b_{n} \in \mathbb{C}, n=0,1,2, \ldots$.
We call $h(z)$ the analytic part of f and $\overline{g(z)}$ co-analytic part of f, an elegant and complete treatment theory of harmonic mapping in given Duren's monography [2]. Lewy proved in 1936 that the harmonic mapping f is locally univalent in \mathbb{D} if and only if its jacobian $J_{f(z)}=\left|h^{\prime}(z)\right|^{2}-\left|g^{\prime}(z)\right|^{2} \neq 0$ in \mathbb{D}. When $J_{f}>0$ in \mathbb{D}, the harmonic function f is called sense-preserving. In view of this result, locally univalent harmonic mappings in the open unit disc are either sense-preserving if $\left|g^{\prime}(z)\right|<\left|h^{\prime}(z)\right|$ in \mathbb{D} or sense-reversing if $\left|h^{\prime}(z)\right|<\left|g^{\prime}(z)\right|$. Throughout this paper we will restrict ourselves to the study of sensepreserving if and only if $h^{\prime}(z)$ does not vanish in the unit disc \mathbb{D}, and the second dilatation $w(z)=\left(\frac{g^{\prime}(z)}{h^{\prime}(z)}\right)$ has the property $|w(z)|<1$ in \mathbb{D}.
The class of all sense-preserving harmonic mappings in the open unit disc \mathbb{D} with $a_{0}=$ $b_{0}=0$ and $a_{1}=1$ will be denoted by S_{H}. Thus S_{H} contains the standart class S of univalent functions.
The family of all mappings $f \in S_{H}$ with the additional property $g^{\prime}(0)=0$, i. e., $b_{1}=0$ is denoted by S_{H}^{0}. Thus it is clear that $S \subset S_{H}^{0} \subset S_{H}$ [Duren].
Now we consider the following class of harmonic mappings

$$
\begin{equation*}
S_{H S^{*}}(A, B)=\left\{f=h(z)+\overline{g(z)} \in S_{H} \left\lvert\, \frac{g^{\prime}(z)}{h^{\prime}(z)} \prec b_{1} \frac{1+A \phi(z)}{1+B \phi(z)}\right., h(z) \in S^{*}\right\} \tag{3}
\end{equation*}
$$

The main purpose of this paper is to investigate the class $S_{H S^{*}}(A, B)$. For this aim, we will need the following lemma and theorem.
Lemma 1.1. ([4]) Let $\phi(z)$ be regular in the open unit disc \mathbb{D} with $\phi(0)=0$ and $|\phi(z)|<1$. If $|\phi(z)|$ attains its maximum value on the circle $|z|=r$ at the point z_{1}, then we have $z_{1} \cdot \phi^{\prime}(z)=k \phi\left(z_{1}\right)$ for some $k \geq 1$.

Theorem 1.1. ([3]) Let $h(z)$ be an element of S^{*}, then

$$
\begin{aligned}
& \frac{r}{(1+r)^{2}} \leq|h(z)| \leq \frac{r}{(1-r)^{2}} \\
& \frac{1-r}{(1+r)^{3}} \leq\left|h^{\prime}(z)\right| \leq \frac{1+r}{(1-r)^{3}}
\end{aligned}
$$

2. Main Results

Theorem 2.1. Let $f=(h(z)+\overline{g(z)})$ be an element of $S_{H S^{*}}(A, B)$. If $h(z) \in S^{*}(A, B)$ and $\frac{g^{\prime}(z)}{b_{1} h^{\prime}(z)} \in P(A, B)$, then $\frac{g(z)}{b_{1} h(z)} \in P(A, B)$.
Proof. Since the linear transformation $\frac{1+A z}{1+B z}$ maps $|z|=r$ onto the disc with the centre

$$
C(r)=\left(\frac{1-A B r^{2}}{1-B^{2} r^{2}}, 0\right)
$$

and the radius $\rho(r)=\frac{(A-B) r}{1-B^{2} r^{2}}$ and using the subordination principle we can write

$$
\begin{gather*}
\frac{g^{\prime}(z)}{h^{\prime}(z)} \prec b_{1} \frac{1+A z}{1+B z} \tag{4}\\
\frac{1}{b_{1}} \frac{g^{\prime}(z)}{h^{\prime}(z)} \prec \frac{1+A z}{1+B z} \Rightarrow\left|\frac{1}{b_{1}} \frac{g^{\prime}(z)}{h^{\prime}(z)}-\frac{1-A B r^{2}}{1-B^{2} r^{2}}\right| \leq \frac{(A-B) r}{1-B^{2} r^{2}}
\end{gather*}
$$

thus

$$
\begin{equation*}
\left|\frac{g^{\prime}(z)}{h^{\prime}(z)}-\frac{b_{1}\left(1-A B r^{2}\right)}{1-B^{2} r^{2}}\right| \leq \frac{\left|b_{1}\right|(A-B) r}{1-B^{2} r^{2}} \tag{5}
\end{equation*}
$$

Therefore the inequality (4) shows that the values of $\frac{g^{\prime}(z)}{h^{\prime}(z)}$ are in the disc

$$
D_{r}\left(b_{1}\right)= \begin{cases}\left.\frac{g^{\prime}(z)}{h^{\prime}(z)}| | \frac{g^{\prime}(z)}{h^{\prime}(z)}-\frac{b_{1}(1-A B) r^{2}}{1-B^{2} r^{2}} \right\rvert\, \leq \frac{\left|b_{1}\right|(A-B) r}{1-B^{2} r^{2}}, & B \neq 0 ; \tag{6}\\ \frac{g^{\prime}(z)}{h^{\prime}(z)}| | \frac{g^{\prime}(z)}{h^{\prime}(z)}-b_{1}\left|\leq\left|b_{1}\right| A r,\right. & B=0 .\end{cases}
$$

Now we define a function $\phi(z)$ by

$$
\begin{equation*}
\frac{g(z)}{h(z)}=b_{1} \frac{1+A \phi(z)}{1+B \phi(z)} \tag{7}
\end{equation*}
$$

then $\phi(z)$ is analytic in \mathbb{D} and $\phi(0)=0$, on the other hand since $h(z) \in S^{*}(A, B)$ then

$$
D_{r}= \begin{cases}\left|z \frac{h^{\prime}(z)}{h(z)}-\frac{1-A B r^{2}}{1-B^{2} r^{2}}\right| \leq \frac{(A-B) r}{1-B^{2} r^{2}}, & B \neq 0 ; \tag{8}\\ \left|z \frac{h^{\prime}(z)}{h(z)}-1\right| \leq A r, & B=0\end{cases}
$$

for all $|z|=r<1$. Thus for a point z_{1} on the bound of this disc we have

$$
\begin{gathered}
z_{1} \frac{h^{\prime}(z)}{h(z)}-\frac{1-A B r^{2}}{1-B^{2} r^{2}}=\frac{(A-B) r}{1-B^{2} r^{2}} e^{i \theta}, B \neq 0 \\
z_{1} \frac{h^{\prime}(z)}{h(z)}-1=A r e^{i \theta}, B=0 \\
\frac{h\left(z_{1}\right)}{z_{1} h^{\prime}\left(z_{1}\right)}=\frac{1-B^{2} r^{2}}{\left(1-A B r^{2}\right)+(A-B) r e^{i \theta}} \in \partial \mathbb{D}_{r}, B \neq 0 \\
\frac{h\left(z_{1}\right)}{z_{1} h^{\prime}\left(z_{1}\right)}=\frac{1}{1+A r e^{i \theta}} \in \partial \mathbb{D}_{r}, B=0
\end{gathered}
$$

where $\partial \mathbb{D}_{r}$ is the boundary of the disc \mathbb{D}_{r}. Therefore by Jack's Lemma $z_{1} \phi^{\prime}\left(z_{1}\right)=k \phi\left(z_{1}\right)=$ $k \phi\left(z_{1}\right)$ and $k \geq 1$, we have that

$$
w\left(z_{1}\right)=\frac{g^{\prime}\left(z_{1}\right)}{b_{1} h^{\prime}\left(z_{1}\right)}= \begin{cases}\frac{1+A \phi\left(z_{1}\right)}{1+B \phi\left(z_{1}\right)}+\frac{(A-B) k \phi\left(z_{1}\right)}{\left(1+B \phi\left(z_{1}\right)\right)^{2}} \frac{1-B^{2} r^{2}}{\left(1-A B r^{2}\right)+(A-B) r e^{i \theta}} \notin w\left(\mathbb{D}_{r}\left(b_{1}\right)\right), & B \neq 0 \tag{9}\\ 1+A \phi\left(z_{1}\right)+A k \phi\left(z_{1}\right) \frac{1}{1+A r e^{i \theta}} \notin w\left(\mathbb{D}_{r}\left(b_{1}\right)\right), & B=0\end{cases}
$$

because $\left|\phi\left(z_{1}\right)\right|=1$ and $k \geq 1$. But this is a contradiction to the condition

$$
\frac{g^{\prime}(z)}{h^{\prime}(z)} \prec b_{1} \frac{1+A z}{1+B z}
$$

and so we have $|\phi(z)|<1$ for all $z \in \mathbb{D}$.
Lemma 2.1. Let $f=h(z)+\overline{g(z)}$ be an element of S_{H}, then for a function defined by

$$
w(z)=\frac{g^{\prime}(z)}{h^{\prime}(z)}
$$

we have

$$
\begin{gather*}
\frac{\left|b_{1}\right|-r}{1-\left|b_{1}\right| r} \leq|w(z)| \leq \frac{\left|b_{1}\right|+r}{1+\left|b_{1}\right| r} \tag{10}\\
\frac{\left(1-r^{2}\right)\left(1-\left|b_{1}\right|^{2}\right)}{\left(1+\left|b_{1}\right| r\right)^{2}} \leq\left(1-|w(z)|^{2}\right) \leq \frac{\left(1-r^{2}\right)\left(1-\left|b_{1}\right|^{2}\right)}{\left(1-\left|b_{1}\right| r\right)^{2}} \tag{11}
\end{gather*}
$$

and

$$
\begin{align*}
& \frac{(1-r)\left(1+\left|b_{1}\right|\right)}{\left(1-\left|b_{1}\right| r\right)} \leq(1+|w(z)|) \leq \frac{(1+r)\left(1+\left|b_{1}\right|\right)}{\left(1+\left|b_{1}\right| r\right)} \tag{12}\\
& \frac{(1-r)\left(1-\left|b_{1}\right|\right)}{\left(1+\left|b_{1}\right| r\right)} \leq(1-|w(z)|) \leq \frac{(1+r)\left(1-\left|b_{1}\right|\right)}{\left(1-\left|b_{1}\right| r\right)} \tag{13}
\end{align*}
$$

for all $|z|=r<1$
Proof. Since $f=h(z)+\overline{g(z)}$ be an element of S_{H}, it follows that
$w(z)=\frac{g^{\prime}(z)}{h^{\prime}(z)}=\frac{b_{1}+2 b_{2} z+3 b_{3} z^{2}+\ldots}{1+2 a_{2} z+3 a_{3} z^{2}+\ldots} \Rightarrow w(0)=b_{1},|w(z)|<1$,
so the function

$$
\phi(z)=\frac{w(z)-w(0)}{1-\overline{w(0)} w(z)}=\frac{w(z)-b_{1}}{1-\overline{b_{1}} w(z)}
$$

satisfies the conditions of Schwarz lemma. Therefore we have
$w(z)=\frac{b_{1}+\phi(z)}{1+\overline{b_{1}} \phi(z)}$ if and only if $w(z) \prec \frac{b_{1}+z}{1+\overline{b_{1}} z}$.
On the other hand, the linear transformation $\left(\frac{b_{1}+z}{1+\overline{b_{1}} z}\right)$ maps $|z|=r$ onto the disc with the center

$$
C(r)=\left(\frac{\left(1-r^{2}\right) \operatorname{Re}\left(b_{1}\right)}{1-\left|b_{1}\right|^{2} r^{2}}, \frac{\left(1-r^{2}\right) \operatorname{Im}\left(b_{1}\right)}{1-\left|b_{1}\right|^{2} r^{2}}\right)
$$

with the radius

$$
\begin{gathered}
\rho(r)=\frac{\left(1-\left|b_{1}\right|^{2}\right) r}{1-\left|b_{1}\right|^{2} r^{2}} \\
\left|w(z)-\frac{b_{1}\left(1-r^{2}\right)}{1-\left|b_{1}\right|^{2}}\right| \leq \frac{\left(1-\left|b_{1}\right|^{2}\right) r}{1-\left|b_{1}\right|^{2} r^{2}}
\end{gathered}
$$

which gives (11), (12) and (13).
Theorem 2.2. Let $f=(h(z)+\overline{g(z)})$ be an element of $S_{H S^{*}}(A, B)$, then

$$
\begin{align*}
& \left|b_{1}\right| \frac{1-A r}{1-B r} \frac{r}{(1+r)^{2}} \leq|g(z)| \leq\left|b_{1}\right| \frac{1+A r}{1+B r} \frac{r}{(1-r)^{2}} \tag{14}\\
& \left|b_{1}\right| \frac{1-A r}{1-B r} \frac{(1-r)}{(1+r)^{3}} \leq\left|g^{\prime}(z)\right| \leq\left|b_{1}\right| \frac{1+A r}{1+B r} \frac{(1+r)}{(1-r)^{3}} \tag{15}
\end{align*}
$$

Proof. Since $f=(h(z)+\overline{g(z)})$ be an element of $S_{H S^{*}}(A, B)$ then we have

$$
\begin{equation*}
\left|\frac{g^{\prime}(z)}{h^{\prime}(z)}-b_{1} \frac{1-A B r^{2}}{1-B^{2} r^{2}}\right| \leq \frac{\left|b_{1}\right|(A-B) r}{1-B^{2} r^{2}} \tag{16}
\end{equation*}
$$

and using Theorem 2.1, then we write

$$
\begin{equation*}
\left|\frac{g(z)}{h(z)}-b_{1} \frac{1-A B r^{2}}{1-B^{2} r^{2}}\right| \leq \frac{\left|b_{1}\right|(A-B) r}{1-B^{2} r^{2}} \tag{17}
\end{equation*}
$$

After the simple calculations from (16) and (17) we get

$$
\begin{align*}
& \frac{\left|b_{1}\right|(1-A r)}{(1-B r)} \leq\left|\frac{g^{\prime}(z)}{h^{\prime}(z)}\right| \leq \frac{\left|b_{1}\right|(1+A r)}{(1+B r)} \tag{18}\\
& \frac{\left|b_{1}\right|(1-A r)}{(1-B r)} \leq\left|\frac{g(z)}{h(z)}\right| \leq \frac{\left|b_{1}\right|(1+A r)}{(1+B r)} \tag{19}
\end{align*}
$$

Considering (18), (19) and Theorem 1.1 together, we obtain (14) and (15).
Corollary 2.1. Let $f=(h(z)+\overline{g(z)})$ be an element of $S_{H S^{*}}(A, B)$, then

$$
\begin{equation*}
\frac{(1-r)^{2}}{(1+r)^{6}} \frac{(1+B r)^{2}-\left|b_{1}\right|^{2}(1+A r)^{2}}{(1+B r)^{2}} \leq J_{f} \leq \frac{(1+r)^{2}}{(1-r)^{6}} \frac{(1+B r)^{2}-\left|b_{1}\right|^{2}(1-A r)^{2}}{(1-B r)^{2}} \tag{20}
\end{equation*}
$$

Proof. Since

$$
\begin{gathered}
J_{f}=\left|h^{\prime}(z)\right|^{2}-\left|g^{\prime}(z)\right|^{2}=\left|h^{\prime}(z)\right|^{2}-\left|h^{\prime}(z)\right|^{2}|w(z)|^{2}=\left|h^{\prime}(z)\right|^{2}\left(1-|w(z)|^{2}\right), \\
|w(z)|=\left|\frac{g^{\prime}(z)}{h^{\prime}(z)}\right|,
\end{gathered}
$$

using Theorem 2.2 and Lemma 2.1 we get (20).
Corollary 2.2. Let $f=(h(z)+\overline{g(z)})$ be an element of $S_{H S^{*}}(A, B)$, then

$$
\begin{gathered}
\frac{1}{(B-1)^{3}}\left[\frac{(B-1)\left(-B\left(A\left|b_{1}\right|+\left|b_{1}\right|+2\right)+(3 A-1)\left|b_{1}\right|+B^{2}+1\right)}{1+r}\right. \\
\left.-\frac{(B-1)^{2}\left(-A\left|b_{1}\right|+B+\left|b_{1}\right|-1\right)}{(1+r)^{2}}-(B+1)\left|b_{1}\right|(A-B) \log (r+1)+(B+1)\left|b_{1}\right|(A-B) \log (B r+1)\right] \\
\leq|f| \leq \\
+\frac{1}{(B-1)^{3}}\left[\frac{(B-1)\left(B\left(A\left|b_{1}\right|+\left|b_{1}\right|-2\right)-3 A\left|b_{1}\right|+B^{2}+\left|b_{1}\right|+1\right)}{r-1}\right. \\
\left.+\frac{(B-1)^{2}\left((A-1)\left|b_{1}\right|+B-1\right)}{(r-1)^{2}}-(B+1)\left|b_{1}\right|(A-B) \log (1-r)+(B+1)\left|b_{1}\right|(A-B) \log (1-B r)\right]
\end{gathered}
$$

Proof. Since

$$
\begin{aligned}
& \left(\left|h^{\prime}(z)\right|-\left|g^{\prime}(z)\right|\right)|d z| \leq|d f| \leq\left(\left|h^{\prime}(z)\right|+\left|g^{\prime}(z)\right|\right)|d z| \Rightarrow \\
& \left|h^{\prime}(z)\right|(1-|w(z)|)|d z| \leq|d f| \leq\left|h^{\prime}(z)\right|(1+|w(z)|)|d z|
\end{aligned}
$$

Using Theorem 1.1 and Lemma 2.1 we get

$$
\begin{equation*}
\frac{1-r}{(1+r)^{3}}\left(1-\left|b_{1}\right| \frac{1+A r}{1+B r}\right) d r \leq|d f| \leq \frac{1+r}{(1-r)^{3}}\left(1+\left|b_{1}\right| \frac{1-A r}{1-B r}\right) d r \tag{21}
\end{equation*}
$$

After integrating from (21), we get the result.
Theorem 2.3. Let $f=(h(z)+\overline{g(z)})$ be an element of $S_{H S^{*}}(A, B)$, then

$$
\begin{equation*}
\sum_{k=2}^{n}\left|b_{k}-b_{1} a_{k}\right|^{2} \leq\left|b_{1}\right|^{2}(A-B)^{2}+\sum_{k=2}^{n}\left|b_{1} A a_{k}-B b_{k}\right|^{2} \tag{22}
\end{equation*}
$$

Proof. Using Theorem 2.1, then we write

$$
\begin{gather*}
\frac{g(z)}{h(z)} \prec b_{1} \frac{1+A z}{1+B z} \Rightarrow \frac{g(z)}{h(z)}=b_{1} \frac{1+A \phi(z)}{1+B \phi(z)} \Rightarrow \\
\left(g(z)-b_{1} h(z)\right)=\left[b_{1} A h(z)-B g(z)\right] \phi(z) \Rightarrow \\
\sum_{k=2}^{n}\left(b_{k}-b_{1} a_{k}\right) z^{k}+\sum_{k=n+1}^{\infty} d_{k} z^{k}=\left[b_{1}(A-B) z+\sum_{k=2}^{n}\left(b_{1} A a_{k}-B b_{k}\right) z^{k}\right] \phi(z) \tag{23}
\end{gather*}
$$

The equality (23) can be written in the following form

$$
F(z)=G(z) \phi(z),|\phi(z)|<1
$$

Therefore we have

$$
|F(z)|^{2} \leq|G(z)|^{2}
$$

and

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F\left(r e^{i \theta}\right)\right|^{2} d \theta \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|G\left(r e^{i \theta}\right)\right|^{2} d \theta \tag{24}
\end{equation*}
$$

for each $r(0<r<1)$. Expressing (2.21) in terms of the coefficients in (2.20) we obtain the inequality

$$
\begin{equation*}
\sum_{k=2}^{n}\left|b_{k}-b_{1} a_{k}\right|^{2} r^{2 k}+\sum_{k=n+1}^{\infty}\left|d_{k}\right|^{2} r^{2 k} \leq\left|b_{1}\right|^{2}(A-B)^{2}+\sum_{k=2}^{n}\left|b_{1} A a_{k}-B b_{k}\right|^{2} r^{2 k} \tag{25}
\end{equation*}
$$

From letting $r \rightarrow 1$ in (25) we conclude that

$$
\sum_{k=2}^{n}\left|b_{k}-b_{1} a_{k}\right|^{2} \leq\left|b_{1}\right|^{2}(A-B)^{2}+\sum_{k=2}^{n}\left|b_{1} A a_{k}-B b_{k}\right|^{2}
$$

We note that the proof of this theorem is based on Clunie method [1].

References

[1] J. Clunie, On meromorphic functions, J. London Math. Soc. 34, (1959), $215-216$.
[2] P. Duren, Harmonic Mappings in the Plane, Vol. 156 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge UK, (2004).
[3] A. W. Goodman, Univalent Functions, Volume I and Volume II, Mariner publishing Company Inc. , (1983), Tampa Florida.
[4] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. 3(197), no 2, $469-471$.
[5] W. Janowski, Some extremal problems for certain families of analytic functions,I. Ann. Polon. Math. 28, (1973), $297-326$.

[^0]: ${ }^{1}$ Department of Mathematics, İstanbul Ticaret University, İstanbul, Turkey e-mail: ykahramaner@iticu.edu.tr
 § Submitted for GFTA'13, held in Işık University on October 12, 2013.
 TWMS Journal of Applied and Engineering Mathematics, Vol.4, No.1; © Işık University, Department of Mathematics 2014; all rights reserved.

