HARMONIC MAPPINGS RELATED TO CLOSE-TO-CONVEX FUNCTIONS OF COMPLEX ORDER b

YASAR POLATOG̃LU ${ }^{1}$ §

Abstract

Let $C C(b)$ be the class of functions close-to-convex functions of order b, and let S_{H} be the class of harmonic mappings in the plane. In the present paper we investigate harmonic mappings related to close-to-convex functions of complex order b.

Keywords: Convex and starlike functions of complex order b, Close-to-convex functions of complex order b, Harmonic mappings, Growth and distortion theorems.

AMS Subject Classification: Primary 30C45, Secondary 30C55.

1. Introduction

Let Ω be the family of functions $\phi(z)$ regular in the open unit disc $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}$ and satisfying the conditions $\phi(0)=0,|\phi(z)|<1$ for all $z \in \mathbb{D}$.

Next, denote by P the family of functions $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$ regular in \mathbb{D} and such that $p(z)$ is in P if and only if

$$
\begin{equation*}
p(z)=\frac{1+\phi(z)}{1-\phi(z)} \tag{1}
\end{equation*}
$$

for some function $\phi(z) \in \Omega$ and every $z \in \mathbb{D}$.
Moreover, let A be the class of functions in the open unit disc \mathbb{D} that are normalized with $h(0)=h^{\prime}(0)-1=0$, then a function $h(z) \in A$ is called convex on starlike if it maps \mathbb{D} into a convex or starlike region, respectively. Corresponding classes are denoted by \mathbb{C} and S^{*}. It is well known that $\mathbb{C} \subset S^{*}$, that both are subclasses of the univalent functions and have the following analytical representations

$$
\begin{equation*}
h(z) \in \mathbb{C} \text { if and only if } \operatorname{Re}\left(1+z \frac{h^{\prime \prime}(z)}{h^{\prime}(z)}\right)>0, z \in \mathbb{D}, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
h(z) \in S^{*} \text { if and only if } \operatorname{Re}\left(z \frac{h^{\prime}(z)}{h(z)}\right)>0, z \in \mathbb{D} . \tag{3}
\end{equation*}
$$

More on these classes can be found in [3]. Let $h(z)$ be an element of A. If there is a function $s(z)$ in \mathbb{C} and a real β such that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{h^{\prime}(z)}{e^{i \beta} s^{\prime}(z)}\right)>0, z \in \mathbb{D} \tag{4}
\end{equation*}
$$

[^0]then $h(z)$ is called a close-to-convex function in \mathbb{D}, and the class of such functions is denoted by $C C[3]$, and let $h(z) \in A, s(z) \in S^{*}$. If
\[

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{1}{b}\left(z \frac{h^{\prime}(z)}{s(z)}-1\right)\right)>0, z \in \mathbb{D} \tag{5}
\end{equation*}
$$

\]

then $h(z)$ is called the close-to-convex function of complex order $b, b \in \mathbb{C} 0$, the class of such functions is denoted by $C C(b)[5]$.

Further, let $h(z), g(z) \in A$. Then we say that $h(z)$ is subordinate to $g(z)$ and we write $h(z) \prec g(z)$. If there exists a function $\phi(z) \in \Omega$ such that $h(z)=g(\phi(z))$ for all $z \in \mathbb{D}$. Specially if $g(z)$ is univalent in \mathbb{D}, then $h(z) \prec g(z)$ if and only if $h(0)=g(0)$, $h(\mathbb{D}) \subset g(\mathbb{D})$, implies $h\left(\mathbb{D}_{r}\right) \subset g\left(\mathbb{D}_{r}\right)$, where $\mathbb{D}_{r}=\{z| | z \mid<r, 0<r<1\}$ (Subordination and Lindelof Principle [1]).

In the terms of subordination we have

$$
\begin{gather*}
P=\left\{p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n} \mid p(z) \text { regular in } \mathbb{D}, p(z) \prec \frac{1+z}{1-z}\right\} \tag{6}\\
S^{*}=\left\{h(z) \in A \left\lvert\, z \frac{h^{\prime}(z)}{h(z)} \prec \frac{1+z}{1-z}\right.\right\} \tag{7}\\
C=\left\{h(z) \in A \left\lvert\,\left(1+z \frac{h^{\prime \prime}(z)}{h^{\prime}(z)}\right) \prec \frac{1+z}{1-z}\right.\right\} \tag{8}
\end{gather*}
$$

and

$$
\begin{gather*}
C C=\left\{h(z), s(z) \in A \left\lvert\, \frac{h^{\prime}(z)}{e^{i \beta} s^{\prime}(z)} \prec \frac{1+z}{1-z}\right., s(z) \in C\right\} \tag{9}\\
C C(b)=\left\{h(z), s(z) \in A \left\lvert\, \operatorname{Re}\left(1+\frac{1}{b}\left(z \frac{h^{\prime}(z)}{s(z)}-1\right)\right)>0\right.,\left(1+\frac{1}{b}\left(z \frac{h^{\prime}(z)}{s(z)}-1\right)\right) \prec \frac{1+z}{1-z}\right. \\
\left.s(z) \in S^{*}, b \in C-\{0\}\right\} .
\end{gather*}
$$

Using Alexander Theorem the class $C C(b)$ can be written in the following form

$$
\begin{gathered}
C C(b)=\left\{h(z), s(z) \in A \left\lvert\, \operatorname{Re}\left(1+\frac{1}{b}\left(z \frac{h^{\prime}(z)}{s^{\prime}(z)}-1\right)\right)>0\right.,\left(1+\frac{1}{b}\left(z \frac{h^{\prime}(z)}{s^{\prime}(z)}-1\right)\right) \prec \frac{1+z}{1-z},\right. \\
s(z) \in C, b \in C-\{0\}\} .
\end{gathered}
$$

Finally, a planar harmonic mapping in the open unit disc \mathbb{D} is a complex-valued harmonic function f, which maps \mathbb{D} onto the some planar domain $f(\mathbb{D})$. Since \mathbb{D} is a simply connected domain, the mapping f has a canonical decomposition $f=h(z)+\overline{g(z)}$ where $h(z)$ and $g(z)$ are analytic in \mathbb{D} and have the following power series expansions $h(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}, z \in \mathbb{D}$.
where $a_{n}, b_{n} \in C, n=0,1,2,3, \ldots$ as usual we call $h(z)$ analytic part of f and $g(z)$ coanalytic part of f an elegant and complete account of the theory harmonic mapping in given Duren's monograph [2]. Lewy [2] proved in 1936 that the harmonic mapping f locally univalent in \mathbb{D} if and only if its jacobien $J_{f}=\left|h^{\prime}(z)\right|^{2}-\left|g^{\prime}(z)\right|^{2}$ is different from zero in \mathbb{D}. In view of this result, locally univalent harmonic mappings in the open unit disc are either sense-preserving if $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|$ in \mathbb{D} or sense-reserving if $\left|g^{\prime}(z)\right|>\left|h^{\prime}(z)\right|$ in \mathbb{D}. Throughout this paper we will restrict ourselves to the study of sense-preserving harmonic mappings. We also note that $f=h(z)+\overline{g(z)}$ is sense-preserving in \mathbb{D} if and only if $h^{\prime}(z)$ does not vanish in the unit disc \mathbb{D}, and the second dilatation $w(z)=\left(\frac{g^{\prime}(z)}{h^{\prime}(z)}\right)$
has the property $|w(z)|<1$ in \mathbb{D}.
The class of all sense-preserving harmonic mapppings of the open unit disc \mathbb{D} with $a_{0}=$ $b_{0}=0$ and $a_{1}=1$ will be denoted by S_{H}. Thus S_{H} contains the standard class S of univalent functions. The family of all mappings $f \in S_{H}$ with the additional property $g^{\prime}(0)=0$, i.e, $b_{1}=0$ is denoted by S_{H}^{0}. Thus it is clear that $S \subset S_{H}^{0} \subset S_{H}$. [2]. Now we consider the following class of harmonic mappings

$$
\begin{equation*}
S_{H C C}(b)=\left\{f=h(z)+\overline{g(z) \mid} \frac{g^{\prime}(z)}{h^{\prime}(z)} \prec b_{1} \frac{1+(2 b-1) z}{1-z}, b \in C-\{0\}, h(z) \in C\right\} \tag{10}
\end{equation*}
$$

The aim of this paper we need the following well known lemma and theorems.
Lemma 1.1. ([4]) Let $\phi(z)$ be regular in the open unit disc \mathbb{D}. Then if $|\phi(z)|$ attains its maximum value on the circle $|z|=r$ at the point z_{1}, one has $z_{1} \cdot \phi^{\prime}(z)=k \phi\left(z_{1}\right)$ for some $k \geq 1$.

Theorem 1.1. ([3]) Let $h(z)$ be an element of C, then

$$
\frac{r}{1+r} \leq|h(z)| \leq \frac{r}{1-r}
$$

and

$$
\frac{r}{(1+r)^{2}} \leq\left|h^{\prime}(z)\right| \leq \frac{r}{(1-r)^{2}}
$$

for all $|z|=r<1$.
Theorem 1.2. ([3]) If $h(z) \in C$ then

$$
\operatorname{Re} z \frac{h^{\prime}(z)}{h(z)}>\frac{1}{2} \Rightarrow z \frac{h^{\prime}(z)}{h(z)} \prec \frac{1}{1-z}
$$

2. Main Results

Theorem 2.1. Let $f=h(z)+\overline{g(z)}$ be an elemet of $S_{H C C(b)}$, then

$$
\frac{g(z)}{h(z)} \prec b_{1} \frac{1+(2 b-1) z}{1-z}, z \in \mathbb{D}
$$

Proof. Since $f=h(z)+\overline{g(z)} \in S_{H C C(b)}$, then we have

$$
\begin{gathered}
\frac{g^{\prime}(z)}{h^{\prime}(z)} \prec b_{1} \frac{1+(2 b-1) z}{1-z} \Rightarrow \operatorname{Re}\left[1+\frac{1}{b}\left(\frac{1}{b_{1}} \frac{g^{\prime}(z)}{h^{\prime}(z)}-1\right)\right]>0 \Rightarrow \\
\\
\left|\frac{g^{\prime}(z)}{h^{\prime}(z)}-\frac{b_{1}\left(1+(2 b-1) r^{2}\right)}{1-r^{2}}\right| \leq \frac{2\left|b_{1}\right||b| r}{1-r^{2}}
\end{gathered}
$$

this shows that the values of $\left(\frac{g^{\prime}(z)}{h^{\prime}(z)}\right)$ for $|z|<1$ are inside the disc with the centre

$$
C(r)=\frac{b_{1}\left(1+(2 b-1) r^{2}\right)}{1-r^{2}}
$$

and the radius

$$
\rho(r)=\frac{2\left|b_{1}\right||b| r}{1-r^{2}}
$$

at the some time we can write (using Theorem 1.2)

$$
\operatorname{Re}\left(z \frac{h^{\prime}(z)}{h(z)}\right)>\frac{1}{2} \Rightarrow z \frac{h^{\prime}(z)}{h(z)} \prec \frac{1}{1-z} \Rightarrow \frac{h(z)}{z h^{\prime}(z)}=(1+\phi(z)), \phi(z) \in \Omega
$$

Now we define the function $\phi(z)$ by

$$
\frac{g(z)}{h(z)}=b_{1} \frac{1+(2 b-1) \phi(z)}{1-\phi(z)}
$$

taking the derivative from this equality we obtain.

$$
\begin{equation*}
\frac{g^{\prime}(z)}{h^{\prime}(z)}=b_{1}\left(\frac{1+(2 b-1) \phi(z)+2 b z \phi^{\prime}(z)}{1-\phi(z)}\right) \tag{11}
\end{equation*}
$$

Now, it is easy to realize that the subordination

$$
\frac{g^{\prime}(z)}{h^{\prime}(z)} \prec b_{1} \frac{1+(2 b-1) z}{1-z}
$$

(from the definition of $S_{H C C(b)}$) is equivalent to $|\phi(z)|<1$ for all $z \in \mathbb{D}$.
Indeed assume the contrary that there exists $z_{1} \in \mathbb{D}$ such that $\left|\phi\left(z_{1}\right)\right|=1$. Then by I. S. Jack lemma (Lemma 1.1) $z_{1} \phi^{\prime}\left(z_{1}\right)=k \phi\left(z_{1}\right), k \geq 1$, such z_{1} we have

$$
w\left(z_{1}\right)=\frac{g^{\prime}(z)}{h^{\prime}(z)}=\frac{1+(1+k)(2 b-1) \phi\left(z_{1}\right)}{1-\phi\left(z_{1}\right)}=w\left(\phi\left(z_{1}\right)\right) \notin w(\mathbb{D})
$$

But this is a contradiction to the condition of the definition of $S_{H C C(b)}$ and so assumption is wrong, i.e, $|\phi(z)|<1$ for all $z \in \mathbb{D}$.

Corollary 2.1. Let $f=h(z)+\overline{g(z)} \in S_{H C C(b)}$, then

$$
\begin{align*}
& \frac{\left|b_{1}\right|\left[1-2|b| r+|1-2 b| r^{2}\right]}{1-r^{2}} \leq\left|\frac{g^{\prime}(z)}{h^{\prime}(z)}\right| \leq \frac{\left|b_{1}\right|\left[1+2|b| r+|1-2 b| r^{2}\right]}{1-r^{2}} \tag{12}\\
& \frac{\left|b_{1}\right|\left[1-2|b| r+|1-2 b| r^{2}\right]}{1-r^{2}} \leq\left|\frac{g(z)}{h(z)}\right| \leq \frac{\left|b_{1}\right|\left[1+2|b| r+|1-2 b| r^{2}\right]}{1-r^{2}} \tag{13}
\end{align*}
$$

Proof. Since $\left(\frac{g^{\prime}(z)}{h^{\prime}(z)}\right)$ and $\left(\frac{g(z)}{h(z)}\right)$ are subordinate to $\left(b_{1} \frac{1+(2 b-1) z}{1-z}\right)$, then using subordination and Lindelf Principle we get (12) and (13).

Corollary 2.2. Let $f=h(z)+\overline{g(z)} \in S_{H C C(b)}$, then

$$
\begin{align*}
\left|b_{1}\right| F(|b|,-r) & \leq\left|g^{\prime}(z)\right| \tag{14}
\end{align*} \leq\left|b_{1}\right| F(|b|, r) ~ 子|g(z)| \leq\left|b_{1} r .\right| G(|b|, r)
$$

where

$$
\begin{aligned}
& F(|b|, r)=\frac{1+2|b| r+|1-2 b| r^{2}}{(1+r)(1-r)^{3}} \\
& G(|b|, r)=\frac{1+2|b| r+|1-2 b| r^{2}}{(1+r)(1-r)^{2}}
\end{aligned}
$$

Proof. Using Corollary 2.1 and Theorem 1.1 we obtain (14) and (15).

Lemma 2.1. If $f=h(z)+\overline{g(z)} \in S_{H C C(b)}$, then

$$
\begin{gather*}
\frac{\left|b_{1}\right|-r}{1+\left|b_{1}\right| r} \leq|w(z)| \leq \frac{\left|b_{1}\right|+r}{1+\left|b_{1}\right| r} \tag{16}\\
\frac{\left(1-r^{2}\right)\left(1-\left|b_{1}\right|\right)^{2}}{\left(1+\left|b_{1}\right| r\right)^{2}} \leq\left(1-|w(z)|^{2}\right) \leq \frac{\left(1-r^{2}\right)\left(1-\left|b_{1}\right|\right)^{2}}{\left(1-\left|b_{1}\right| r\right)^{2}} \tag{17}
\end{gather*}
$$

$$
\begin{align*}
& \frac{(1-r)\left(1+\left|b_{1}\right|\right)}{1-\left|b_{1}\right| r} \leq(1+|w(z)|) \leq \frac{(1+r)\left(1+\left|b_{1}\right|\right)}{1+\left|b_{1}\right| r} \tag{18}\\
& \frac{(1-r)\left(1-\left|b_{1}\right|\right)}{1+\left|b_{1}\right| r} \leq(1-|w(z)|) \leq \frac{(1+r)\left(1-\left|b_{1}\right|\right)}{1-\left|b_{1}\right| r} \tag{19}
\end{align*}
$$

Proof. Since $f=h(z)+\overline{g(z)} \in S_{H C C(b)}$, it follows that

$$
w(z)=\frac{g^{\prime}(z)}{h^{\prime}(z)}=\frac{b_{1}+2 b_{2} z+\ldots}{1+2 a_{2} z+\ldots} \Rightarrow w(0)=b_{1},|w(z)|<1
$$

So, the function

$$
\phi(z)=\frac{w(z)-w(0)}{1-\overline{w(0)} w(z)}=\frac{w(z)-b_{1}}{1-\overline{b_{1}} w(z)},(z \in \mathbb{D})
$$

satisfies the conditions of Schwarz lemma. Therefore, we have

$$
w(z)=\frac{b_{1}+\phi(z)}{1+\overline{b_{1}} \phi(z)} \text { ifandonlyif } w(z) \prec \frac{b_{1}+z}{1+\overline{b_{1}} z},(z \in \mathbb{D})
$$

On the other hand, the linear transformation $\left(\frac{b_{1}+z}{1+\overline{b_{1} z}}\right)$ maps $|z|=r$ onto the disc with the centre

$$
C(r)=\left(\frac{\left(1-r^{2}\right) R e b_{1}}{1-r^{2}}, \frac{\left(1-r^{2}\right) I m b_{1}}{1-r^{2}}\right)
$$

and the radius

$$
\rho(r)=\frac{\left(1-\left|b_{1}\right|^{2}\right) r}{1-r^{2}}
$$

Then we have (16) which gives (17), (18) and (19).
Corollary 2.3. Let $f=h(z)+\overline{g(z)} \in S_{H C C(b)}$, then

$$
\begin{align*}
\frac{(1-r)\left(1-\left|b_{1}\right|^{2}\right)}{(1+r)^{3}\left(1+\left|b_{1}\right| r\right)^{2}} & \leq J_{f} \leq \frac{(1+r)\left(1-\left|b_{1}\right|^{2}\right)}{(1-r)^{3}\left(1+\left|b_{1}\right| r\right)^{2}} \tag{20}\\
& \leq|f| \leq \tag{21}
\end{align*}
$$

Proof. Since

$$
\begin{equation*}
J_{f}=\left|h^{\prime}(z)\right|^{2}\left(1-|w(z)|^{2}\right) \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|h^{\prime}(z)\right|(1-|w(z)|) d r \leq|d f| \leq\left|h^{\prime}(z)\right|(1+|w(z)|) d r \tag{23}
\end{equation*}
$$

Using Theorem 1.1 and Lemma 2.1 in the inequalities (22) and (23), then we obtain (20) and (21).

Theorem 2.2. Let $f=h(z)+\overline{g(z)} \in S_{H C C(b)}$, then

$$
\begin{equation*}
\sum_{k=2}^{n} k^{2}\left|b_{k}-b_{1} a_{k}\right|^{2} \leq\left|1-b_{1}^{2}\right|^{2}+\sum_{k=2}^{n+1} k^{2}\left|a_{k}-b_{1} b_{k}\right|^{2} \tag{24}
\end{equation*}
$$

Proof. Using Lemma 2.1 we can write,

$$
\begin{gathered}
w(z)=\frac{g^{\prime}(z)}{h^{\prime}(z)} \prec \frac{b_{1}+z}{1+\overline{b_{1}} z} \Rightarrow \frac{g^{\prime}(z)}{h^{\prime}(z)}=\frac{b_{1}+\phi(z)}{1+\overline{b_{1}} \phi(z)} \Rightarrow \\
g^{\prime}(z)\left(1+\overline{b_{1}} \phi(z)\right)=h^{\prime}(z)\left(b_{1}+\phi(z)\right) \Rightarrow g^{\prime}(z)+\overline{b_{1}} g^{\prime}(z) \phi(z)=b_{1} h^{\prime}(z)+h^{\prime}(z) \phi(z) \\
\Rightarrow\left(g^{\prime}(z)-b_{1} h^{\prime}(z)\right)=\left(h^{\prime}(z)-\overline{b_{1}} g^{\prime}(z)\right) \phi(z) \Rightarrow
\end{gathered}
$$

$$
\begin{gather*}
\left(\sum_{n=1}^{\infty} b_{n} z^{n}\right)^{\prime}-b_{1}\left(z+\sum_{n=2}^{\infty} a_{n} z^{n}\right)^{\prime}=\left[\left(z+\sum_{n=2}^{\infty} a_{n} z^{n}\right)^{\prime}-b_{1}\left(z+\sum_{n=1}^{\infty} a_{n} z^{n}\right)^{\prime}\right] \phi(z) \Rightarrow \\
\sum_{k=2}^{n} k\left(b_{k}-b_{1} a_{k}\right) z^{k-1}+\sum_{k=n+1}^{\infty} d_{k} z^{k-1}=\left[\left(1-b_{1}^{2}\right)+\sum_{k=2}^{n} k\left(a_{k}-b_{1} b_{k}\right) z^{k-1}\right] \phi(z) \tag{25}
\end{gather*}
$$

Since the last equality has the form

$$
f_{1}(z)=f_{2}(z) \phi(z)
$$

with $|\phi(z)|<1$, it follows that

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f_{1}\left(r e^{i \theta}\right)\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f_{2}\left(r e^{i \theta}\right)\right| \tag{26}
\end{equation*}
$$

for each $r,(0<r<1)$. Expressing (26) in terms of coefficients in (24) we obtain the inequality

$$
\begin{equation*}
\sum_{k=2}^{n} k\left|b_{k}-b_{1} a_{k}\right|^{2} r^{2 k}+\sum_{k=n+1}^{\infty}\left|d_{k}\right|^{2} r^{2 k} \leq\left[\left|1-b_{1}^{2}\right|^{2}+\sum_{k=2}^{n+1} k^{2}\left|a_{k}-b_{1} b_{k}\right|^{2}\right] r^{2 k} \tag{27}
\end{equation*}
$$

By letting $r \rightarrow 1^{-}$in (27) we obtain the desired result. The proof of this method is due to Clunie [1].

References

[1] J. Clunie, On meromorphic schlit functions, J. London Math. Soc. 34 (1959), 215-216.
[2] P. Duren , Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics, Vol. 156, Cambridge University Press, Cambridge UK, (2004).
[3] A. W Goodman , Univalent Functions, Volume I and Volume II, Mariner publishing Company Inc. , Tampa Florida, (1983).
[4] I. S Jack, Functions starlike and convex of order α, J. London Math. Soc. (2) 3, (1971), 469-474.
[5] A. Y. Lashin, Starlike and convex functions of complex order involving a certain linear operator, Indian J. Pure Appl. Math. 34, (2003), no:7, pp. 1101-1108.

[^0]: ${ }^{1}$ Department of Mathematics and Computer Sciences, İstanbul Kültür University, İstanbul, Turkey e-mail: y.polatoglu@iku.edu.tr
 § Submitted for GFTA'13, held in Işık University on October 12, 2013.
 TWMS Journal of Applied and Engineering Mathematics, Vol.4, No.1; © Işık University, Department of Mathematics 2014; all rights reserved.

