SOME PROPERTIES OF CERTAIN SUBCLASSES OF MEROMORPHIC P-VALENT INTEGRAL OPERATORS

DEBORAH OLUFUNMILAYO MAKINDE ${ }^{1}$

Abstract

For meromorphic p-valent function of the form $f_{i}(z)=\frac{1-\alpha}{(z-w)^{p}}+\sum_{n=2}^{\infty} a_{n}^{i}(z-$ $w)^{n}, \alpha<1$, which are analytic in the punctured unit disk $z: 0<|z-w|<1$ with a pole of order p at w, a class $\Gamma_{\beta}^{p}\left(\zeta_{1}, \zeta_{2} ; \gamma\right)$ is introduced and some properties for $\Gamma_{\alpha}^{p}\left(\zeta_{1}, \zeta_{2} ; \gamma\right)$ of $f_{i}(z)$ in relatioon to the coefficient bounds, convex combination and convolution were discussed.

Keywords: Analytic,Coefficient bound, Convex combination, Meromorphic, p-valent, Integral operator.

AMS Subject Classification: Primary 30C45.

1. Introduction

Let A denotes the class of functions of the form

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

analytic and normalized with $f(0)=f^{\prime}(0)-1=0$ in the open disk $U=\{z \in C:|z|<1\}$. In [6], Seenivasagan gave a condition of the univalence of the integral operator

$$
F_{\alpha, \beta}(z)=\left\{\beta \int_{0}^{z} t^{\beta-1} \prod_{i=1}^{k}\left(\frac{f_{i}(s)}{s}\right)^{1 / \alpha} d s\right\}^{1 / \beta}
$$

where $f_{i}(z)$ is defined by

$$
\begin{equation*}
f_{i}(z)=z+\sum_{n=2}^{\infty} a_{n}^{i} z^{n} \tag{1}
\end{equation*}
$$

while Makinde in [5] gave a condition for the starlikeness for the function:

$$
\begin{equation*}
F_{\alpha}(z)=\int_{0}^{z} \prod_{i=1}^{k}\left(\frac{f_{i}(s)}{s}\right)^{1 / \alpha} d s, \alpha \in C \tag{2}
\end{equation*}
$$

[^0]where $f_{i}(z)$ is defined by (1).
Also, Kanas and Ronning [2] introduced the class of function of the form
$$
f(z)=(z-w)+\sum_{n=2}^{\infty} a_{n}^{i}(z-w)^{n}
$$
where w is a fixed point in the unit disk normalized with $f(w)=f^{\prime}(w)-1=0$.
We define $f_{i}(z)$ by
\[

$$
\begin{equation*}
f_{i}(z)=\frac{1-\alpha}{(z-w)^{p}}+\sum_{n=2}^{\infty} a_{n}^{i}(z-w)^{n}, \alpha<1 \tag{3}
\end{equation*}
$$

\]

where w is an arbitrary fixed point in the D, and $F_{w, \alpha}(z)$ is defined by

$$
\begin{equation*}
F_{w, \alpha}(z)=\int_{0}^{z} \prod_{i=1}^{k}\left(\frac{f_{i}(s-w)}{s-w}\right)^{1 / \alpha} d s, \alpha \in C \tag{4}
\end{equation*}
$$

Furthermore, Xiao-Feili et al [7] denote $L_{1}^{*}\left(\beta_{1}, \beta_{2}, \lambda\right)$ as a subclass of A such that:

$$
L_{1}^{*}\left(\beta_{1}, \beta_{2}, \gamma\right)=\left\{f \in A:\left|\frac{f^{\prime}(z)-1}{\beta_{1} f^{\prime}(z)+\beta_{2}} \leq \lambda\right|\right\}, 0 \leq \beta_{1} \leq 1 ; 0<\beta_{1} \leq 1 ; 0<\lambda \leq 1
$$

for some β_{1}, β_{2} and for some real λ. Also, he denoted T to be the subclass of A consisting of functions of the form:

$$
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, a_{n} \geq 0
$$

and $L^{*}\left(\beta_{1}, \beta_{2}, \lambda\right)$ denotes the subclass of $L_{1}^{*}\left(\beta_{1}, \beta_{2}, \lambda\right)$ defined by:

$$
L^{*}\left(\beta_{1}, \beta_{2}, \lambda\right)=L_{1}^{*}\left(\beta_{1}, \beta_{2}, \lambda\right) \bigcap T
$$

for some real number, $0 \leq \beta_{1} \leq 1 ; 0<\beta_{2} \leq 1 ; 0<\lambda \leq 1$
The class $L^{*}\left(\beta_{1}, \beta_{2}, \lambda\right)$ was studied by Kim and Lee in [3], see also [1], [2], [7].
Let $F_{\alpha}(z)$ be defined by (2), then

$$
\frac{z F_{\alpha}^{\prime \prime}(z)}{F_{\alpha}^{\prime}(z)}=\sum_{i=1}^{k} \frac{1}{\alpha}\left(\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}-1\right)
$$

Let $G(z)$ be denoted by

$$
\begin{equation*}
G(z)=\sum_{i=1}^{k} \frac{1}{\alpha}\left(\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}-1\right) \tag{5}
\end{equation*}
$$

The class

$$
\Gamma_{\alpha}\left(\zeta_{1}, \zeta_{2}, \gamma\right)=\left\{f_{i} \in A\left|\frac{G(z)+\frac{1}{\alpha}-1}{\zeta_{1}\left(G(z)+\frac{1}{\alpha}\right)+\zeta_{2}}\right| \leq \gamma\right\}
$$

was studied by Makinde and Oladipo [sientia magna accepted]
We define

$$
\begin{equation*}
\Gamma_{\alpha}^{p}\left(\zeta_{1}, \zeta_{2}, \gamma\right)=\left\{f_{i} \in A\left|\frac{G(z)+\frac{1}{\alpha}-1}{\zeta_{1}\left(G(z)+\frac{1}{\alpha}\right)+\zeta_{2}}\right| \leq \gamma\right\} \tag{6}
\end{equation*}
$$

for some complex $\zeta_{1}, \zeta_{2}, \alpha$ and for some real $\gamma, 0 \leq\left|\zeta_{1}\right| \leq 1,0<\left|\zeta_{2}\right| \leq 1,|\alpha| \leq 1$ and $0<\gamma \leq 1$ with $G(z)$ as in (5) and $f_{i}(z)$ as in (3).
Let $f_{i}(z)=z+\sum_{n=2}^{\infty} a_{n}^{i} z^{n}$ and $g_{i}(z)=z+\sum_{n=2}^{\infty} b_{n}^{i} z^{n}$, we define the convolution of $f_{i}(z)$ and $g_{i}(z)$ by

$$
\begin{equation*}
f_{i}(z) * g_{i}(z)=\left(f_{i} * g_{i}\right)(z)=z+\sum_{n=2}^{\infty} a_{n}^{i} b_{n}^{i} z^{n} \tag{7}
\end{equation*}
$$

We shall now present the main results of this paper.

2. Main Results

Theorem 2.1. Let $f_{i}(z)$ be as in (3) and $F_{w, \alpha}$ be as in (4). Then $f_{i}(z)$ is in the class $\Gamma_{\alpha}^{p}\left(\zeta_{1}, \zeta_{2}, \gamma\right)$ if and only if

$$
\begin{equation*}
\sum_{i=1}^{k} \sum_{n=2}^{\infty}\left[n\left(1-\gamma \zeta_{1}\right)-\alpha\left(1+\gamma \zeta_{2}\right)\right]\left|a_{n}^{i}\right| \leq \gamma\left|(1-\alpha)\left(-p \zeta_{1}+\alpha \zeta_{2}\right)\right|-|(1-\alpha)(-p-\alpha)| \tag{8}
\end{equation*}
$$

$0 \leq \zeta_{1} \leq 1,0<\zeta_{2} \leq 1,0<\alpha \leq 1$
Proof. From (6), we have

$$
\begin{aligned}
\left|\frac{G(z)+\frac{1}{\alpha}-1}{\zeta_{1}\left(G(z)+\frac{1}{\alpha}\right)+\zeta_{2}}\right| & =\left|\frac{\frac{\sum_{i=1}^{k}\left(-p \frac{1-\alpha}{(z-w)^{p}}\right)+\sum_{n=2}^{\infty} n a_{n}^{i}(z-w)^{n}}{\sum_{i=1}^{k} \alpha\left(\frac{1-\alpha}{(z-w)^{p}}+\sum_{n=2}^{\infty} n a_{n}^{i}(z-w)^{n}\right)}-1}{\frac{\sum_{i=1}^{k} \zeta_{1}\left(-p \frac{1-\alpha}{(z-w)^{p}}\right)+\sum_{n=2}^{\infty} n a_{n}^{i}(z-w)^{n}}{\sum_{i=1}^{k} \alpha\left(\frac{1-\alpha}{(z-w)^{p}}+\sum_{n=2}^{\infty} n a_{n}^{i}(z-w)^{n}\right)}+\zeta_{2}}\right| \\
& \leq \frac{|(1-\alpha)(-p-\alpha)|+\sum_{i=1}^{k} \sum_{n=2}^{\infty}(n-\alpha)\left|a_{n}^{i}\right|}{\left|(1-\alpha)\left(-p \zeta_{1}+\alpha \zeta_{2}\right)-\sum_{i=1}^{k} \sum_{n=2}^{\infty}\left(n+\alpha \zeta_{2}\right)\right| a_{n}^{i}| |}
\end{aligned}
$$

Let $f_{i}(z)$ satisfy the inequality (8), the $f_{i}(z) \in \Gamma_{\alpha}^{p}\left(\zeta_{1}, \zeta_{2}, \gamma\right)$. Conversely, let the function $f_{i}(z) \in \Gamma_{\alpha}^{p}\left(\zeta_{1}, \zeta_{2}, \gamma\right)$, then

$$
\sum_{i=1}^{k} \sum_{n=2}^{\infty}\left[n\left(1-\gamma \zeta_{1}\right)-\alpha\left(1+\gamma \zeta_{2}\right)\right]\left|a_{n}^{i}\right| \leq \gamma\left|(1-\alpha)\left(-p \zeta_{1}+\alpha \zeta_{2}\right)\right|-|(1-\alpha)(-p-\alpha)|
$$

Corollary 2.1. Let $f_{i}(z) \in \Gamma_{\alpha}^{p}\left(\zeta_{1}, \zeta_{2}, \gamma\right)$, then

$$
\sum_{i=1}^{k} \sum_{n=2}^{\infty}\left|a_{n}^{i}\right| \leq \frac{\gamma\left|(1-\alpha)\left(-p \zeta_{1}+\alpha \zeta_{2}\right)\right|-|(1-\alpha)(-p-\alpha)|}{\left[n\left(1-\gamma \zeta_{1}\right)-\alpha\left(1+\gamma \zeta_{2}\right)\right]}
$$

Theorem 2.2. Let $f_{i}(z) \in \Gamma_{\alpha}^{p}\left(\zeta_{1}, \zeta_{2}, \gamma\right)$ and the function $g_{i}(z)$ defined by $g_{i}(z)=z+$ $\sum_{n=2}^{\infty} b_{n}^{i} z^{i}$ be in the same $\Gamma_{\alpha}^{p}\left(\zeta_{1}, \zeta_{2}, \gamma\right)$. Then the function $\Omega_{i}(z)$ defined by

$$
\Omega_{i}(z)=(1-\lambda) f_{i}(z)+\lambda g_{i}(z)=z+\sum_{n=2}^{\infty} C_{n}^{i} z^{i}
$$

is also in the class $\Gamma_{\alpha}^{p}\left(\zeta_{1}, \zeta_{2}, \gamma\right)$, where

$$
C_{n}^{i}=(1-\lambda) a_{n}^{i}+\lambda b_{n}^{i}, \quad 0 \leq \lambda \leq 1
$$

Proof. Let $f_{i}(z), g_{i}(z)$ be in $\Gamma_{\alpha}^{p}\left(\zeta_{1}, \zeta_{2}, \gamma\right)$. Then by (8) and following the proof of Theorem 2.1, we have

$$
\sum_{i=1}^{k} \sum_{n=2}^{\infty}\left[n\left(1-\gamma \zeta_{1}\right)-\alpha\left(1+\gamma \zeta_{2}\right)\right]\left|C_{n}^{i}\right| \leq \gamma\left|(1-\alpha)\left(-p \zeta_{1}+\alpha \zeta_{2}\right)\right|-|(1-\alpha)(-p-\alpha)|
$$

This shows that the convex combination $f_{i}(z), g_{i}(z)$ is in the class $\Gamma_{\alpha}^{p}\left(\zeta_{1}, \zeta_{2}, \gamma\right)$ This concludes the proof of the Theorem 2.1.

Theorem 2.3. Let $f_{i}(z)$ belong to the class $\Gamma_{\alpha}^{p}\left(\zeta_{1}, \zeta_{2}, \gamma\right)$ and $g_{i}(z)$ belong to the class $\Gamma_{\alpha}^{p}\left(\beta_{1}, \beta_{2}, \gamma\right)$, then $\left(f_{i} * g_{i}\right)(z)$ belong to the class $\Gamma_{\alpha}^{p}\left(\zeta_{1}, \zeta_{2}, \gamma\right) \subset \Gamma_{\alpha}^{p}\left(\beta_{1}, \beta_{2}, \gamma\right)$.

Proof. $f_{i}(z)$ belong to the class $\Gamma_{\alpha}^{p}\left(\zeta_{1}, \zeta_{2}, \gamma\right)$ implies

$$
\begin{gathered}
\sum_{i=1}^{k} \sum_{n=2}^{\infty}\left[n\left(1-\gamma \zeta_{1}\right)-\alpha\left(1+\gamma \zeta_{2}\right)\right]\left|a_{n}^{i}\right| \leq \gamma\left|(1-\alpha)\left(-p \zeta_{1}+\alpha \zeta_{2}\right)\right|-|(1-\alpha)(-p-\alpha)| \\
0 \leq \zeta_{1} \leq 1,0<\zeta_{2} \leq 1,0<\alpha \leq 1
\end{gathered}
$$

Similarly, $g_{i}(z)$ belong to the class $\Gamma_{\alpha}^{p}\left(\beta_{1}, \beta_{2}, \gamma\right)$ implies

$$
\begin{gathered}
\sum_{i=1}^{k} \sum_{n=2}^{\infty}\left[n\left(1-\gamma \beta_{1}\right)-\alpha\left(1+\gamma \beta_{2}\right)\right]\left|a_{n}^{i}\right| \leq \gamma\left|(1-\alpha)\left(-p \beta_{1}+\alpha \beta_{2}\right)\right|-|(1-\alpha)(-p-\alpha)|, \\
0 \leq \beta_{1} \leq 1,0<\beta_{2} \leq 1,0<\alpha \leq 1
\end{gathered}
$$

But

$$
\begin{aligned}
\left(f_{i} * g_{i}\right)(z) & =\sum_{i=1}^{k} \sum_{n=2}^{\infty}\left[n\left(1-\gamma \beta_{1}\right)-\alpha\left(1+\gamma \beta_{2}\right)\right]\left|a_{n}^{i}\right|| | b_{n}^{i} \mid \\
& \leq \sum_{i=1}^{k} \sum_{n=2}^{\infty}\left[n\left(1-\gamma \zeta_{1}\right)-\alpha\left(1+\gamma \zeta_{2}\right)\right]\left|a_{n}^{i}\right| \\
& \leq \gamma\left|(1-\alpha)\left(-p \zeta_{1}+\alpha \zeta_{2}\right)\right|-|(1-\alpha)(-p-\alpha)|
\end{aligned}
$$

which implies that

$$
\left(f_{i} * g_{i}\right)(z) \in \Gamma_{\alpha}^{p}\left(\zeta_{1}, \zeta_{2}, \gamma\right) \subset \Gamma_{\alpha}^{p}\left(\beta_{1}, \beta_{2}, \gamma\right)
$$

Theorem 2.4. Let $\Psi_{i}(z) \in \Gamma_{\alpha}^{p}\left(\zeta_{1}, \zeta_{2}, \gamma\right)$ and the function $v_{i}(z)$ defined by

$$
v_{i}(z)=z+\sum_{n=2}^{\infty} A_{n}^{i} B_{n}^{i} z^{i}
$$

be in the same $\Gamma_{\alpha}^{p}\left(\zeta_{1}, \zeta_{2}, \gamma\right)$. Then the function $\Phi_{i}(z)$ defined by

$$
\Phi_{i}(z)=(1-\lambda) \Psi_{i}(z)+\lambda v_{i}(z)=z+\sum_{n=2}^{\infty} C_{n}^{i} z^{i}
$$

is also in the class $\Gamma_{\alpha}^{p}\left(\zeta_{1}, \zeta_{2}, \gamma\right)$, where

$$
C_{n}^{i}=(1-\lambda) a_{n}^{i} b_{n}^{i}+\lambda A_{n}^{i} B_{n}^{i}, \quad 0 \leq \lambda \leq 1
$$

Proof. The proof is similar to that the Theorem 2.2.

References

[1] O. Altintas, and S. Owa, On soem subclassess of univalent functions with negative coefficient, Pusan Kyongnam Math. J. 4 (1988) 41-46.
[2] D. Hur and G.H. Oh, On certain class of analytic functions with negative ciefficients, Pusan Kyongnam Math. J. 5(19890), 69-80.
[3] S. Kanas and F.Ronnig, Unifromly Starlike and conves functions and other related classes of univalent functions, Ann Universitym Narue Curie-Sklodowska Section A,53(1999), 95-105.
[4] H.S. Kim and S.K. Lee, On soem classes of univalent functions, Math Japan, 32(987), 781-796.
[5] D.O Makinde and T.O. Opoola, On sufficient condition fo starlikeness, General Mathematics 18(3) 2010, 30-35.
[6] D.O. Makinde, On a certain family of meromorphic functions with positive coefficients, Acta Universitatis Apulensis (submitted).
[7] D.O. Makinde and A.T. Oladipo, Some properties of certain subclasses of univalent integral operator. Journal of Sientia Magna (accepted)
[8] N. Seenivasagan, Sufficient conditions for univalence, Applied Mathemaitics E-notes, 8,2008, 30-35.
[9] F. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc, 51 (1975),109116.
[10] Xiao-Fei Li and An-Ping Wang, Some properties of some subclassess of univalent functions, Applied Mathematical Sciences, 6(54) (2012) 2687-2693.

[^0]: ${ }^{1}$ Department of Mathematics, Faculty of Science, Obafemi Awolowo University, Ile Ife 220005, Nigeria. e-mail: dmakinde@oauife.edu.ng
 § Submitted for GFTA'13, held in Işık University on October 12, 2013.
 TWMS Journal of Applied and Engineering Mathematics, Vol.4, No.1; © Işık University, Department of Mathematics 2014; all rights reserved.

