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SOME PROPERTIES OF CERTAIN SUBCLASSES OF MEROMORPHIC

P-VALENT INTEGRAL OPERATORS

DEBORAH OLUFUNMILAYO MAKINDE1

Abstract. For meromorphic p-valent function of the form fi(z) =
1−α

(z−w)p
+
∑∞

n=2 a
i
n(z−

w)n, α < 1, which are analytic in the punctured unit disk z : 0 < |z−w| < 1 with a pole
of order p at w, a class Γp

β(ζ1, ζ2; γ) is introduced and some properties for Γp
α(ζ1, ζ2; γ)

of fi(z) in relatioon to the coefficient bounds, convex combination and convolution were
discussed.
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1. Introduction

Let A denotes the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n

analytic and normalized with f(0) = f ′(0)− 1 = 0 in the open disk U = {z ∈ C : |z| < 1}.
In [6], Seenivasagan gave a condition of the univalence of the integral operator

Fα,β(z) =

{
β

∫ z

0
tβ−1

k∏
i=1

(
fi(s)

s

)1/α

ds

}1/β

where fi(z) is defined by

fi(z) = z +
∞∑
n=2

ainz
n (1)

while Makinde in [5] gave a condition for the starlikeness for the function:

Fα(z) =

∫ z

0

k∏
i=1

(
fi(s)

s

)1/α

ds, α ∈ C (2)
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where fi(z) is defined by (1).
Also, Kanas and Ronning [2] introduced the class of function of the form

f(z) = (z − w) +

∞∑
n=2

ain(z − w)n

where w is a fixed point in the unit disk normalized with f(w) = f ′(w)− 1 = 0.
We define fi(z) by

fi(z) =
1− α

(z − w)p
+

∞∑
n=2

ain(z − w)n, α < 1 (3)

where w is an arbitrary fixed point in the D, and Fw,α(z) is defined by

Fw,α(z) =

∫ z

0

k∏
i=1

(
fi(s− w)

s− w

)1/α

ds, α ∈ C (4)

Furthermore, Xiao-Feili et al [7] denote L∗
1(β1, β2, λ) as a subclass of A such that:

L∗
1(β1, β2, γ) =

{
f ∈ A :

∣∣∣∣ f ′(z)− 1

β1f ′(z) + β2
≤ λ

∣∣∣∣}, 0 ≤ β1 ≤ 1; 0 < β1 ≤ 1; 0 < λ ≤ 1

for some β1, β2 and for some real λ. Also, he denoted T to be the subclass of A consisting
of functions of the form:

f(z) = z −
∞∑
n=2

anz
n, an ≥ 0

and L∗(β1, β2, λ) denotes the subclass of L∗
1(β1, β2, λ) defined by:

L∗(β1, β2, λ) = L∗
1(β1, β2, λ)

∩
T

for some real number, 0 ≤ β1 ≤ 1; 0 < β2 ≤ 1; 0 < λ ≤ 1
The class L∗(β1, β2, λ) was studied by Kim and Lee in [3], see also [1], [2], [7].
Let Fα(z) be defined by (2), then

zF ′′
α(z)

F ′
α(z)

=
k∑

i=1

1

α

(
zf ′

i(z)

fi(z)
− 1

)
Let G(z) be denoted by

G(z) =
k∑

i=1

1

α

(
zf ′

i(z)

fi(z)
− 1

)
(5)

The class

Γα(ζ1, ζ2, γ) =

{
fi ∈ A

∣∣∣∣ G(z) + 1
α − 1

ζ1(G(z) + 1
α) + ζ2

∣∣∣∣ ≤ γ

}
was studied by Makinde and Oladipo [sientia magna accepted]
We define

Γp
α(ζ1, ζ2, γ) =

{
fi ∈ A

∣∣∣∣ G(z) + 1
α − 1

ζ1(G(z) + 1
α) + ζ2

∣∣∣∣ ≤ γ

}
(6)

for some complex ζ1, ζ2, α and for some real γ, 0 ≤ |ζ1| ≤ 1, 0 < |ζ2| ≤ 1, |α| ≤ 1 and
0 < γ ≤ 1 with G(z) as in (5) and fi(z) as in (3).
Let fi(z) = z +

∑∞
n=2 a

i
nz

n and gi(z) = z +
∑∞

n=2 b
i
nz

n, we define the convolution of fi(z)
and gi(z) by

fi(z) ∗ gi(z) = (fi ∗ gi)(z) = z +
∞∑
n=2

ainb
i
nz

n (7)
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We shall now present the main results of this paper.

2. Main Results

Theorem 2.1. Let fi(z) be as in (3) and Fw,α be as in (4). Then fi(z) is in the class
Γp
α(ζ1, ζ2, γ)if and only if

k∑
i=1

∞∑
n=2

[
n(1− γζ1)− α(1 + γζ2)

]
|ain| ≤ γ|(1− α)(−pζ1 + αζ2)| − |(1− α)(−p− α)|, (8)

0 ≤ ζ1 ≤ 1, 0 < ζ2 ≤ 1, 0 < α ≤ 1

Proof. From (6), we have

∣∣∣∣∣ G(z) + 1
α − 1

ζ1(G(z) + 1
α) + ζ2

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∑k
i=1

(
−p 1−α

(z−w)p

)
+
∑∞

n=2 na
i
n(z−w)n

∑k
i=1 α

(
1−α

(z−w)p
+
∑∞

n=2 na
i
n(z−w)n

) − 1

∑k
i=1 ζ1

(
−p 1−α

(z−w)p

)
+
∑∞

n=2 na
i
n(z−w)n

∑k
i=1 α

(
1−α

(z−w)p
+
∑∞

n=2 na
i
n(z−w)n

) + ζ2

∣∣∣∣∣∣∣∣∣∣∣∣∣
≤

|(1− α)(−p− α)|+
∑k

i=1

∑∞
n=2(n− α)|ain|

|(1− α)(−pζ1 + αζ2)−
∑k

i=1

∑∞
n=2(n+ αζ2)|ain||

Let fi(z) satisfy the inequality (8), the fi(z) ∈ Γp
α(ζ1, ζ2, γ). Conversely, let the function

fi(z) ∈ Γp
α(ζ1, ζ2, γ), then

k∑
i=1

∞∑
n=2

[
n(1− γζ1)− α(1 + γζ2)

]
|ain| ≤ γ|(1− α)(−pζ1 + αζ2)| − |(1− α)(−p− α)|

�

Corollary 2.1. Let fi(z) ∈ Γp
α(ζ1, ζ2, γ), then

k∑
i=1

∞∑
n=2

|ain| ≤
γ|(1− α)(−pζ1 + αζ2)| − |(1− α)(−p− α)|[

n(1− γζ1)− α(1 + γζ2)
] .

Theorem 2.2. Let fi(z) ∈ Γp
α(ζ1, ζ2, γ) and the function gi(z) defined by gi(z) = z +∑∞

n=2 b
i
nz

i be in the same Γp
α(ζ1, ζ2, γ). Then the function Ωi(z) defined by

Ωi(z) = (1− λ)fi(z) + λgi(z) = z +

∞∑
n=2

Ci
nz

i

is also in the class Γp
α(ζ1, ζ2, γ), where

Ci
n = (1− λ)ain + λbin, 0 ≤ λ ≤ 1.

Proof. Let fi(z), gi(z) be in Γp
α(ζ1, ζ2, γ). Then by (8) and following the proof of Theorem

2.1, we have

k∑
i=1

∞∑
n=2

[
n(1− γζ1)− α(1 + γζ2)

]
|Ci

n| ≤ γ|(1− α)(−pζ1 + αζ2)| − |(1− α)(−p− α)|
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This shows that the convex combination fi(z), gi(z) is in the class Γp
α(ζ1, ζ2, γ)

This concludes the proof of the Theorem 2.1.

�

Theorem 2.3. Let fi(z) belong to the class Γp
α(ζ1, ζ2, γ) and gi(z) belong to the class

Γp
α(β1, β2, γ), then (fi ∗ gi)(z) belong to the class Γp

α(ζ1, ζ2, γ) ⊂ Γp
α(β1, β2, γ).

Proof. fi(z) belong to the class Γp
α(ζ1, ζ2, γ) implies

k∑
i=1

∞∑
n=2

[
n(1− γζ1)− α(1 + γζ2)

]
|ain| ≤ γ|(1− α)(−pζ1 + αζ2)| − |(1− α)(−p− α)|,

0 ≤ ζ1 ≤ 1, 0 < ζ2 ≤ 1, 0 < α ≤ 1

Similarly, gi(z) belong to the class Γp
α(β1, β2, γ) implies

k∑
i=1

∞∑
n=2

[
n(1− γβ1)− α(1 + γβ2)

]
|ain| ≤ γ|(1− α)(−pβ1 + αβ2)| − |(1− α)(−p− α)|,

0 ≤ β1 ≤ 1, 0 < β2 ≤ 1, 0 < α ≤ 1

But

(fi ∗ gi)(z) =

k∑
i=1

∞∑
n=2

[
n(1− γβ1)− α(1 + γβ2)

]
|ain||bin|

≤
k∑

i=1

∞∑
n=2

[
n(1− γζ1)− α(1 + γζ2)

]
|ain|

≤ γ|(1− α)(−pζ1 + αζ2)| − |(1− α)(−p− α)|

which implies that

(fi ∗ gi)(z) ∈ Γp
α(ζ1, ζ2, γ) ⊂ Γp

α(β1, β2, γ).

�

Theorem 2.4. Let Ψi(z) ∈ Γp
α(ζ1, ζ2, γ) and the function υi(z) defined by

υi(z) = z +
∞∑
n=2

Ai
nB

i
nz

i

be in the same Γp
α(ζ1, ζ2, γ). Then the function Φi(z) defined by

Φi(z) = (1− λ)Ψi(z) + λυi(z) = z +
∞∑
n=2

Ci
nz

i

is also in the class Γp
α(ζ1, ζ2, γ), where

Ci
n = (1− λ)ainb

i
n + λAi

nB
i
n, 0 ≤ λ ≤ 1.

Proof. The proof is similar to that the Theorem 2.2. �
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