NEW SUFFICIENT CONDITIONS FOR STARLIKE AND CONVEX FUNCTIONS

J. NISHIWAKI ${ }^{1}$, S. OWA ${ }^{2}$ §

Abstract. Let \mathcal{A} be the class of analytic functions $f(z)$ in the open unit disc. Applying the subordination, some sufficient conditions for starlikeness and convexity are discussed.

Keywords: Analytic function, Starlike of order α, Convex of order α, Subordination.
AMS Subject Classification: 30C45.

1. Introduction

Let \mathcal{A} be the class of functions $f(z)$ of the form

$$
f(z)=\sum_{n=2}^{\infty} a_{n} z^{n}
$$

which are analytic in the open unit disc $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. A function $f(z) \in \mathcal{A}$ is said to be the starlike function of order α if it satisfies

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \mathbb{U})
$$

for some $\alpha(0 \leq \alpha<1)$. Also a function $f(z) \in \mathcal{A}$ is said to be the convex function of order α if it satisfies

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha \quad(z \in \mathbb{U})
$$

for some $\alpha(0 \leq \alpha<1)$. These classes are denoted by $\mathcal{S}^{*}(\alpha)$ and $\mathcal{K}(\alpha)$, respectively. We well-known that $\mathcal{S}^{*}(0) \equiv \mathcal{S}^{*}$ and $\mathcal{K}(0) \equiv \mathcal{K}$, and that the relation $f(z) \in \mathcal{K}$ if and only if $z f^{\prime}(z) \in \mathcal{S}^{*}$.
By investigating expressions

$$
\frac{z^{2} f^{\prime}(z)}{(f(z))^{2}}-(1+\gamma) \frac{z}{f(z)}, \frac{z f^{\prime \prime}(z)}{\left(f^{\prime}(z)\right)^{2}}-\gamma \frac{1}{f^{\prime}(z)}
$$

and

$$
\frac{f(z) f^{\prime \prime}(z)}{\left(f^{\prime}(z)\right)^{2}}-(1+\gamma) \frac{f(z)}{z f^{\prime}(z)},
$$

we would like to introduce some sufficient conditions for the classes $\mathcal{S}^{*}(\alpha)$ and $\mathcal{K}(\alpha)$.

[^0]
2. SuFficient conditions for starlikeness and convexity

For analitic functions $f(z)$ and $g(z)$ in $\mathbb{U}, f(z)$ is said to be subordidnate to $g(z)$ in \mathbb{U} if there exists an analytic function $w(z)$ in \mathbb{U} such that $w(0)=0,|w(z)|<1$ and $f(z)=g(w(z))$. We denote this subordination by

$$
f(z) \prec g(z)
$$

If $g(z)$ is univalent in $\mathbb{U}, f(z) \prec g(z)$ if and only if $f(0)=g(0)$ and $f(\mathbb{U}) \subset g(\mathbb{U})$.
we make use of the case which γ is a non-negative real number of Theorem 2 of Miller, Mocanu and Reade [1] as following:

Lemma 2.1. Let $F(z)$ and $G(z)$ be analytic functions in $\mathbb{U}, \gamma \geq 0$ and $G^{\prime}(0) \neq 0$. Furthermore, in the case of $\gamma=0, F(0)=G(0)=0$. If

$$
\operatorname{Re}\left(1+\frac{z G^{\prime \prime}(z)}{G^{\prime}(z)}\right)>k(\gamma)=\left\{\begin{aligned}
-\frac{\gamma}{2} & (\gamma \leq 1) \\
-\frac{1}{2 \gamma} & (\gamma \geq 1)
\end{aligned} \quad(z \in \mathbb{U})\right.
$$

and

$$
F(z) \prec G(z),
$$

then

$$
z^{-\gamma} \int_{0}^{z} t^{\gamma-1} F(t) d t \prec z^{-\gamma} \int_{0}^{z} t^{\gamma-1} G(t) d t
$$

For $F(z)=1-\gamma p(z)-z p^{\prime}(z)$, the following lemma was studied by Singh and Tuneski [3].

Lemma 2.2. Let $p(z)$ and $G(z)$ be analytic functions in $\mathbb{U}, \gamma \geq 0$ and $G^{\prime}(0) \neq 0$. If

$$
\operatorname{Re}\left(1+\frac{z G^{\prime \prime}(z)}{G^{\prime}(z)}\right)>k(\gamma) \quad(z \in \mathbb{U})
$$

and

$$
1-\gamma p(z)-z p^{\prime}(z) \prec G(z)
$$

then

$$
p(z)-C z^{-\gamma} \prec z^{-\gamma} \int_{0}^{z} t^{\gamma-1}(1-G(t)) d t
$$

where $C=p(0)$ for $\gamma=0$ and $C=0$ for $\gamma>0$.

Lemma 2.3. (Tuneski [4]) Let us $f(z) \in \mathcal{A}$. If it satisfies

$$
\left|f^{\prime}(z)-(1-\gamma) \frac{f(z)}{z}-\gamma\right|<\lambda \quad(z \in \mathbb{U})
$$

for some $\gamma(\gamma \geq 0)$ and $\lambda(\lambda>0)$, then

$$
\left|\frac{f(z)}{z}-1\right|<\frac{\lambda}{1+\gamma} \quad(z \in \mathbb{U})
$$

and

$$
|f(z)|<1+\frac{\lambda}{1+\gamma} \quad(z \in \mathbb{U})
$$

Using similer manner of Lemma 2.3, Our first result is following

Theorem 2.1. If $f(z) \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\left|\frac{z^{2} f^{\prime}(z)}{(f(z))^{2}}-(1+\gamma) \frac{z}{f(z)}+\gamma\right|<\lambda \quad(z \in \mathbb{U}) \tag{1}
\end{equation*}
$$

for some $\gamma(\gamma \geq 0)$ and $\lambda(\lambda>0)$, then

$$
\begin{equation*}
\left|\frac{z}{f(z)}-1\right|<\frac{\lambda}{1+\gamma} \quad(z \in \mathbb{U}) \tag{2}
\end{equation*}
$$

Proof. Let us define the function $G(z)$ by $G(z)=1-\gamma+\lambda z$, then $G^{\prime}(0)=\lambda$ and

$$
\operatorname{Re}\left(1+\frac{z G^{\prime \prime}(z)}{G^{\prime}(z)}\right)=1 \quad(z \in \mathbb{U})
$$

Furthermore, let us suppose that $p(z)=\frac{z}{f(z)}$, then $p(0)=1$ and

$$
1-\gamma p(z)-z p^{\prime}(z)=1-(1+\gamma) \frac{z}{f(z)}+\frac{z^{2} f^{\prime}(z)}{(f(z))^{2}}
$$

On the other hand, we have

$$
1-(1+\gamma) \frac{z}{f(z)}+\frac{z^{2} f^{\prime}(z)}{(f(z))^{2}} \prec 1-\gamma+\lambda z
$$

from inequality (1). Applying Lemma 2, we obtain

$$
\begin{aligned}
\frac{z}{f(z)}-C z^{-\gamma} & \prec z^{-\gamma} \int_{0}^{z} t^{\gamma-1}(1-G(t)) d t \\
& =1-\frac{\lambda}{1+\gamma} z-C_{1} z^{-\gamma},
\end{aligned}
$$

where $C=C_{1}=1$ for $\gamma=0$ and $C=C_{1}=0$ for $\gamma>0$. Thus, we arrive

$$
\left|\frac{z}{f(z)}-1\right|<\frac{\lambda}{1+\gamma} \quad(z \in \mathbb{U})
$$

The left hand side of the inequality (1) holds true for λ if we take the function

$$
f(z)=\frac{z}{1+\frac{\lambda}{1+\gamma} e^{i \theta} z}
$$

from inequality (2), implying that this result is sharp.

By vertue of Theorem 2.1, we obtain the sufficient condition of starlikeness below

Theorem 2.2. If $f(z) \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\left|\frac{z^{2} f^{\prime}(z)}{(f(z))^{2}}-(1+\gamma) \frac{z}{f(z)}+\gamma\right|<\lambda \quad(z \in \mathbb{U}) \tag{3}
\end{equation*}
$$

for some $\gamma(\gamma \geq 0)$ and $\lambda\left(0<\lambda \leq \frac{1}{2}\right)$, then $f(z) \in \mathcal{S}^{*}\left(\frac{(1+\gamma)(1-2 \lambda)}{1+\gamma-\lambda}\right)$.

Proof. Supposing that a function $f(z)$ satisfies the inequality (3) and that there exists an analytic function $w(z)$ in \mathbb{U} such that $w(0)=0$ and $|w(z)|<1$, then we see

$$
\frac{z f^{\prime}(z)}{f(z)}-(1+\gamma)=\frac{f(z)}{z}(\lambda w(z)-\gamma)
$$

It follows that

$$
\begin{aligned}
\left|\frac{z f^{\prime}(z)}{f(z)}-(1+\gamma)\right| & =\left|\frac{f(z)}{z}\right||\lambda w(z)-\gamma| \\
& <\frac{(1+\gamma)(\gamma+\lambda)}{1+\gamma-\lambda}
\end{aligned}
$$

This shows that

$$
\begin{aligned}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right) & >1+\gamma-\frac{(1+\gamma)(\gamma+\lambda)}{1+\gamma-\lambda} \\
& =\frac{(1+\gamma)(1-2 \lambda)}{1+\gamma-\lambda}
\end{aligned}
$$

We complete the proof of the theorem.

Taking $\lambda=\frac{1}{2}$ in Theorem 2.2, we have

Corollary 2.1. If $f(z) \in \mathcal{A}$ satisfies

$$
\left|\frac{z^{2} f^{\prime}(z)}{(f(z))^{2}}-(1+\gamma) \frac{z}{f(z)}+\gamma\right|<\frac{1}{2} \quad(z \in \mathbb{U})
$$

for some $\gamma(\gamma \geq 0)$, then $f(z) \in \mathcal{S}^{*}$.

Putting $z f^{\prime}(z)$ instead of $f(z)$ in Theorem 2.1, we get

Theorem 2.3. If $f(z) \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{\left(f^{\prime}(z)\right)^{2}}-\gamma \frac{1}{f^{\prime}(z)}+\gamma\right|<\lambda \quad(z \in \mathbb{U}) \tag{4}
\end{equation*}
$$

for some $\gamma(\gamma \geq 0)$ and $\lambda(\lambda>0)$, then

$$
\begin{equation*}
\left|\frac{1}{f^{\prime}(z)}-1\right|<\frac{\lambda}{1+\gamma} \quad(z \in \mathbb{U}) \tag{5}
\end{equation*}
$$

Proof. Letting $p(z)=\frac{1}{f^{\prime}(z)}$ in the proof of Theorem 2.1, we arrive

$$
\left|\frac{1}{f^{\prime}(z)}-1\right|<\frac{\lambda}{1+\gamma} \quad(z \in \mathbb{U})
$$

The left hand side of the inequality (4) holds true for λ if we take the function

$$
f(z)=\frac{1+\gamma}{\lambda e^{i \theta}} \log \left(1+\frac{\lambda}{1+\gamma} e^{i \theta} z\right)
$$

from inequality (5), implying that this result is sharp.

In view of Theorem 2.3, we obtain the sufficient condition of convexity below

Theorem 2.4. If $f(z) \in \mathcal{A}$ satisfies

$$
\left|\frac{z f^{\prime \prime}(z)}{\left(f^{\prime}(z)\right)^{2}}-\gamma \frac{1}{f^{\prime}(z)}+\gamma\right|<\lambda \quad(z \in \mathbb{U})
$$

for some $\gamma(\gamma \geq 0)$ and $\lambda\left(0<\lambda \leq \frac{1}{2}\right)$, then $f(z) \in \mathcal{K}\left(\frac{(1+\gamma)(1-2 \lambda)}{1+\gamma-\lambda}\right)$.

Proof. As the same technique in the proof of Theorem 2.2, we see

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\gamma\right|<\frac{(1+\gamma)(\gamma+\lambda)}{1+\gamma+\lambda}
$$

This shows that

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\frac{(1+\gamma)(1-2 \lambda)}{1+\gamma-\lambda} \quad(z \in \mathbb{U})
$$

which proves the theorem.

Taking $\lambda=\frac{1}{2}$ in Theorem 2.4, we have
Corollary 2.2. If $f(z) \in \mathcal{A}$ satisfies

$$
\left|\frac{z f^{\prime \prime}(z)}{\left(f^{\prime}(z)\right)^{2}}-\gamma \frac{1}{f^{\prime}(z)}+\gamma\right|<\frac{1}{2} \quad(z \in \mathbb{U})
$$

for some $\gamma(\gamma \geq 0)$, then $f(z) \in \mathcal{K}$.

Applying the same way as the proof of Theorem 2.1, we get

Theorem 2.5. If $f(z) \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\left|\frac{f(z) f^{\prime \prime}(z)}{\left(f^{\prime}(z)\right)^{2}}-(1-\gamma) \frac{f(z)}{z f^{\prime}(z)}+\gamma-1\right|<\lambda \quad(z \in \mathbb{U}) \tag{6}
\end{equation*}
$$

for some $\gamma(\gamma \geq 0)$ and $\lambda(\lambda>0)$, then

$$
\begin{equation*}
\left|\frac{f(z)}{z f^{\prime}(z)}-1\right|<\frac{\lambda}{1+\gamma} \quad(z \in \mathbb{U}) \tag{7}
\end{equation*}
$$

Proof. Letting $p(z)=\frac{f(z)}{z f^{\prime}(z)}$ in the proof of Theorem 2.1, we arrive

$$
\left|\frac{f(z)}{z f^{\prime}(z)}-1\right|<\frac{\lambda}{1+\gamma} \quad(z \in \mathbb{U})
$$

The left hand side of the inequality (6) holds true for λ if we take the function

$$
f(z)=\frac{z}{1+\frac{\lambda}{1+\gamma} e^{i \theta} z}
$$ from the inequality (7), implying that this result is sharp.

In view of Theorem 2.5, we obtain the sufficient condition of convexity below

Theorem 2.6. If $f(z) \in \mathcal{A}$ satisfies

$$
\begin{equation*}
f(z) \in \mathcal{A}, \quad\left|\frac{f(z) f^{\prime \prime}(z)}{\left(f^{\prime}(z)\right)^{2}}-(1-\gamma) \frac{f(z)}{z f^{\prime}(z)}+\gamma-1\right|<\lambda \quad(z \in \mathbb{U}) \tag{8}
\end{equation*}
$$

then $f(z) \in \mathcal{K}\left(1-\frac{2 \gamma \lambda}{1+\gamma-\lambda}\right)$ for some $\gamma(\gamma \geq 1)$ and $\lambda\left(0 \leq \lambda \leq \frac{1+\gamma}{2 \gamma+1}\right)$, or $f(z) \in$ $\mathcal{K}\left(1+\frac{2 \gamma^{2}-2 \gamma \lambda-2}{1+\gamma-\lambda}\right)$ for some $\gamma\left(\frac{1}{2}<\gamma \leq 1\right)$ and $\lambda\left(0<\lambda \leq \frac{2 \gamma^{2}+\gamma-1}{2 \gamma+1}\right)$.

Proof. As the same technique in the proof of Theorem 2.2, we see

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+(1-\gamma)\right|<\frac{(1+\gamma)(\gamma-1+\lambda)}{1+\gamma-\lambda} \quad(z \in \mathbb{U})
$$

when $(\gamma \geq 1)$ for the inequality (8). This shows that

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>1-\frac{2 \gamma \lambda}{1+\gamma-\lambda} \quad(z \in \mathbb{U})
$$

Moreover, we see

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+(1-\gamma)\right|<1-\frac{(1+\gamma)(1-\gamma+\lambda)}{1+\gamma-\lambda} \quad(z \in \mathbb{U})
$$

when $\left(\frac{1}{2}<\gamma \leq 1\right)$ for the inequality (8). This shows that

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>1+\frac{2 \gamma^{2}-2 \gamma \lambda-2}{1+\gamma-\lambda} \quad(z \in \mathbb{U})
$$

The proof of theorem is completed.

References

[1] Miller, S. S., Mocanu, P. T. and Reade, M. O., (1984), Subordination preserving integral operators, Trans. Amer. Math. Soc., 283, 605-615.
[2] Robertson, M. S., (1936), On the theory of univalent functions, Ann. of Math., 38, 374-408.
[3] Singh, V. and Tuneski, N., (2004), On a criteria for starlikeness and convexity of analytic functions, Acta Math. Sci., 24 (B4), 597-602.
[4] Tuneski, N., (2009), Some simple sufficient conditions for starlikeness and convexity, Appl. Math. Letters, 22, 693-697.

[^0]: ${ }^{1}$ Department of Mathematics and Physics Setsunan University Neyagawa, Osaka 572-8508 Japan, e-mail: jerjun2002@yahoo.co.jp
 ${ }^{2}$ Department of Mathematics Kinki University Higashi-Osaka, Osaka 577-8502 Japan, e-mail: shige21@ican.zaq.ne.jp
 § Submitted for GFTA'13, held in Işık University on October 12, 2013. TWMS Journal of Applied and Engineering Mathematics, Vol.4, No.1; © Işık University, Department of Mathematics 2014; all rights reserved.

