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APPROXIMATE OPTIMALITY CONDITIONS

R. SAHRAOUI1, A. BEDDANI2 §

Abstract. We propose in this paper a systematic study which is a variational ap-
proach of approximate optimality conditions in terms of Ekeland’s variational principle
and some of its applications. Using a generalised differentiation(sub-differentiability)
theory for non-smooth functions, new properties are then identified and approximate
optimality conditions are established in the cases: convex, locally Lipschitz and finally
lower semi-continuous.
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1. Introduction

The differential of a convex function generalizes the notion of derivative and provided
its first examples in the theory of maximal monotone operators, so successful for partial
differential equations and integral equations . Another motivation also is an adjunct
of the work without convexity, called nonsmooth analysis. This paper is based on the
limiting Fréchet sub-differential which is introduce by Mordukhovich for several reasons:
in particular because this sub-differential is ”smaller” than of Clarke see [2], it contains
fewer errors and it is interesting for the riches their calculations. One objective of the
optimization is to establish necessary and sufficient optimality conditions if possible. The
existence of the optimum solution is ensured for example by the compactness of the domain
and the semi-continuity of the objective. And if one of these conditions is not satisfied
the problem may not have exact solutions, but if the objective is bounded from below, the
infinimum exists without being hit. It is for this reason Ekeland thought to the notion of
the approximate solution. And he was the first in 1974 which gave the necessary conditions
of optimality for approximate solutions only for the case where the data of the problem
are differentiable. This paper carries on the one hand on the Ekeland variational principle,
has been very important in nonlinear analysis, in which he enjoyed a great variation of
applications ranging from geometry Banach spaces see [1], in optimization theory see
Ekeland [3],[4] and sub-differential generalized calculation to calculate the variation see
[2]. And secondly on the nonsmooth analysis in order to generate optimality conditions for
optimization problems with constraints by applying the variational principle of Ekeland
to obtain the approximate optimality conditions in different situations.
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2. The classical optimality conditions

In general, we are interested in optimization to the necessary and sufficient conditions
in different situations. Let the minimisation problem:

(P )

{
min f (x)
x ∈ D

,
f : X → R̄

D ⊂ X , X - Banach

D =
{
x ∈ X / gi (x) ≤ 0, i = 1, ..n

}
2.1. Case: Data are differentiable.

Theorem 2.1. If f
′
G(.) exist and a a local min of (P ) =⇒

⟨
f

′
G (a) , v

⟩
≥ 0, ∀v ∈ T (D, a)

2.1.1. Theorem of Kuhn-Tucker. [7]

Theorem 2.2. If D is qualified and a is a local min of (P ), then ∃λ ∈ Rn (positive): i) f
′
(a) +

n∑
i=1

λig
′
i(a) = 0 \

ii) λi gi(a) = 0, ∀i ∈ {1, ...., n}.

2.2. Case: Data are convex.

Definition 2.1. The sub-differential of f at x̄ is the following set, and denoted by:

∂f(x̄) = {x∗ ∈ X∗/ f(x) ≥ f(x̄) + ⟨x∗, x̄− x⟩,∀x ∈ X} . (1)

2.2.1. Theorem of Rockafellar. [7]

Theorem 2.3. Let f , D convex and f continuous.
a is local minimum of (P ) =⇒ 0 ∈ ∂f (a) +N (D, a) .

Theorem 2.4. Let f, gi convex continuous.
a is local minimum of (P ) =⇒ ∃λi ≥ 0 , i = 0, .....n:

i) gi(a) ≤ 0 and λigi(a) = 0, i = 1, .., n.

2i) 0 ∈ λ0∂f(a) +
n∑

i=1
λi∂gi(a).

2.3. Case: Data are locally Lipschitz.

Definition 2.2. Let f : X → R̄ such that the derivative of f
′
c (a, .) exists. Clarke sub-

differential of f at x is the set noted as follows:

∂Cf(x) =
{
x∗ ∈ X∗/ ⟨x∗, ν⟩ ≤ f

′
c (x, ν) ; ∀ν ∈ X

}
. (2)

2.3.1. Theorem of Clarke. [2]

Theorem 2.5. Let f locally Lipschitzian and a local minimum of (P ) =⇒
0 ∈ ∂cf (a) +Nc (D, a)

.

Theorem 2.6. Let f, gi locally Lipschitzian and a local minimum of (P ) =⇒ ∃λi ≥ 0,
i = 0, .....n /  i) 0 ∈ λ0∂cf(a) +

n∑
i=1

λi∂cgi(a)

2i) λi = 0 si i /∈ I (a)
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2.4. Case: Data are lower semi-continuous.

Definition 2.3 (Fréchet normal cone). Let C a sub set nonempty of a Banach space X
and x ∈ clC, the following nonempty set:

N̂(C, x) =

x∗ ∈ X∗/ lim sup
y
C→x

⟨x∗, y − x⟩
∥y − x∥

≤ 0

 , (3)

is called the Fréchet normal cone of C at x.

2.5. Limiting Normal Cone.

Definition 2.4. The nonempty set:

N(C, x̄) = lim sup
x→x̄

N̂ (x̄, C) , (4)

is called the limiting normal Cone at x̄ ∈ clC.

Remark 2.1.
Wehave : N̂(C, x̄) ⊂ N(C, x̄), .

for all set C ⊂ X and all point x̄ ∈ clC.

2.6. Limiting Sub-Differential.

Definition 2.5. Let x̄ ∈ domf , we have:

i) ∂f(x̄) = {x∗ ∈ X∗ / (x∗,−1) ∈ N ((x̄, f (x̄)), épi f)} ,
2i) ∂∞f(x̄) = {x∗ ∈ X∗ /(x∗, 0) ∈ N ((x̄, f (x̄)), épif)}.

are called respectively the limiting sub-differential and the singular sub-differential of f at
x̄.

2.7. Fréchet Sub-Differential.

Definition 2.6. The Fréchet sub-differential of the function f at x̄ is defined by:

∂̂f(x̄) =
{
x∗ ∈ X∗ / (x∗,−1) ∈ N̂ ((x̄; f (x̄)), épi f)

}
, (5)

And we observe that ∂̂f(x̄) ⊂ ∂f(x̄) for all x̄ ∈ domf . So the function f says regular at x̄

if ∂̂f(x̄) = ∂f(x̄).

Theorem 2.7. Let X an Asplund space see[8] and a function f : X → R̄ normally compact
see[8] and lower semi continuous on X, then if x̄ minimise f on X we have 0 ∈ ∂f (x̄).

3. Ekeland’s Variational Principle

Theorem 3.1. [4] Let (X, ∥.∥) of Banach and f : X → R̄ a proper function, l.s.c. and
bounded from below on X.
For each ε > 0 and each u ∈ X such that:

f(u) ≤ inf
X
f + ε.

and for all λ > 0, there exists v ∈ X, such that:

f (v) ≤ f (u) , (6)

∥v − u∥ ≤ λ, (7)

f (v) < f (x) +
ε

λ
∥x− v∥ , ∀x ∈ X, ∀x ̸= v. (8)
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4. Approximate Optimality Conditions

4.1. The Differentiable Case.

Theorem 4.1. Let X a Banach space and f : X → R̄ a function l.s.c, Gteaux differen-
tiable and bounded from below on X. Then: ∀ϵ > 0, ∀u ∈ X verified f(u) ≤ inf

x∈X
f (x)+ε

et ∀λ > 0, there exists v ∈ X such that

f(v) ≤ f(u), (9)

∥v − u∥ ≤ λ, (10)∥∥f ′
G(v)

∥∥∗ ≤ ϵ

λ
. (11)

Let X a Banach space, D be a closed sub set of X and a function f : X → R̄.
consider the problem

(P1)

{
inf f (x)
x ∈ D

Theorem 4.2. Assumed f l.s.c., Fréchet differentiable on X and bounded from below on
D. Then: ∀ε > 0, ∀u ∈ X verified f(u) ≤ inf

x∈D
f (x) + ε, and ∀λ > 0, there exists xϵ ∈ D

such that
f(xε) ≤ f(u), (12)

∥u− xε∥ < λ, (13)⟨
f

′
F (xε) , v

⟩
+

ε

λ
∥v∥ ≥ 0, ∀v ∈ T (D,xε) . (14)

Let X a Banach space, D ⊂ X and f : X → R̄ Fréchet differentiable. consider the
problem (P2) type:

(P2)

{
inf f (x)
x ∈ D

withD =

{
x ∈ X/gi(x) = 0, ∀i ∈ 1, ..., p, and

gi (x) ≤ 0, i = p+ 1, .., n

}
gi

(
i = 1, .., n

)
are C1 class in sense of Fréchet and the domain D is qualified.

Theorem 4.3. If the function f is bounded from below on the domain D, then:

∀ϵ > 0, ∃xϵ ∈ D such that f (xϵ) ≤ inf
x∈D

f (x) + ε2, ∃ λi ∈ R+
, i ∈ 1, ..., n verified:

λigi(xϵ) = 0, ∀i and∥∥∥∥ f
′
F (xϵ) +

n∑
i=1

λig
′
iF
(xϵ)

∥∥∥∥ ≤ ϵ.

4.2. The Convex Case. Let X a Banach space, D a closed sub set of X and f : X → R̄
is convex in the problem (P1).

Theorem 4.4. Let X a Banach space and f : X → R̄ l.c.i, proper, convex and bounded
from below on D. Then:

∀ϵ > 0, ∀u ∈ X such that:

f(u) ≤ inf
x∈D

f (x) + ϵ, and

∀ λ > 0 there exists xϵ ∈ D, such that

0 ∈ ∂f (xϵ) +
ϵ

λ
B∗ +N (D,xϵ) .

Let X a Banach space, D ⊂ X and f : X → R̄ convex in
the problem (P2) with gi

(
i = 1, .., n

)
are convex.
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Theorem 4.5. If f : X → R̄, l.s.c., proper and bounded from below and let ϵ > 0, u ∈ D,
such that

f (u) ≤ inf
D
f (x) + ε, and

∀ λ > 0, there exists xϵ ∈ D and ∃(λ0, .., λn) ∈ Rn
+ verified

0 ∈ λ0∂f (xϵ) +

n∑
i=1

λi∂gi(xε) + λ0
ε

λ
B∗.

4.3. The Locally Lipschitz Case.

Theorem 4.6. Let X a Banach space, D a closed sub set of X and f : X → R̄ l.s.c.,
locally Lipschitzian and bounded from bellow. Then:

∀ ϵ > 0, ∀ u ∈ X such that:

f(u) ≤ inf
x∈D

f (x) + ε, and

∀ λ > 0, there exists xϵ ∈ D, verified

0 ∈ ∂cf (xϵ) +
ε

λ
B∗ +Nc(D,xϵ).

Let f , gi
(
i = 1, .., q

)
and hj

(
j = 1, .., p

)
locally Lipchitzian in (P2)

Theorem 4.7. Let f : X → R̄, l.s.c., proper and bounded from bellow. Then ∀ϵ > 0, and
∀u ∈ D , such that:

f (u) ≤ inf
D
f (x) + ϵ, and

∀ λ > 0, there exists xϵ ∈ D ∃(λ0, .., λn) ∈ Rn
+ verifiant:

0 ∈ λ0∂f(xε) +

q∑
i=1

λi∂c |gi(xε)|+
p∑

i=1

λi∂chi(xε) +
ε

λ
B∗.

4.4. The Lower Semi Continuous Case.

Theorem 4.8. Let X an Asplund space see [8] and f : X → R̄ normally compact see [8],
l.s.c. proper and bounded from below. Then:

∀ϵ > 0 and ∀u ∈ X such that

f(u) ≤ inf
x∈X

f (x) + ϵ, and

for all λ > 0, there exists xε ∈ X, verified:

0 ∈ ∂f (xε) +
ϵ

λ
B∗.

Theorem 4.9. Let X an Asplund space, D a closed sub set of X and f : X → R̄ normally
compact, l.s.c. and bounded from bellow. Then:

∀ϵ > 0 and ∀u ∈ X such that:

f(u) ≤ inf
x∈D

f (x) + ε, and

∀ λ > 0, there exists xϵ ∈ D, verified:

0 ∈ ∂f (xϵ) +
ε

λ
B∗ +N(D,xϵ).

Remark 4.1. This theorem is a general result, it gives the theorem (4.2) in the differ-
entiable case, Theorem (4.4) in the convex case and Theorem (4.6) in the case of locally
Lipschitz.
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