HARMONIC MAPPINGS RELATED TO THE CONVEX FUNCTIONS

ARZU YEMISCI ${ }^{1}$ AND YAŞAR POLATOG̃LU ${ }^{2} \S$

Abstract

The main purpose of this paper is to give the extent idea which was introduced by R. M. Robinson [5]. One of the interesting application of this extent idea is an investigation of the class of harmonic mappings related to the convex functions.

Keywords: Harmonic Mappings, Distortion theorem, Growth theorem, Coefficient inequality.

AMS Subject Classification: Primary 30C45, Secondary 30C55.

1. Introduction

Let $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}$ be the open unit disc in the complex plane \mathbb{C}. A complex-valued harmonic function $f: \mathbb{D} \rightarrow \mathbb{C}$ has the representation

$$
\begin{equation*}
f=h(z)+\overline{g(z)} \tag{1}
\end{equation*}
$$

where $h(z)$ and $g(z)$ are analytic in \mathbb{D} and have the following power series expansions,

$$
\begin{gathered}
h(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \\
g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}, z \in \mathbb{D}
\end{gathered}
$$

where $a_{n}, b_{n} \in \mathbb{C}, n=0,1,2, \ldots$ Choose (i.e, $b_{0}=0$) so the representation (1) is unique in \mathbb{D} and is called the canonical representation of f.
For the univalent and sense-preserving harmonic mappings f in \mathbb{D}, it is convenient to make further normalization (without loss of generality), $h(0)=0$ (i.e. , $a_{0}=0$) and $h^{\prime}(0)=1$ (i.e. , $a_{1}=1$). The family of such functions f is denoted by S_{H} [1]. The family of all functions $f \in S_{H}$ with the additional property that $g^{\prime}(0)=0$ (i.e., $b_{1}=0$) is denoted by S_{H}^{0} [1]. Observe that the classical family of univalent functions S consists of all functions $f \in S_{H}^{0}$ such that $g(z) \equiv 0$. Thus it is clear that $S \subset S_{H}^{0} \subset S_{H}[1]$.

Let Ω be the family of functions $\phi(z)$ regular in the open unit disc \mathbb{D} and satisfying the conditions $\phi(0)=0,|\phi(z)|<1$ for every $z \in \mathbb{D}$.
Next, for arbitrary fixed real numbers $A, B,-1 \leq B<A \leq 1$, denoted by $P(A, B)$, the family of functions $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$ regular in \mathbb{D} and such that $p(z)$ is in $P(A, B)$

[^0]if and only if
\[

$$
\begin{equation*}
p(z)=\frac{1+A \phi(z)}{1+B \phi(z)} \tag{2}
\end{equation*}
$$

\]

for some function $\phi(z) \in \Omega$ and every $z \in \mathbb{D}$. This class was introduced by Janowski W. [4].
Moreover, let $S^{*}(A, B)$ denote the family of functions $h(z)=z+a_{2} z^{2}+\ldots$ regular in \mathbb{D} and such that $h(z)$ is in $S^{*}(A, B)$ if and only if

$$
\begin{equation*}
z \frac{h^{\prime}(z)}{h(z)}=p(z) \tag{3}
\end{equation*}
$$

for some $p(z) \in P(A, B)$ and every $z \in \mathbb{D}$.
A set \mathbb{D} in the plane is called convex if for every pair of points w_{1} and w_{2} in the interior of \mathbb{D}, the line segment joining w_{1} and w_{2} also in the interior of \mathbb{D}. If a function $h(z)$ maps \mathbb{D} onto a convex domain, then $h(z)$ is called a convex function. The analytic statement of the convex function $h(z)$ is given by

$$
\begin{equation*}
\operatorname{Re}\left(1+z \frac{h^{\prime \prime}(z)}{h^{\prime}(z)}\right)>0 \tag{4}
\end{equation*}
$$

and the class of such functions is denoted by C.
Finally, let $F_{1}(z)=z+\alpha_{2} z^{2}+\alpha_{3} z^{3}+\ldots$ and $F_{2}(z)=z+\beta_{2} z^{2}+\beta_{3} z^{3}+\ldots$ be analytic functions in \mathbb{D}. If there exists a function $\phi(z) \in \Omega$ such that $F_{1}(z)=F_{2}(\phi(z))$ for all $z \in \mathbb{D}$, then we say that $F_{1}(z)$ is subordinated to $F_{2}(z)$ and we write $F_{1}(z) \prec F_{2}(z)$. We also note that if $F_{1}(z) \prec F_{2}(z)$, then $F_{1}(\mathbb{D}) \subset F_{2}(\mathbb{D})$.
Now we consider the following class of harmonic mappings,

$$
\begin{equation*}
S_{H}^{C}(A, B)=\left\{f=h(z)+\overline{g(z)} \left\lvert\, w(z)=\frac{g^{\prime}(z)}{h^{\prime}(z)} \prec b_{1} \frac{1+A \phi(z)}{1+B \phi(z)}\right., h(z) \in C\right\} \tag{5}
\end{equation*}
$$

In the present paper we will give some properties of the class of $S_{H}^{C}(A, B)$.
For the aim of this paper we need the following theorem and lemma.
Lemma 1.1. ([3]) Let $\phi(z)$ be regular in the open unit disc \mathbb{D} with $\phi(0)=0$ and $|\phi(z)|<1$. If $|\phi(z)|$ attains its maximum value on the circle $|z|=r$ at the point z_{1}, then we have $z_{1} \cdot \phi^{\prime}(z)=k \phi\left(z_{1}\right)$ for some $k \geq 1$.

Theorem 1.1. ([2]) If $h(z) \in C$, then for $|z|=r, 0 \leq r<1$
i. $\operatorname{Re}\left(z \frac{h^{\prime}(z)}{h(z)}\right)>\frac{1}{2}$
ii. $\frac{r}{1+r} \leq|h(z)| \leq \frac{r}{1-r}$,

$$
\frac{1}{(1+r)^{2}} \leq\left|h^{\prime}(z)\right| \leq \frac{1}{(1-r)^{2}}
$$

for all $|z|=r<1$.

2. Main Results

Theorem 2.1. Let $f=(h(z)+\overline{g(z)})$ be an element of $S_{H}^{C}(A, B)$. Then

$$
\begin{equation*}
\frac{g(z)}{h(z)} \prec b_{1} \frac{1+A z}{1+B z} \tag{6}
\end{equation*}
$$

Proof. Since $f=h(z)+\overline{g(z)}$ be an element of $S_{H}^{C}(A, B)$, then

$$
\begin{gather*}
\frac{g^{\prime}(z)}{h^{\prime}(z)} \prec b_{1} \frac{1+A z}{1+B z} \Rightarrow \frac{1}{b_{1}} \frac{g^{\prime}(z)}{h^{\prime}(z)}=\frac{1+A \phi(z)}{1+B \phi(z)} \Rightarrow \\
\left|\frac{1}{b_{1}} \frac{g^{\prime}(z)}{h^{\prime}(z)}-\frac{1-A B r^{2}}{1-B^{2} r^{2}}\right| \leq \frac{(A-B) r}{1-B^{2} r^{2}} \Rightarrow \\
\left|b_{1}\right| \frac{1-A r}{1-B r} \leq\left|\frac{g^{\prime}(z)}{h^{\prime}(z)}\right| \leq\left|b_{1}\right| \frac{1+A r}{1+B r} \tag{7}
\end{gather*}
$$

Therefore the relations (7) shows that the values of $\left(\frac{g^{\prime}(z)}{h^{\prime}(z)}\right)$ are in the disc

$$
D_{r}\left(b_{1}\right)= \begin{cases}\left\{\left.\frac{g^{\prime}(z)}{h^{\prime}(z)}| | \frac{g^{\prime}(z)}{h^{\prime}(z)}-\frac{b_{1}(1-A B) r^{2}}{1-B^{2} r^{2}} \right\rvert\, \leq \frac{\left|b_{1}\right|(A-B) r}{1-B^{2} r^{2}}\right\}, & B \neq 0 \tag{8}\\ \left\{\frac{g^{\prime}(z)}{h^{\prime}(z)}| | \frac{g^{\prime}(z)}{h^{\prime}(z)}-b_{1}\left|\leq\left|b_{1}\right| A r\right\},\right. & B=0\end{cases}
$$

Now we define a function $\phi(z)$ by

$$
\begin{equation*}
\frac{g(z)}{h(z)}=b_{1} \frac{1+A \phi(z)}{1+B \phi(z)} \tag{9}
\end{equation*}
$$

then $\phi(z)$ is analytic in \mathbb{D} and $\phi(0)=0$. Now we need to show that $|\phi(z)|<1$. If we take derivative from (9), we obtain

$$
\begin{equation*}
\frac{g^{\prime}(z)}{h^{\prime}(z)}=b_{1}\left[\frac{1+A \phi(z)}{1+B \phi(z)}+\frac{(A-B) z \phi^{\prime}(z)}{(1+B \phi(z))^{2}} \frac{h(z)}{z h^{\prime}(z)}\right] \tag{10}
\end{equation*}
$$

On the other hand since $h(z) \in C$, using Theorem 1.1

$$
\operatorname{Re}\left(z \frac{h^{\prime}(z)}{h(z)}\right)>\frac{1}{2} \Rightarrow\left|z \frac{h^{\prime}(z)}{h(z)}-\frac{1}{1-r^{2}}\right| \leq \frac{r}{1-r^{2}} \Rightarrow \frac{h(z)}{z h^{\prime}(z)}=1+r e^{i \theta}
$$

this shows that the boundary value $\frac{h(z)}{z h^{\prime}(z)}$. Taking derivative from (9) we get

$$
w(z)=\frac{g^{\prime}(z)}{h^{\prime}(z)}= \begin{cases}b_{1}\left(\frac{1+A\left(\phi_{z}\right)}{1+B \phi(z)}+\frac{(A-B) z \phi^{\prime}(z)}{(1+B \phi(z))^{2}} \frac{h(z)}{z h^{\prime}(z)}\right), & B \neq 0 \tag{11}\\ b_{1}\left[(1+A \phi(z))+A z \phi^{\prime}(z) \frac{h(z)}{z h^{\prime}(z)}\right], & B=0\end{cases}
$$

In this step if we use the Jack's Lemma then we obtain

$$
w\left(z_{1}\right)=\frac{g^{\prime}\left(z_{1}\right)}{h^{\prime}\left(z_{1}\right)}= \begin{cases}b_{1}\left(\frac{1+A\left(\phi_{(} z_{1}\right)}{1+B \phi\left(z_{1}\right)}+\frac{k(A-B) \phi\left(z_{1}\right)}{\left(1+B \phi\left(z_{1}\right)\right)^{2}}\left(1+r e^{i \theta}\right)\right] \notin w\left(\mathbb{D}_{r}\right), & B \neq 0 \tag{12}\\ b_{1}\left[\left(1+A \phi\left(z_{1}\right)\right)+k A \phi\left(z_{1}\right)\left(1+r e^{i \theta}\right)\right] \notin w\left(\mathbb{D}_{r}\right), & B=0\end{cases}
$$

because $k \geq 1$ and $\left|\phi^{\prime}\left(z_{1}\right)\right|=1$.This contradiction with

$$
\frac{g^{\prime}(z)}{h^{\prime}(z)} \prec b_{1} \frac{1+A z}{1+B z}
$$

therefore $|\phi(z)|<1$ for all $z \in \mathbb{D}$.
Lemma 2.1. Let $f=(h(z)+\overline{g(z)})$ be an element of $S_{H}^{C}(A, B)$, then

$$
\begin{cases}\frac{\left|b_{1}\right|(1-A r)}{1-B r} \leq|w(z)| \leq \frac{\left|b_{1}\right|(1+A r)}{1+B r}, & B \neq 0 \tag{13}\\ \left|b_{1}\right|(1-A r) \leq|w(z)| \leq\left|b_{1}\right|(1+A r), & B=0\end{cases}
$$

$$
\begin{cases}\left|\frac{g^{\prime}(z)}{h^{\prime}(z)}-\frac{b_{1}\left(1-A B r^{2}\right)}{1-B^{2} r^{2}}\right| \leq \frac{\left|b_{1}\right|(A-B) r}{1-B^{2} r^{2}}, & B \neq 0 \tag{14}\\ \left|\frac{g^{\prime}(z)}{h^{\prime}(z)}-b_{1}\right| \leq\left|b_{1}\right| A r, & B=0\end{cases}
$$

After the simple calculations from (14) we get (13).
Corollary 2.1. Let $f=(h(z)+\overline{g(z)})$ be an element of $S_{H}^{C}(A, B)$, then

$$
\begin{aligned}
& \frac{\left[\left(1-\left|b_{1}\right|\right)+\left(B-\left|b_{1}\right| A\right) r\right]\left[\left(1+\left|b_{1}\right|\right)+\left(B+\left|b_{1}\right| A\right) r\right]}{(1+B r)^{2}} \leq\left(1-|w(z)|^{2}\right) \leq \\
& \frac{\left[\left(1-\left|b_{1}\right|\right)-\left(B-\left|b_{1}\right| A\right) r\right]\left[\left(1+\left|b_{1}\right|\right)-\left(B+\left|b_{1}\right| A\right) r\right]}{(1-B r)^{2}} \\
& \frac{\left(1+\left|b_{1}\right|\right)-\left(B+\left|b_{1}\right| A\right) r}{1-B r} \leq(1+|w(z)|) \leq \frac{\left(1+\left|b_{1}\right|\right)+\left(B+\left|b_{1}\right| A\right) r}{1+B r} \\
& \frac{\left(1-\left|b_{1}\right|\right)+\left(B-\left|b_{1}\right| A\right) r}{1+B r} \leq(1-|w(z)|) \leq \frac{\left(1-\left|b_{1}\right|\right)-\left(B-\left|b_{1}\right| A\right) r}{1-B r}
\end{aligned}
$$

Proof. This corollary is a simple consequence of Lemma 2.1.
Theorem 2.2. Let $f=(h(z)+\overline{g(z)})$ be an element of $S_{H}^{C}(A, B)$, then

$$
\begin{cases}r F_{1}(A, B,-r) \leq|g(z)| \leq r F_{1}(A, B, r), & B \neq 0 \tag{15}\\ r G_{1}(A,-r) \leq|g(z)| \leq r G_{1}(A, r), & B=0\end{cases}
$$

where

$$
\begin{aligned}
F_{1}(A, B, r) & =\frac{1}{1-r} \frac{\left|b_{1}\right|(1+A r)}{1+B r}, B \neq 0 \\
G_{1}(A, r) & =\frac{1}{1-r}\left|b_{1}\right|(1+A r), B=0
\end{aligned}
$$

and

$$
\begin{cases}F_{2}(A, B,-r) \leq\left|g^{\prime}(z)\right| \leq F_{2}(A, B, r), & B \neq 0 \tag{16}\\ G_{2}(A,-r) \leq\left|g^{\prime}(z)\right| \leq G_{2}(A, r), & B=0\end{cases}
$$

where

$$
\begin{aligned}
F_{2}(A, B, r) & =\frac{1}{(1-r)^{2}} \frac{\left|b_{1}\right|(1+A r)}{1+B r}, B \neq 0 \\
G_{2}(A, r) & =\frac{1}{(1-r)^{2}}\left|b_{1}\right|(1+A r), B=0
\end{aligned}
$$

Proof. Using the definition of the class $S_{H}^{C}(A, B)$ and Theorem (1.1) we obtain

$$
\begin{cases}\frac{\left|b_{1}\right|(1-A r)}{1-B r} \leq|w(z)|=\left|\frac{g^{\prime}(z)}{h^{\prime}(z)}\right| \leq \frac{\left|b_{1}\right|(1+A r)}{1+B r}, & B \neq 0 \tag{17}\\ \left|b_{1}\right|(1-A r) \leq|w(z)|=\left|\frac{g^{\prime}(z)}{h^{\prime}(z)}\right| \leq\left|b_{1}\right|(1+A r), & B=0\end{cases}
$$

$$
\begin{cases}\left|h^{\prime}(z)\right| \frac{\left|b_{1}\right|(1-A r)}{1-B r} \leq\left|g^{\prime}(z)\right| \leq\left|h^{\prime}(z)\right| \frac{\left|b_{1}\right|(1+A r)}{1+B r}, & B \neq 0 \tag{18}\\ \left|h^{\prime}(z)\right|\left|\left|b_{1}\right|\right|(1-A r) \leq\left|g^{\prime}(z)\right| \leq\left|h^{\prime}(z)\right|\left|b_{1}\right|(1+A r), & B=0\end{cases}
$$

similarly we obtain

$$
\begin{cases}|h(z)| \frac{b_{1}(1-A r)}{1-B r} \leq|g(z)| \leq|h(z)| \frac{b_{1}(1+A r)}{1+B r}, & B \neq 0 \tag{19}\\ |h(z)|\left|b_{1}\right|(1-A r) \leq|g(z)| \leq|h(z)|\left|b_{1}\right|(1+A r), & B=0\end{cases}
$$

Using Theorem 1.1 in inequalities (18) and (19) we get (15) and (16).
Corollary 2.2. If $f=(h(z)+\overline{g(z)})$ be an element of $S_{H}^{C}(A, B)$, then

$$
\begin{cases}\frac{1}{(1+r)^{4}} F_{3}\left(A, B,\left|b_{1}\right|,-r\right) \leq\left|J_{f(z)}\right| \leq \frac{1}{(1-r)^{4}} F_{3}\left(A, B,\left|b_{1}\right|, r\right), & B \neq 0 \tag{20}\\ \frac{1}{(1+r)^{4}} G_{3}\left(A,\left|b_{1}\right|,-r\right) \leq\left|J_{f(z)}\right| \leq \frac{1}{(1-r)^{4}} G_{3}\left(A,\left|b_{1}\right|, r\right), & B=0\end{cases}
$$

where

$$
\begin{gathered}
F_{3}\left(A, B,\left|b_{1}\right|, r\right)=\frac{\left[\left(1-\left|b_{1}\right|\right)-\left(B-\left|b_{1}\right| A\right) r\right]\left[\left(1+\left|b_{1}\right|\right)-\left(B+\left|b_{1}\right| A\right) r\right]}{(1-B r)^{2}} \\
G_{3}\left(A,\left|b_{1}\right|, r\right)=\left(1-\left|b_{1}\right|+\left|b_{1}\right| A r\right)\left(1+\left|b_{1}\right|-\left|b_{1}\right| A r\right)
\end{gathered}
$$

Proof. Since

$$
\begin{aligned}
J_{f}=\left|h^{\prime}(z)\right|^{2} & -\left|g^{\prime}(z)\right|^{2}=\left|h^{\prime}(z)\right|^{2}-\left|h^{\prime}(z) w(z)\right|^{2} \\
& =\left|h^{\prime}(z)\right|^{2}\left(1-|w(z)|^{2}\right),
\end{aligned}
$$

then using Theorem 2.2 and Corollary 2.1 we get (20).

Corollary 2.3. Let $f=(h(z)+\overline{g(z)})$ be an element of $S_{H}^{C}(A, B)$, then

$$
\begin{cases}\ln e^{-\frac{B-1+\left|b_{1}\right|(1-A)}{(B-1)(1+r)}}(1+r)^{\frac{\left|b_{1}\right|(B-A)}{(B-1)^{2}}}(1+B r)^{-\frac{\left|b_{1}\right|(B-A)}{(B-1)^{2}}} \leq|f| \tag{21}\\ \leq \ln e^{\frac{(B+1)+\left|b_{1}\right|(1+A)}{(B+1)(1-r)}}(1-r)^{\frac{\left|b_{1}\right|(A-B)}{(B+1)^{2}}}(1+B r)^{\frac{\left\lvert\, \frac{\left|b_{1}\right|(B-A)}{(B+1)^{2}}\right.}{}}, & B \neq 0 \\ \ln e^{\frac{-1+\left|b_{1}\right| \mid(1-A)}{1+r}}(1+r)^{-A\left|b_{1}\right|} \leq|f| \leq \ln e^{\frac{1+\left|b_{1}\right|(1+A)}{1-r}}(1-r)^{A\left|b_{1}\right|}, & B=0\end{cases}
$$

Proof. Since

$$
\begin{gather*}
\left(\left|h^{\prime}(z)\right|-\left|g^{\prime}(z)\right|\right)|d z| \leq|d f| \leq\left(\left|h^{\prime}(z)\right|+\left|g^{\prime}(z)\right|\right)|d z| \Rightarrow \\
\left(\left|h^{\prime}(z)\right|-\left|h^{\prime}(z) w(z)\right|\right)|d z| \leq|d f| \leq\left(\left|h^{\prime}(z)\right|+\left|h^{\prime}(z) w(z)\right|\right)|d z| \Rightarrow \\
\left|h^{\prime}(z)\right|(1-|w(z)|)|d z| \leq|d f| \leq\left|h^{\prime}(z)\right|(1+|w(z)|)|d z| \tag{22}
\end{gather*}
$$

Using Corollary 2.1 and Theorem 1.1 we obtain the following inequalities

$$
\begin{cases}\int_{0}^{r} \frac{1}{(1+t)^{2}} \frac{\left(1-\left|b_{1}\right|\right)+\left(B-\left|b_{1}\right| A\right) t}{1+B t} d t \leq|f| \leq \int_{0}^{r} \frac{1}{(1-t)^{2}} \frac{\left(1+\left|b_{1}\right|\right)+\left(B+\left|b_{1}\right| A\right) t}{1+B t} d t, & B \neq 0 \tag{23}\\ \int_{0}^{r} \frac{1}{(1+t)^{2}}\left[\left(1-\left|b_{1}\right|\right)-\left|b_{1}\right| A t\right] d t \leq|f| \leq \int_{0}^{r} \frac{1}{(1-t)^{2}}\left[\left(1+\left|b_{1}\right|\right)+\left|b_{1}\right| A t\right] d t, & B=0\end{cases}
$$

and by calculating the integral we get (21).

Theorem 2.3. If $f=(h(z)+\overline{g(z)})$ be an element of $S_{H}^{C}(A, B)$, then

$$
\begin{equation*}
\sum_{k=1}^{n}\left|b_{k}-b_{1} a_{k}\right|^{2} \leq\left|b_{1}\right|(A-B)^{2}+\sum_{k=1}^{n-1}\left|A b_{1} a_{k}-B b_{k}\right| \tag{24}
\end{equation*}
$$

Proof. Using Theorem 2.1 then we can write

$$
\begin{gathered}
\frac{g(z)}{h(z)} \prec b_{1} \frac{1+A z}{1+B z} \Rightarrow \frac{g(z)}{h(z)}=b_{1} \frac{1+A \phi(z)}{1+B \phi(z)} \Rightarrow \\
\frac{\frac{1}{b_{1}} g(z)}{h(z)}=\frac{1+A \phi(z)}{1+B \phi(z)} \Rightarrow \\
\frac{\frac{1}{b_{1}}\left(b_{1} z+b_{2} z^{2}+\ldots\right)}{z+a_{2} z^{2}+a_{3} z^{3}+\ldots}=\frac{1+A \phi(z)}{1+B \phi(z)} \Rightarrow \\
\frac{z+\frac{b_{2}}{b_{1}} z^{2}+\frac{b_{3}}{b_{1}} z^{3}+\ldots}{z+a_{2} z^{2}+a_{3} z^{3}+\ldots}=\frac{1+A \phi(z)}{1+B \phi(z)} \Rightarrow \\
\frac{z+\alpha_{2} z^{2}+\alpha_{3} z^{3}+\ldots}{z+a_{2} z^{2}+a_{3} z^{3}+\ldots}=\frac{1+A \phi(z)}{1+B \phi(z)} \Rightarrow \\
\frac{1+\alpha_{2} z+\alpha_{3} z^{2}+\ldots}{1+a_{2} z+a_{3} z^{2}+\ldots}=\frac{1+A \phi(z)}{1+B \phi(z)}=\frac{G(z)}{H(z)} \Rightarrow \\
G(z)=1+\alpha_{2} z+\alpha_{3} z^{2}+\ldots \\
H(z)=1+a_{2} z+a_{3} z^{2}+\ldots \\
\phi(z)=c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots
\end{gathered}
$$

From

$$
\frac{G(z)}{H(z)}=\frac{1+A \phi(z)}{1+B \phi(z)}
$$

then we get

$$
\begin{equation*}
G(z)-H(z)=\phi(z)(-B G(z)+A H(z)) \tag{25}
\end{equation*}
$$

From (25) we find

$$
\sum_{k=1}^{\infty}\left(\alpha_{k}-a_{k}\right) z^{k}=\left(\sum_{k=1}^{\infty} c_{k} z^{k}\right)\left((A-B)+\sum_{k=1}^{\infty}\left(-B \alpha_{k}+A a_{k}\right) z^{k}\right)
$$

And from the calculations we get

$$
\begin{align*}
& \sum_{k=n+1}^{\infty}\left(\alpha_{k}-a_{k}\right) z^{k}-\left(\sum_{k=1}^{\infty} c_{k} z^{k}\right)+\left(\sum_{k=n}^{\infty}\left(-B \alpha_{k}+A a_{k}\right) z^{k}\right)= \tag{26}\\
& \sum_{k=n+1}^{\infty}\left(\alpha_{k}-a_{k}\right) z^{k}-\left(\sum_{k=n+1}^{\infty} d_{k} z^{k}\right)\left(\sum_{k=n+1}^{\infty} s_{k} z^{k}\right)
\end{align*}
$$

The inequality (26) can be written in the following form

$$
F(z)=\phi(z) F_{1}(z),|\phi(z)|<1
$$

Therefore we have

$$
\begin{aligned}
|F(z)|^{2}= & \left|\phi(z) F_{1}(z)\right|^{2}=|\phi(z)|^{2}\left|F_{1}(z)\right|^{2} \Rightarrow|F(z)|^{2} \leq\left|F_{1}(z)\right|^{2} \Rightarrow \\
& \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F\left(r e^{i \theta}\right)\right|^{2} d \theta \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F_{1}\left(r e^{i \theta}\right)\right|^{2} d \theta
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \sum_{k=1}^{n}\left|\alpha_{k}-a_{k}\right|^{2} r^{2 k}+\sum_{k=n+1}^{\infty}\left|d_{k}\right|^{2} r^{2 k} \leq|A-B|^{2} r^{2 k}+\sum_{k=1}^{n-1}\left|A a_{k}-B \alpha_{k}\right|^{2} r^{2 k} \tag{27}
\end{equation*}
$$

Since

$$
\left(\sum_{k=n+1}^{\infty}\left|d_{k}\right|^{2} r^{2 k}\right)>0
$$

then the equality (27) can be written in the following form

$$
\sum_{k=1}^{n}\left|\alpha_{k}-a_{k}\right|^{2} r^{2 k} \leq|A-B|^{2} r^{2 k}+\sum_{k=1}^{n-1}\left|A a_{k}-B \alpha_{k}\right|^{2} r^{2 k}
$$

Taking $r \rightarrow 1$ we obtain

$$
\begin{equation*}
\sum_{k=1}^{n}\left|\alpha_{k}-a_{k}\right|^{2} \leq|A-B|^{2}+\sum_{k=1}^{n-1}\left|A a_{k}-B \alpha_{k}\right|^{2} \tag{28}
\end{equation*}
$$

If we take $\alpha_{k}=\frac{b_{k}}{b_{1}}$ then (2.23) can be written

$$
\begin{gathered}
\sum_{k=1}^{n}\left|\frac{b_{k}}{b_{1}}-a_{k}\right|^{2} \leq|A-B|^{2}+\sum_{k=1}^{n-1}\left|A a_{k}-B \frac{b_{k}}{b_{1}}\right|^{2} \\
\sum_{k=1}^{n}\left|b_{k}-b_{1} a_{k}\right|^{2} \leq\left|b_{1}\right|(A-B)^{2}+\sum_{k=1}^{n-1}\left|A b_{1} a_{k}-B b_{k}\right|^{2}
\end{gathered}
$$

References

[1] Duren, P. , Harmonic Mappings in the Plane, Vol. 156 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge UK, (2004).
[2] Goodman A. W. , Univalent Functions, Volume I and Volume II, Mariner publishing Company INC, Tampa Florida, (1983).
[3] Jack, I. S. , Functions starlike and convex of order α, J. London Math. Soc. 3(197), no 2, $469-474$.
[4] W. Janowski, Some extremal problems for certain families of analytic functions, Annales Polinici Mathematici 27, (1973), 297-326.
[5] Robinson, R. M . , Univalent majorants, Trans. Amer. Math. Soc. 61 (1947), 1-35.

[^0]: ${ }^{1}$ Department of Mathematics and Computer Sciences, İstanbul Kültür University, İstanbul, Turkey e-mail: a.sen@iku.edu.tr
 ${ }^{2}$ Department of Mathematics and Computer Sciences, İstanbul Kültür University, İstanbul, Turkey e-mail: y.polatoglu@iku.edu.tr
 § Submitted for GFTA'13, held in Işık University on October 12, 2013.
 TWMS Journal of Applied and Engineering Mathematics, Vol.4, No.1; © Işık University, Department of Mathematics 2014; all rights reserved.

