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PARTIAL COMPLETE CONTROLLABILITY

OF DETERMINISTIC SEMILINEAR SYSTEMS

AGAMIRZA E. BASHIROV1, MAHER JNEID2,§

Abstract. In this paper the concept of partial complete controllability for deterministic
semilinear control systems in separable Hilbert spaces is investigated. Some important
systems can be expressed as a first order differential equation only by enlarging the state
space. Therefore, the ordinary controllability concepts for them are too strong. This
motivates the partial controllability concepts, which are directed to the original state
space. Based on generalized contraction mapping theorem, a sufficient condition for the
partial complete controllability of a semilinear deterministic control system is obtained
in this paper. The result is demonstrated through appropriate examples.
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1. Introduction

The concepts of controllability for deterministic control systems, described by first or-
der differential equations in infinite dimensional spaces, has been adequately examined for
more than half of decade by many authors. The complete controllability describes a prop-
erty of steering any initial state to any point in the state space and was defined by Kalman
[16]. This property does not hold for many infinite dimensional systems (see Fattorini [15]
and Russel [22]). Therefore, the complete controllability concept was weakened to the
approximate controllability, which is a property of steering any initial state to arbitrarily
small neighbourhood of any point in the state space. Necessary and sufficient conditions
for complete and approximate controllability are almost completely studied and presented
in, for example, Curtain and Zwart [14], Bensoussan [4], Bensoussan et al. [5], Zabczyk
[26], Bashirov [3], Klamka [17] etc. for linear systems, Balachandran and Dauer [1, 2],
Klamka [18], Mahmudov [20] etc. for nonlinear systems, Sakthivel at al [23, 24], Yan [25]
etc. for fractional differential systems and Ren et al [21] for differential inclusions.

Recently, in Bashirov et al [6, 7] the partial controllability concepts were defined and
they are studied for linear control systems. The idea of these concepts is that some control
systems, including higher order differential equations, wave equations and delay equations,
can be written as a first order differential equation only by enlarging the dimension of the
state space. Therefore, the theorems on controllability, which are formulated for control
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systems in the form of first order differential equations, are too strong for them because
they involve the enlarged state space. In such cases the partial controllability concepts
become preferable, which assume the original state space. The basic controllability condi-
tions for linear systems, including resolvent conditions from Bashirov and Mahmudov [8]
and Bashirov and Kerimov [9] (see also [10, 11, 12]), are extended to partial controllability
concepts by just a replacement of the controllability operator by its partial version.

A sufficient condition for partial complete controllability for semilinear control systems
is obtained in Bashirov and Jneid [13]. This condition covers many systems, but there are
others which remain out of this sufficient condition. In this paper we prove an alternative
sufficient condition for partial complete controllability for semilinear control systems.

2. Setting of the problem

Consider the basic semilinear control system

x′t = Axt +But + σtf(t, xt, ut), 0 < t ≤ T, x0 = ξ ∈ X, (1)

with T > 0, where x is a state process and u is a control. We assume that the following
conditions hold.

(A): X and U are separable Hilbert spaces, H is a closed subspace of X and L is a
projection operator from X to H;

(B): A is a densely defined closed linear operator on X, generating a strongly con-
tinuous semigroup eAt, t ≥ 0;

(C): B is a bounded linear operator from U to X;
(D): f is a nonlinear function from [0, T ]×X × U to X, satisfying

• f is continuous on [0, T ]×X × U ;
• f is bounded on [0, T ]×X×U , that is, there is M ≥ 0 such that ∥f(t, x, u)∥ ≤
M for all (t, x, u) ∈ [0, T ]×X × U ;

• f is Lipschitz continuous with respect to x and u, that is, there is K ≥ 0 such
that

∥f(t, x, u)− f(t, y, v)∥ ≤ K(∥x− y∥+ ∥u− v∥)

for all t ∈ [0, T ], x, y ∈ X and u, v ∈ U ;
(E): σ is a continuous nonnegative real-valued function on [0, T ].

Here, σ is a some sort adjusting function. Below we will put additional condition on σ
so that to get a controllability property of the system (1).

Under these conditions the semilinear system (1) has a unique continuous solution in
the mild sense for every u ∈ C(0, T ;U) (the space of all U -valued continuous functions on
[0, T ], equipped with maximum-norm) and ξ ∈ X (see, Li and Yong [19]), that is, there is
a unique continuous function x from [0, T ] to X such that

xt = eAtξ +

∫ t

0
eA(t−s)(Bus + σsf(s, xs, us)) ds. (2)

Denote Uad = C(0, T ;U), regarding this space as a set of admissible controls. Let

Dξ,T = {h ∈ H : x0 = ξ and ∃u ∈ Uad such that h = LxT }.

In accordance with the definitions from Bashirov et al [6, 7], the semilinear control system
(1) is said to be L-partially complete controllable on Uad for the time T if Dξ,T = H for
all ξ ∈ X. Similarly, it is said to be L-partially approximate controllable on Uad for the
time T if Dξ,T = H for all ξ ∈ X, where Dξ,T is the closure of Dξ,T . In the case H = X,
we have L = I (the identity operator). Respectively, these definitions reduce to the well
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known definitions of complete and approximate controllability, respectively. In this paper
we deal with L-partial complete controllability.

The reason for studying L-partial controllability concepts is that many systems can
be written in the form of (1) if the original state space is enlarged. Therefore, suitable
controllability concepts for such systems are the L-partial controllability concepts with
the operator L projecting the enlarged state space to the original one.

Introduce the controllability operator

Qt =

∫ t

0
eAsBB∗eA

∗sds, 0 ≤ t ≤ T,

and the L-partial controllability operator

Q̃t = LQtL
∗, 0 ≤ t ≤ T,

where L∗ is the adjoint of L. The L-partial controllability operator Q̃t becomes the
controllability operator Qt if L = I (the identity operator). The operator-valued function

Q̃ have the following properties, which will be used without reference:

(i) Q̃0 = 0;

(ii) Q̃t is a nonnegative for all 0 ≤ t ≤ T , that is ⟨Q̃th, h⟩ ≥ 0 for all h ∈ H;

(iii) Q̃t = Q̃s + Q̃t−s for all 0 ≤ s ≤ t ≤ T ;

(iv) Q̃ is increasing, that is ⟨(Q̃t − Q̃s)h, h⟩ ≥ 0 for all h ∈ H and 0 ≤ s ≤ t ≤ T ;

(v) ∥Q̃s∥ ≤ ∥Q̃t∥ for 0 ≤ s ≤ t ≤ T ;

(vi) Q̃ is continuous (in the uniform operator topology) function on [0, T ].

Here, (i) and (ii) are trivial, (iii) follows from

Q̃t = Q̃s +

∫ t

s
LeArBB∗eA

∗rL∗ dr = Q̃s + Q̃t−s,

and (iv)–(vi) follow (iii). Since Q = Q̃ for L = I, (i)–(vi) hold for Q as well.
We will additionally assume that

(E): For every 0 < t ≤ T , Q̃t is coercive.

The coercivity of Q̃t means that there is a number γt > 0 such that

⟨Q̃th, h⟩ ≥ γt∥h∥2 for all h ∈ H.

This implies the existence of the bounded inverse Q̃−1
t with

∥Q̃−1
t ∥ ≤ 1

γt
.

Clearly γt is not unique. We will let

γt = max{α > 0 : ⟨Q̃th, h⟩ ≥ α∥h∥2 for all h ∈ H}.
Here, γt is the maximum of a nonempty (by condition (E)) closed and bounded above set
and, therefore, γt exists. One can easily deduce the following properties of the function
γ : (0, T ] → (0,∞):

(vii) γ is increasing, that is s < t implies γs ≤ γt;
(viii) γ is continuous;
(ix) limt→0+ γt = 0.

By (ix), the integral
∫ T
0

dt
γt

is an improper integral. Therefore, we additionally set the

rate of convergence in (ix) as follows.

(F):
∫ T
0 (σt/γT−t) dt < ∞.
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In particular, if there exists α > 0 such that γT−t ≥ (T − t)1−ασt for every 0 ≤ t ≤ T ,
then ∫ T

0

σt dt

γT−t
=

∫ T

0
(T − t)α−1 dt =

Tα

α
< ∞.

Therefore, in this case the condition (F) holds.

3. Partially Complete Controllability

Choose 0 < τ ≤ T and let Ũτ = C(0, τ ;U) and X̃τ = C(0, τ ;X). Then X̃τ × Ũτ is a
Banach space with the norm

∥(·, ·)∥X̃τ×Ũτ
= ∥ · ∥X̃τ

+ ∥ · ∥Ũτ
.

Define the operator Gτ : X̃τ × Ũτ → X̃τ × Ũτ by

Gτ (y, v)t = (Yt, Vt), 0 ≤ t ≤ τ, (3)

where

Yt = eAtξ +Qte
A∗(T−t)L∗Q̃−1

T (h− LeAT ξ) +

∫ t

0
eA(t−s)σsf(s, ys, vs) ds

−
∫ t

0
Qt−se

A∗(T−t)L∗Q̃−1
T−se

A(T−s)σsf(s, ys, vs) ds (4)

and

Vt = B∗eA
∗(T−t)L∗

(
Q̃−1

T (h− LeAT ξ)−
∫ t

0
Q̃−1

T−se
A(T−s)σsf(s, ys, vs) ds

)
, (5)

where ξ ∈ X and h ∈ H.

Lemma 3.1. Under the conditions (A)–(E), let 0 < τ < T , ξ ∈ X, and h ∈ H. Then the
operator Gτ , defined by (3)–(5), has a unique fixed point.

Proof. Clearly, Gτ transforms X̃τ × Ũτ into X̃τ × Ũτ . Take any (y, v), (z, w) ∈ X̃τ × Ũτ .
Let

N = sup
0≤t≤T

∥eAt∥ and ∥σ∥ = max
0≤t≤T

σt.

Denote Gτ (y, v) = (Y, V ) and Gτ (z, w) = (Z,W ). Then

Gτ (y, v)t −Gτ (z, w)t = (Yt − Zt, Vt −Wt).

Here, ∥Yt − Zt∥X can be estimated as follows:

∥Yt − Zt∥ ≤
∫ t

0
∥Qt−se

A∗(T−t)L∗Q̃−1
T−se

A(T−s)σs∥∥f(s, ys, vs)− f(s, zs, ws)∥ ds

+

∫ t

0
∥eA(t−s)σs∥∥f(s, ys, vs)− f(s, zs, ws)∥ ds

≤ N2∥σ∥
∫ t

0

∥Qt−s∥
γT−s

∥f(s, ys, vs)− f(s, zs, ws)∥ ds

+N∥σ∥
∫ t

0
∥f(s, ys, vs)− f(s, zs, ws)∥ ds

≤
(
1 +

∥QT ∥N
γT−τ

)
NK∥σ∥

∫ t

0
(∥ys − zs∥+ ∥vs − ws∥) ds. (6)
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Similarly, for ∥Vt −Wt∥U we have

∥Vt −Wt∥ ≤ ∥B∗eA
∗(T−t)L∗∥

∫ t

0
∥Q̃−1

T−se
A(T−s)σs∥∥f(s, ys, vs)− f(s, zs, ws)∥ ds

≤ N2∥B∥∥σ∥
∫ t

0

1

γT−s
∥f(s, ys, vs)− f(s, zs, ws)∥ ds

≤ ∥B∥N
γT−τ

NK∥σ∥
∫ t

0
(∥ys − zs∥+ ∥vs − ws∥) ds. (7)

Combining (6) and (7), we obtain the inequality

∥Gτ (y, v)t −Gτ (z, w)t∥ ≤ k

∫ t

0
∥(ys, vs)− (zs, ws)∥ds, (8)

where

k =

(
1 +

∥QT ∥N
γT−τ

+
∥B∥N
γT−τ

)
NK∥σ∥.

Let G0
τ (y, v) = (y, v) and define Gn

τ (y, v) = Gτ (G
n−1
τ (y, v)). Then (8) implies

∥G2
τ (y, v)t −G2

τ (z, w)t∥ ≤ k

∫ t

0
∥G1

τ (y, v)s −G1
τ (z, w)s∥ ds

≤ k2
∫ t

0

∫ s

0
∥(yr, vr)− (zr, wr)∥ drds.

Repeating this procedure n times, we obtain

∥Gn
τ (y, v)t−Gn

τ (z, w)t∥ ≤ kn
∫ t

0

∫ t1

0
· · ·

∫ tn−1

0
∥(ytn , vtn)−(ztn , wtn)∥ dtn · · · dt2dt1

≤ kn∥(y, v)−(z, w)∥X̃τ×Ũτ

∫ t

0

∫ t1

0
· · ·

∫ tn−1

0
dtn · · · dt2dt1

≤ kntn

n!
∥(y, v)−(z, w)∥X̃τ×Ũτ

.

Hence,

∥Gn
τ (y, v)−Gn

τ (z, w)∥X̃τ×Ũτ
≤ (kT )n

n!
∥(y, v)− (z, w)∥X̃τ×Ũτ

.

Since

lim
n→∞

(kT )n

n!
= 0,

Gn
τ is a contraction mapping for sufficiently large n. Then by generalised contraction

mapping theorem, the operator Gτ has a unique fixed point. �

Lemma 3.2. Under the conditions (A)–(E), let 0 < σ < τ < T , ξ ∈ X, and h ∈ H.
Define the operator Gτ by (3)–(5). Let (x, u) be a fixed points of Gτ . Then the restriction
(x|[0,σ], u|[0,σ]) of (x, u) from the interval [0, τ ] to the interval [0, σ] is a fixed point of Gσ.

Proof. From (5)–(7), one can observe that if (Y, V ) = Gτ (y, v), then

(Y |[0,σ], V |[0,σ]) = Gτ (y, v)|[0,σ] = Gσ(y|[0,σ], v|[0,σ]).

Therefore, if (x, u) is a fixed point of Gτ , then (x|[0,σ], u|[0,σ]) is a fixed point of Gσ. �

Lemma 3.3. Under the conditions (A)–(F), let ξ ∈ X, and h ∈ H. Then the operator
GT defined by (3)–(5) for τ = T , has a unique fixed point.
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Proof. By Lemma 3.2, there exists a unique pair (x, u) of X- and U -valued continuous
functions on [0, T ) such that

xt = eAtξ +Qte
A∗(T−t)L∗Q̃−1

T (h− LeAT ξ) +

∫ t

0
eA(t−s)σsf(s, xs, us) ds

−
∫ t

0
Qt−se

A∗(T−t)L∗Q̃−1
T−se

A(T−s)σsf(s, xs, us) ds (9)

and

ut = B∗eA
∗(T−t)L∗

(
Q̃−1

T (h− LeAT ξ)−
∫ t

0
Q̃−1

T−se
A(T−s)σsf(s, xs, us) ds

)
. (10)

Since

∥Qt−se
A∗(T−t)L∗Q̃−1

T−se
A(T−s)σsf(s, xs, us)∥ ≤ ∥QT ∥N2Mσs

γT−s
, 0 ≤ s ≤ T,

and the improper integral ∫ T

0

σs
γT−s

ds

converges (see condition (F)), xT is well-defined by equation (9) with limt→T xt = xT . The

same arguments work for (10) as well. So, the pair (x, u) is well-defined in X̃T × ŨT =
C(0, T ;X) × Uad. Furthermore, (x|[0,τ ], u|[0,τ ]) = Gτ (x|[0,τ ], u|[0,τ ]) for all 0 < τ < T and
continuity of (x, u) implies GT (x, u) = (x, u). Therefore, the pair (x, u), defined by (9)–
(10) on [0, T ], is a fixed point of GT . If GT has two fixed points, then Gτ should have two
fixed points for some 0 < τ < T that contradicts Lemma 3.1. Thus the pair (x, u) from
(9)–(10) is a unique fixed point of GT . �

Theorem 3.1. Under the conditions (A)–(F), the semilinear system (1) is L-partially
complete controllable on [0, T ].

Proof. Take any ξ ∈ X and h ∈ H. We have to show that there exists u ∈ Uad such that
LxT = h, where x is a solution of (2) corresponding to u. Let (x, u) be a fixed point of
GT , defined by (3)–(5) for τ = T . Then (x, u) satisfies (9)–(10). We can find another
representation for x as follows:

xt = eAtξ +

∫ t

0
eA(t−s)σsf(s, xs, us) ds

+

∫ t

0
eA(t−s)BB∗eA

∗(t−s)eA
∗(T−t)L∗Q̃−1

T (h− LeAT ξ) ds

−
∫ t

0

∫ t

s
eA(t−r)BB∗eA

∗(t−r)eA
∗(T−t)L∗Q̃−1

T−se
A(T−s)σsf(s, xs, us) drds

= eAtξ +

∫ t

0
eA(t−r)σrf(r, xr, ur) dr

+

∫ t

0
eA(t−r)BB∗eA

∗(T−r)L∗Q̃−1
T (h− LeAT ξ) dr

−
∫ t

0

∫ r

0
eA(t−r)BB∗eA

∗(T−r)L∗Q̃−1
T−se

A(T−s)σsf(s, xs, us) dsdr

= eAtξ +

∫ t

0
eA(t−r)σrf(r, xr, ur) dr +

∫ t

0
eA(t−r)Bur dr.
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Hence, the fixed point (x, u) of GT is so that u ∈ Uad and x is a mild solution of the
equation (1), corresponding to u. Next, we calculate

LxT = LeAT ξ + LQTL
∗Q̃−1

T (h− LeAT ξ) +

∫ T

0
eA(T−s)σsf(s, xs, us) ds

−
∫ T

0
LQT−sL

∗Q̃−1
T−sσsf(s, xs, us) ds = h.

Thus, for every ξ ∈ X and h ∈ H, there is u ∈ Uad such that LxT = h. This means that
the system (1) is L-partially complete controllable. �

4. Examples

We demonstrate Theorem 3.1 in the following examples of control systems.

Example 4.1. The condition (F) in Theorem 3.1 is rather hard condition. If we set σt = 1
in (F), then it becomes ∫ T

0

dt

γt
=

∫ T

0

dt

γT−t
< ∞.

This importer integral is divergent even for simple examples. The one-dimensional linear
system

x′t = axt + but,

where a ̸= 0 and b ̸= 0, is obviously completely controllable on [0, T ] since

QT =

∫ T

0
eatbbeat dt =

b2(e2aT − 1)

2a
> 0.

Here γt = b2(e2at − 1)/2a. Hence∫ T

0

dt

γt
=

2a

b2

∫ T

0

1

e2at − 1
dt = −2a

b2

∫ T

0

(
1 +

e2at

1− e2at

)
dt

= −2aT + ln |1− e2aT | − limt→0+ ln |1− e2at|
b2

= ∞.

Therefore, the function σ should be selected so that to adjust the convergence of the
improper integral in (F).

Example 4.2. Consider the system of differential equations{
x′t = yt + but, x0 ∈ R,
y′t = σtf(t, xt, yt, ut), y0 ∈ R, (11)

on [0, T ], where R is the space of real numbers, u ∈ Uad = C(0, T ;R). Write this system
in R2 as the following semilinear system

z′t = Azt + σtF (t, zt, ut) +But, (12)

where

zt =

[
xt
yt

]
, A =

[
0 1
0 0

]
B =

[
b
0

]
, F (t, z, u) =

[
0

f(t, x, y, u)

]
,

assuming that

z =

[
x
y

]
.

One can calculate that

eAt =

[
1 t
0 1

]
.
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The controllability operator is

Qt =

∫ t

0
eAsBB∗eA

∗s ds = b2t

[
1 0
0 0

]
, 0 < t ≤ T.

Hence, Qt is not coercive and the conditions for complete controllability, based on coer-
civity of Qt, fail for this example. We can investigate the partial complete controllability
for this system being interested in just the first component xt of zt.

Let L = [1 0]. Then

Q̃t = LQTL
∗ = b2t > 0.

Therefore, Q̃t is coercive for all 0 < t ≤ T . Here γt = b2t. So, if σt ≤ (T − t)α for some
α > 0, then ∫ T

0

σt
γT−t

dt ≤
∫ T

0

(T − t)α

b2(T − t)
dt =

1

b2

∫ T

0
tα−1 dt =

Tα

b2α
< ∞.

Thus if, additionally, f is continuous bounded and also satisfies Lipschitz condition in x,
y and u, then the system (12) is L-partially complete controllable on [0, T ].

Example 4.3. Delay equations are typical for application of partial controllability con-
cepts. Consider the nonlinear delay equation{

x′t = axt + but + σtf
(
t, xt,

∫ 0
−ε xt+θ dθ, ut

)
,

x0 = ξ, xθ = ηθ, −ε ≤ θ ≤ 0,
(13)

on [0, T ], where a ̸= 0, b ̸= 0, 0 < ε < T , ξ ∈ R, η ∈ L2(−ε, 0;R) (the space of square
integrable functions) and u ∈ Uad = C(0, T ;R).

Introduce the function x̄ : [0, T ] → L2(−ε, 0;R) by
[x̄t]θ = xt+θ, 0 ≤ t ≤ T, −ε ≤ θ ≤ 0.

This function is a solution of

x̄′t = (d/dθ)x̄t, x̄0 = η, 0 < t ≤ T.

Denote by Tt, t ≥ 0, the semigroup generated by the differential operator d/dθ and let Γ
be the integral operator from L2(−ε, 0;R) to R, defined by

Γh =

∫ 0

−ε
hθ dθ, h ∈ L2(−ε, 0;R).

Then for

yt =

[
xt
x̄t

]
, ζ =

[
ξ
η

]
∈ R× L2(−ε, 0;R),

the system (13) can be written as

y′t = Ayt + σtF (t, yt, ut) +But, y0 = ζ, (14)

where

A =

[
a 0
0 d/dθ

]
, F (t, y, u) =

[
f(t, x,Γx̄, u)

0

]
, B =

[
b
0

]
,

where the variable y consists of two components:

y =

[
x
x̄

]
∈ R× L2(−ε, 0;R).

The semigroup, eAt has the form

eAt =

[
eat 0
0 Tt

]
, t ≥ 0.
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Therefore, the controllability operator Qt for the system (14) equals to

Qt =

∫ t

0
eAsB∗BeA

∗s ds =

∫ t

0

[
b2e2as 0

0 0

]
dt =

[
b2(e2at − 1)/2a 0

0 0

]
.

This is not a coercive operator.
Taking into account that the original system is given by (13), and (14) is just represen-

tation of (13) in the standard form, enlarging the original state space R to R×L2(−ε, 0;R),
one can see that the complete controllability for the system (13) is in fact L-partial com-
plete controllability for the system (14) if

L = [1 0] : R× L2(−ε, 0;R) → R.

Calculating partial controllability operator Q̃t, we have

Q̃t = LQtL
∗ =

b2(e2at − 1)

2a
> 0,

So, Q̃t is coercive for 0 < t ≤ T . Furthermore,

γt =
b2(e2at − 1)

2a
.

Hence, if σt ≤ a(e2a(T−t) − 1)(T − t)1−α for some α > 0, then∫ T

0

σt
γT−t

dt ≤ 2a2

b2

∫ T

0
(T − t)1−α dt =

2a2Tα

b2α
< ∞.

Thus if, additionally, f is continuous bounded and also satisfies Lipschitz condition in x,
y and u, then the system (13) is L-partially complete controllable on [0, T ].

5. Conclusion

Generally, it is difficult to obtain complete controllability conditions. In this paper one
such sufficient condition for partial complete controllability of a semilinear control system
is proved. This condition requires convergence of the improper integral in (F). Given
examples demonstrate how to adjust the function σ for fulfilling the convergence of this
improper integral. Another feature of the obtained result is that it allows to get complete
controllability of a component of the state process. There are other kinds of systems which
besides semilinearity include impulsiveness, fractional derivatives, randomness etc. The
result of this paper can be extended to these systems as well.
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