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COMMON FIXED POINT THEOREMS FOR FINITE NUMBER OF

MAPPINGS IN SYMMETRIC SPACES

BHAVANA DESHPANDE1, ROHIT PATHAK2, §

Abstract. In this paper, we prove a common fixed theorem for ten mappings on
symmetric spaces. We extend our result for finite number of mappings. The mappings
involved in our results are noncompatible and discontinuous. We extend and generalize
several earlier results.
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1. Introduction.

Jungck [3] introduced more generalized commuting mappings called compatible mappings.
This notion of compatible mappings have been frequently used to show existence of com-
mon fixed points. However, the study of the existence of common fixed points for noncom-
patible mappings is also interesting. Pant ([6]-[9]) initiated the study of noncompatible
maps and proved some fixed point theorems for noncompatible mappings. More recently,
Aamri and Moutawakil [4] defined a property (E.A) which generalizes the concept of non-
compatible mappings in metric spaces and contains the class of noncompatible maps. They
obtained some fixed point theorems for such mappings under strict contractive conditions.
Pant and Pant [10] proved some common fixed point theorems for strict contractive non-
compatible mappings in metric spaces. Recently, the results of Aamri and Moutawakil
[4] and Pant and Pant [10] were extended to symmetric spaces under tight conditions by
Imdad et al [5].

Wilson [12] gave two axioms (W3) and (W4) on a symmetric space. The axiom (W3)
was used by Imdad et al [5] to prove coincidence and common fixed point theorems on
symmetric spaces. Aliouche [1] gave the axiom (H.E) on symmetric spaces and used
(W3) , (W4) and (H.E) to prove a common fixed point theorem for noncompatible self-
mappings in symmetric spaces under contractive conditions of integral type.

Cho et al [11], introduced a new axiom called (C.C) which is related to the continuity
of the symmetric d. They also compared the axiom (W3) with (W4) and (C.C) with
(W3) . They also gave examples to show that (W3) ; (H.E) , (W3) ; (C.C) , (C.C) ;
(W4) , (W3) ; (W4) . They proved some common fixed point theorems on symmetric
spaces using the axioms (W3) , (H.E) and (C.C) .

In this paper, we prove a common fixed theorem for ten mappings on symmetric spaces.
We extend our result for finite number of mappings. The mappings involved in our results
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are noncompatible and discontinuous. We extend and generalize the results of Cho et al
[11]. We also give an example to validate our result.

2. Preliminaries.

Definition 2.1. A symmetric on a set X is a function d : X → [0,∞) satisfying the
following conditions:

d (x, y) = 0 if and only if x = y for x, y ∈ X,
d (x, y) = d (y, x) for all x, y ∈ X.

Let d be a symmetric on X. For x ∈ X and ε > 0, let B (x, ε) = {y ∈ X : d (x, y) < ε} .
A topology τ (d) on X is is given by U ∈ τ (d) if and only if for each x ∈ X, B (x, ε) ⊂ U

for some ε > 0. A subset S of X is a neighborhood of x ∈ X if there exists U ∈ τ (d) such
that x ∈ U ⊂ S. A symmetric d is a semi-metric if for each x ∈ X and for each ε > 0,
B (x, ε) is a neighborhood of x in topology τ (d) .

Definition 2.2. A symmetric (semi-metric) space X is a topological space whose topology
τ (d) on X is induced by symmetric d (semi-metric d).

Remark 2.1. The difference of a symmetric and a metric comes from the triangle in-
equality. A symmetric space need not be Hausdorff.

Definition 2.3. [3] A pair of self-mappings (f, g) on a symmetric (semi-metric) space
(X, d) is said to be compatible if lim

n→∞
d (fgxn, gfxn) = 0, whenever {xn} is a sequence in

X such that

lim
n→∞

fxn = lim
n→∞

gxn = t ∈ X.

Definition 2.4. [2] A pair of self-mappings (f, g) on a symmetric (semi-metric) space
(X, d) is said to be weakly compatible if fx = gx implies fgx = gfx.

Definition 2.5. [4] A pair of self-mappings (f, g) on a symmetric (semi-metric) space
(X, d) is said to enjoy property (E.A) if there exists a sequence {xn} such that

lim
n→∞

fxn = lim
n→∞

gxn = t ∈ X.

In order to obtain fixed point theorems on a symmetric space, we need some axioms.
The following axioms can be found in [12]
(W3): for a sequence {xn} in X and x, y ∈ X, lim

n→∞
d (xn, x) = 0 and lim

n→∞
d (xn, y) = 0

imply that x = y.
(W4): for sequences {xn}, {yn} in X and x ∈ X, lim

n→∞
d (xn, x) = 0 and lim

n→∞
d (yn, xn) =

0 imply that lim
n→∞

d (yn, x) = 0.

The following axiom can be found in [1].
(H.E) : for sequences {xn}, {yn} in X and x ∈ X, lim

n→∞
d (xn, x) = 0 and lim

n→∞
d (yn, x) =

0 imply that lim
n→∞

d (xn, yn) = 0.

The following axiom can be found in [11].
(C.C) : for sequence {xn} inX and x, y ∈ X, lim

n→∞
d (xn, x) = 0 implies that lim

n→∞
d (xn, y) =

d (x, y) .

3. Main Results.

Theorem 3.1. Let (X, d) be a symmetric (semi-metric) space that satisfies (H.E) and
(C.C). Let A,B, S, T, I, J, L, U, P and Q be self-mappings of X such that
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(1) P (X) ⊂ ABIL (X) , Q (X) ⊂ STJU (X) ,
(2) the pair (Q,ABIL) (resp. the pair (P, STJU)) satisfies the property (E.A),
(3) for any x, y ∈ X,

d (Px,Qy) < max


d (STJUx,ABILy) ,

k

2
[d (Px, STJUx) + d (Qy,ABILy)] ,

1

2
[d (Px,ABILy) + d (Qy, STJUx)]


where 0 < k < 2,
(4) if one of STJU (X) and ABIL (X) is a d−closed (τ (d)− closed) subset of X, then
(i) P and STJU have a coincidence point and
(ii) Q and ABIL have a coincidence point.
Further if,
(5) LQ = QL,LI = IL,BL = LB,AL = LA, IB = BI,
AB = BA,AI = IA, IQ = QI, JU = UJ, SU = US, PJ = JP, PU = UP,
QB = BQ, TU = UT, PT = TP, JT = TJ, SJ = JS, ST = TS,
(6) the pairs (P, STJU) and (Q,ABIL) are weakly compatible, then
(iii) A,B, S, T, I, J, L, U, P and Q have a unique common fixed point in X.

Proof. Since the pair (Q,ABIL) satisfies the property (E.A), therefore there exists a se-
quence {xn} in X and a point z in X such that
lim
n→∞

d (Qxn, z) = lim
n→∞

d (ABILxn, z) = 0. Since Q (X) ⊂ STJU (X) , for xn ∈ X, there

exists yn ∈ X such that Qxn = STJUyn. Therefore
lim
n→∞

d (STUJyn, z) = 0. By (H.E) , lim
n→∞

d (Qxn, ABILxn) = lim
n→∞

d (STUJyn, ABILxn) =

0. Let STUJ (X) be a d−closed (τ (d)− closed) subset of X. Then there exists a point
u ∈ X such that STUJu = z. From (3) ,

d (Pu,Qxn) < max


d (STJUu,ABILxn) ,

k

2
[d (Pu, STJUu) + d (Qxn, ABILu)] ,

1

2
[d (Pu,ABILxn) + d (Qxn, STJUu)]

 .

By taking n → ∞, we have lim
n→∞

d (Pu,Qxn) = 0. By (C.C) , we get

Pu = STJUu = z. Hence u is the coincidence point of P and STUJ. This proves
(i) . Since P (X) ⊂ ABIL (X) , there exists a point w ∈ X such that Pu = ABILw. We
claim that ABILw = Qw. From (3) ,

d (ABILw,Qw) = d (Pu,Qw)

< max


d (STJUu,ABILw) ,

k

2
[d (Pu, STJUu) + d (Qw,ABILw)] ,

1

2
[d (Pu,ABILw) + d (Qw,STJUu)]


= max

{
0,

k

2
d (Qw,Pu) ,

1

2
d (Qw,Pu)

}
.

Hence ABILw = Qw = Pu = z. This shows that w is the coincidence point of Q and
ABIL. This proves (ii) .

Since the pair (P, STJU) is weakly compatible, therefore P and STUJ commute at
their coincidence point i.e. P (STJUu) = STJU (Pu) or Pz = STJUz.
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Since the pair (Q,ABIL) is weakly compatible, therefore Q and ABIL commute at
their coincidence point i.e. Q (ABILw) = ABIL (Qw) or Qz = ABILz.

Now we claim that Pu = w. If Pu ̸= w, then from (3) , we have

d (Pu, PPu) = d (PPu,Qw)

< max


d (STJU (Pu) , ABILw) ,

k

2
[d (P (Pu) , STJU (Pu)) + d (Qw,ABILw)] ,

1

2
[d (P (Pu) , ABILw) + d (Qw,STJU (Pu))]


= max

{
d (PPu,Qw) , 0,

1

2
[d (PPu,Qw) + d (Qw,PPu)]

}
= d (PPu,Qw) ,

which is a contradiction. Hence Pu = w. Similarly if Qw ̸= u, we get a contradiction.
Hence

Pu = w = STJUu = Qw = ABILw = u.

Combining the above results we have z as the common fixed point of P,Q,ABIL and
STJU i.e.

Pz = STJUz = Qz = ABILz = z.

Now putting x = z and y = Lz in (3) , we get

d (Pz,QLz) < max


d (STJUz,ABILLz) ,

k

2
[d (Pz, STJUz) + d (QLz,ABILLz)] ,

1

2
[d (Pz,ABILLz) + d (QLz, STJUz)]


= max

{
d (z, L (ABILz)) ,

k

2
d (LQz,L (ABILz)) ,

1

2
d (LQz, z)

}
= max

{
d (z, Lz) ,

k

2
d (Lz, Lz) ,

1

2
d (Lz, z)

}
= d (z, Lz)

i.e.

d (z, LQz) = d (z, Lz) < d (z, Lz) ,

which is a contradiction. Hence Lz = z. Since ABILz = z, therefore ABIz = z.
Now putting x = z and y = Iz in (3) , we get

d (Pz,QIz) < max


d (STJUz,ABILIz) ,

k

2
[d (Pz, STJUz) + d (QIz,ABILIz)] ,

1

2
[d (Pz,ABILIz) + d (QIz, STJUz)]


= max

 d (z, I (ABIz)) ,
k

2
d (IQz, I (ABIz)) ,

1

2
[d (z, I (ABIz)) + d (IQz, z)]


= max

{
d (z, Iz) ,

k

2
d (Iz, Iz) ,

1

2
[d (z, Iz) + d (Iz, z)]

}
= d (Iz, z) ,
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i.e.

d (z,QIz) = d (z, IQz) = d (Iz, z) < d (Iz, z) ,

which is a contradiction. Hence Iz = z. Therefore ABz = z.
Now putting x = z and y = Bz in (3) , we get

d (Pz,QBz) < max


d (STJUz,ABILBz) ,

k

2
[d (Pz, STJUz) + d (QBz,ABILBz)] ,

1

2
[d (Pz,ABILBz) + d (QBz, STJUz)]


= max

 d (z,B (ABz)) ,
k

2
d (BQz,B (ABz)) ,

1

2
[d (z,B (ABz)) + d (BQz, z)]


= max

{
d (z,Bz) ,

k

2
d (Bz,Bz) ,

1

2
[d (z,Bz) + d (Bz, z)]

}
= d (Bz, z) ,

i.e.

d (z,BQz) = d (z,Bz) < d (Bz, z) ,

which is a contradiction. Hence Bz = z. Consequently Az = z.
Now putting x = Uz and y = z in (3), we get

d (PUz,Qz) < max


d (STJUUz,ABILz) ,

k

2
[d (PUz, STJUUz) + d (Qz,ABILz)] ,

1

2
[d (PUz,ABILz) + d (Qz, STJUUz)]


= max

 d (U (STJUz) , z) ,
k

2
d (UPz, U (STJUz)) ,

1

2
[d (UPz, z) + d (z, U (STJUz))]


= max {d (Uz, z) , 0, d (z, Uz)}
= d (Uz, z) ,

i.e.

d (PUz, z) = d (UPz, z) = d (Uz, z) < d (Uz, z) ,

which is a contradiction. Hence Uz = z. Therefore STJz = z.
Now putting x = Jz and y = z in (3) , we get

d (PJz,Qz) < max


d (STJUJz,ABILz) ,

k

2
[d (PJz, STJUJz) + d (Qz,ABILz)] ,

1

2
[d (PJz,ABILz) + d (Qz, STJUJz)]


= max

 d (J (STJz) , z) ,
k

2
d (JPz, J (STJz)) ,

1

2
[d (JPz, z) + d (z, J (STJz))]


= max

{
d (Jz, z) , 0,

1

2
[d (Jz, z) + d (z, Jz)]

}
= d (z, Jz) ,
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i.e.
d (JPz, z) = d (Jz, z) < d (z, Jz) ,

which is a contradiction. Hence Jz = z. Therefore STz = z.
Now putting x = Tz and y = z in (3) , we get

d (PTz,Qz) < max


d (STJUTz,ABILz) ,

k

2
[d (PTz, STJUTz) + d (Qz,ABILz)] ,

1

2
[d (PTz,ABILz) + d (Qz, STJUTz)]


= max

 d (T (STz) , z) ,
k

2
d (TPz, T (STz)) ,

1

2
[d (TPz, z) + d (z, T (STz))]


= max

{
d (Tz, z) , 0,

1

2
[d (Tz, z) + d (z, Tz)]

}
= d (Tz, z) ,

i.e. d (PTz, z) = d (Tz, z) = d (Tz, z) < d (Tz, z) , which is a contradiction. Hence Tz = z.
Therefore Sz = z.

By combining the above results, we have

Az = Bz = Sz = Tz = Iz = Jz = Lz = Uz = Pz = Qz = z.

i.e. z is the common fixed point of A,B, S, T, I, J, L, U, P and Q.
Let v ∈ X be another common fixed point of A,B, S, T, I, J, L, U, P and Q i.e.

Av = Bv = Sv = Tv = Iv = Jv = Lv = Uv = Pv = Qv = v.

Then by (3) ,

d (z, v) = d (Pz,Qv)

< max


d (STJUz,ABILv) ,

k

2
[d (Pz, STJUz) + d (Qv,ABILv)] ,

1

2
[d (Pz,ABILv) + d (Qv, STJUz)]


= max

{
d (z, v) ,

k

2
[d (z, z) + d (v, v)] ,

1

2
[d (z, v) + d (v, z)]

}
= d (z, v) ,

which is a contradiction Hence z = v. This completes the proof. �
If we put P = Q in the Theorem 3.1, we get the following:

Corollary 3.1. Let (X, d) be a symmetric (semi-metric) space that satisfies (H.E) and
(C.C). Let A,B, S, T, I, J, L, U,and P be self-mappings of X such that

(1) P (X) ⊂ ABIL (X) , P (X) ⊂ STJU (X) ,
(2) the pair (P,ABIL) (resp. the pair (P, STJU)) satisfies the property (E.A),
(3) for any x, y ∈ X,

d (Px, Py) < max


d (STJUx,ABILy) ,

k

2
[d (Px, STJUx) + d (Py,ABILy)] ,

1

2
[d (Px,ABILy) + d (Py, STJUx)]

 ,
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where 0 < k < 2,
(4) if one of STJU (X) and ABIL (X) is a d−closed (τ (d)− closed) subset of X, then
(i) P and STJU have a coincidence point and
(ii) P and ABIL have a coincidence point.
Further if,
(5) LP = PL,LI = IL,BL = LB,AL = LA, IB = BI,AB = BA,AI = IA, IP =

PI, JU = UJ, SU = US, PJ = JP, PU = UP, PB = BP, TU = UT, PT = TP, JT =
TJ, SJ = JS, ST = TS,

(6) the pairs (P, STJU) and (P,ABIL) are weakly compatible, then
(iii) A,B, S, T, I, J, L, U,and P have a unique common fixed point in X.

If we put L = U = IX (The identity map on X) in the Theorem 3.1, then we have the
following:

Corollary 3.2. Let (X, d) be a symmetric (semi-metric) space that satisfies (H.E) and
(C.C). Let A,B, S, T, I, J, P and Q be self-mappings of X such that

(1) P (X) ⊂ ABI (X) , Q (X) ⊂ STJ (X) ,
(2) the pair (Q,ABI) (resp. the pair (P, STJ)) satisfies the property (E.A),
(3) for any x, y ∈ X,

d (Px,Qy) < max


d (STJx,ABIy) ,

k

2
[d (Px, STJx) + d (Qy,ABIy)] ,

1

2
[d (Px,ABIy) + d (Qy, STJx)]

 ,

where 0 < k < 2,
(4) if one of STJ (X) and ABI (X) is a d−closed (τ (d)− closed) subset of X, then
(i) P and STJ have a coincidence point and
(ii) Q and ABI have a coincidence point.
Further if,
(5) IB = BI,AB = BA,AI = IA, IQ = QI, PJ = JP,QB = BQ,PT = TP, JT =

TJ, SJ = JS, ST = TS,
(6) the pairs (P, STJ) and (Q,ABI) are weakly compatible, then
(iii) A,B, S, T, I, J, P and Q have a unique common fixed point in X.

If we put L = U = IX (The identity map on X) and P = Q in the Corollary 3.2, we
have the following:

Corollary 3.3. Let (X, d) be a symmetric (semi-metric) space that satisfies (H.E) and
(C.C). Let A,B, S, T, I, J and P be self-mappings of X such that

(1) P (X) ⊂ ABI (X) , P (X) ⊂ STJ (X) ,
(2) the pair (P,ABI) (resp. the pair (P, STJ)) satisfies the property (E −A),
(3) for any x, y ∈ X,

d (Px, Py) < max


d (STJx,ABIy) ,

k

2
[d (Px, STJx) + d (Py,ABIy)] ,

1

2
[d (Px,ABIy) + d (Py, STJx)]

 ,

where 0 < k < 2,
(4) if one of STJ (X) and ABI (X) is a d−closed (τ (d)− closed) subset of X, then
(i) P and STJ have a coincidence point and
(ii) P and ABI have a coincidence point.
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Further if,
(5) IB = BI,AB = BA,AI = IA, IP = PI, PJ = JP, PB = BP,PT = TP, JT =

TJ, SJ = JS, ST = TS,
(6) the pairs (P, STJ) and (P,ABI) are weakly compatible, then
(iii) A,B, S, T, I, J and P have a unique common fixed point in X.

Example 3.1. Let X = [0, 4] and d (x, y) = (x− y)2 . Define self-mappings A,B, S, T, I, J
and P of X by

Px =

{ x

50
, 0 ≤ x ≤ 1

0, 1 < x ≤ 4
, Ax =

{
3x, 0 ≤ x ≤ 1
0, 1 < x ≤ 4

,

Bx =

{ x

2
, 0 ≤ x ≤ 1

0, 1 < x ≤ 4
, Ix =

{ x

3
, 0 ≤ x ≤ 1

0, 1 < x ≤ 4
,

Sx =

{ x

2
, 0 ≤ x ≤ 1

0, 1 < x ≤ 4

x

2
, Tx =

{
4x, 0 ≤ x ≤ 1
0, 1 < x ≤ 4

,

Jx =

{ x

4
, 0 ≤ x ≤ 1

0, 1 < x ≤ 4
.

Then we have the following:
(i) (X, d) is a symmetric space satisfying properties (H.E) and (C.C) ,

(ii) P (X) =

[
0,

1

50

]
⊂ ABI (X) =

[
0,

1

2

]
and

P (X) =

[
0,

1

50

]
⊂ STJ (X) =

[
0,

1

2

]
,

(iii) The pair (P,ABI) satisfies the property (E.A) for the sequence xn =
1

n
, n =

1, 2, 3....
(iv) for all x ̸= y ∈ X,

d (Px, Py) < max

 d (STJx,ABIy) ,
k

2
[d (Px, STJx) + d (Py,ABIy)] ,

1

2
[d (Px,ABIy) + d (Py, STJx)]


(v) the pairs (P, STJ) and (P,ABI) are d−closed (τ (d)− closed) subsets of X,
(vi) the coincidence point is x = 0
(vii) IJ = JI, IT = TI, IS = SI, IP = PI,BJ = JB,BT = TB,BS = SB,BP =

PB,
AJ = JA, JP = PJ,AT = TA, TP = PT,
(viii) the pairs (P, STJ) and (P,ABI) are weakly compatible.
(ix) Therefore all the conditions of the Corollary 4 are satisfied. The common fixed

point is x = 0.

If we put B = I = T = J = IX and (The identity map on X) in Corollary 3.2, we have
the following:

Corollary 3.4. Let (X, d) be a symmetric (semi-metric) space that satisfies (H.E) and
(C.C). Let A,S, P and Q be self-mappings of X such that

(1) P (X) ⊂ A (X) , Q (X) ⊂ S (X) ,
(2) the pair (Q,A) (resp. the pair (P, S)) satisfies the property (E −A),
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(3) for any x, y ∈ X,

d (Px,Qy) < max

 d (Sx,Ay) ,
k

2
[d (Px, Sx) + d (Qy,Ay)] ,

1

2
[d (Px,Ay) + d (Qy, Sx)]

 ,

where 0 < k < 2,
(4) if one of S (X) and A (X) is a d−closed (τ (d)− closed) subset of X, then
(i) P and S have a coincidence point and
(ii) Q and A have a coincidence point.
Further if,
(5) the pairs (P, S) and (Q,A) are weakly compatible, then
(iii) A,S, P and Q have a unique common fixed point in X.

If we put I = J = B = T = A = S = IX (The identity map on X) in Corollary 3.2, we
have the following:

Corollary 3.5. Let (X, d) be a symmetric (semi-metric) space that satisfies (H.E) and
(C.C). Let P be a self-mapping of X such that

(1) for any x, y ∈ X,

d (Px, Py) < max

 d (x, y) ,
k

2
[d (Px, x) + d (Py, y)] ,

1

2
[d (Px, y) + d (Py, x)]

 ,

where 0 < k < 2,
(2) P (X) is a d−closed (τ (d)− closed) subset of X.
Then P has a unique fixed point in X.

Now we extend Theorem 3.1 for finite number of mappings in the following way:

Theorem 3.2. Let (X, d) be a symmetric (semi-metric) space that satisfies (H.E) and
(C.C). Let A1, A2, A3......, An, S1, S2, S3......, Sn, P and Q be self-mappings of X such that-

(1) P (X) ⊂ A1A2A3......An (X) , Q (X) ⊂ S1S2S3......Sn (X) ,
(2) the pair (Q,A1A2A3......An) (resp. the pair (P, S1S2S3......Sn)) satisfies the property

(E −A),
(3) for any x, y ∈ X,

d (Px,Qy) < max


d (S1S2S3......Snx,A1A2A3......Any) ,

k

2
[d (Px, S1S2S3......Snx) + d (Qy,A1A2A3......Any)] ,

1

2
[d (Px,A1A2A3......Any) + d (Qy, S1S2S3......Snx)]

 ,

where 0 < k < 2,
(4) if one of S1S2S3......Sn (X) and A1A2A3......An (X) is a d−closed (τ (d)-closed)

subset of X, then
(i) P and S1S2S3......Sn have a coincidence point and
(ii) Q and A1A2A3......An have a coincidence point.
Further if,
(5) QAj = AjQ,PSj = SjP, j = 2, 3....n, and
AiAj = AjAi, SiSj = SjSi for i ̸= j, i = 1, 2, 3...n, j = 1, 2, 3...n,
(6) the pairs (P, S1S2S3......Sn) and (Q,A1A2A3......An) are weakly compatible, then
(iii) A1, A2, A3......, An, S1, S2, S3......, Sn, P and Q have a unique common fixed point

in X.



BHAVANA DESHPANDE, ROHIT PATHAK:COMMON FIXED POINT THEOREMS.... 19

Proof. By using the method of proof of Theorem 3.1 we can see that the conclusions
(i) , (ii) and (iii) hold. �

4. Discussion And Auxiliary Results.

In view of the above results, it is very much clear that we extend, improve and general-
ize many results in metric spaces and symmetric metric spaces. We prove common fixed
point theorems for finite number of mappings in symmetric metric spaces. To prove com-
mon fixed point theorems for contractive type condition with more than four mappings,
some commutative conditions for mappings are always essential. How many commuta-
tive conditions are necessary? As an answer of this question we are giving the following
formulas:

(i) If the number if mappings is even and finite in above theorems and corollaries,

then there will be
n2 − 2n− 8

4
commutativity conditions, where n = 2, 4, 6.... up

to finite values. For example, if n = 10 then 18 commutativity conditions are
required (see (5) of Theorem 3.1).

(ii) If the number if mappings is odd and finite in above theorems and corollaries, then

there will be
n2 − 9

4
commutativity conditions, where n = 5, 7, 9, 11.... up to finite

values. For example, if n = 7 then 10 commutativity conditions are required (see
(5) of Corollary 3.3).

(iii) If n = 1, 2, 3..., the any commutativity condition is not required (see Corollary 3.4
and Corollary 3.5).

We point out that common fixed point theorems for finite number of maps can be proved
without continuity of any mappings.

In all our results, we replace the completeness of the whole space with a set of alternative
conditions.

Our results contain so many results in the existing literature and will be helpful for the
workers in the field.
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