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WEAK CONVERGENCE THEOREM FOR THE ERGODIC

DISTRIBUTION OF A RANDOM WALK WITH NORMAL

DISTRIBUTED INTERFERENCE OF CHANCE

Z. HANALIOGLU1, T. KHANIYEV2, I. AGAKISHIYEV3, §

Abstract. In this study, a semi-Markovian random walk process (X(t)) with a discrete
interference of chance is investigated. Here, it is assumed that the ζn, n = 1, 2, 3, ..., which
describe the discrete interference of chance are independent and identically distributed
random variables having restricted normal distribution with parameters (a, σ2). Under
this assumption, the ergodicity of the process X(t) is proved. Moreover, the exact
forms of the ergodic distribution and characteristic function are obtained. Then, weak
convergence theorem for the ergodic distribution of the process Wa(t) ≡ X(t)/a is proved
under additional condition that σ/a → 0 when a → ∞.
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distribution; weak convergence.
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1. Introduction

Many applied problems of queueing, reliability, inventory, control, insurance and other
theories are formulated in terms of random walks with various types of barrier or discrete
interference of chance. Some important studies on this topic exist in the literature (see,
for example, Afanasyeva and Bulinskaya [2]; Aliyev et. al. [3], [4]; Alsmeyer [5]; Anisimov
and Artalejo [6]; Borovkov [7]; Brown and Solomon [8]; Chang [9]; Chang and Peres [10];
Jansen and Leeuwaarden [13], [14]; Khaniyev and Mammadova [15]; Khaniyev and Aksop
[16]; Khorsunov [17]; Korolyuk and Borovskikh [18]; Lotov [19]; Nasirova [19]; Siegmund
[22],[23]; Skorohod and Slobodenyuk [24]; Spitzer [25] etc.).

Note that, in the studies Aliyev et. al. [3], [4] and Khaniyev and Aksop [16], the random
variables ζn, n = 1, 2, 3... which describe the discrete interference of chance has gamma,
triangular and beta distributions, respectively. In this study, unlike Aliyev et. al. [3],
[4] and Khaniyev and Aksop [16], we assume that the random variables ζn, n = 1, 2, 3...
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are independent and identically distributed random variables having restricted normal
distribution.

1.1. The Model. Consider a stochastic model which comes up in the insurance theory.
This model can be described as follows.

Suppose that amount of initial capital of an insurance company is equal to z ∈ (0,∞).
Assume that the premiums and claims arrive to the system at the times Tn =

∑n
i=1 ξi,

n ≥ 1. Here ξi, i ≥ 1 are inter-arrival times of two successive customers. Level of the total
capital passes from a state to another by jumping in accordance with {−ηn}, n ≥ 1. The
random variables ηn, n = 1, 2, ... express difference of claims and premiums. Next, amount
of the total capital keeps on its variation until a random time τ1 that is the first time
at which the capital level falls below zero. At the epoch τ1, the amount of the capital is
immediately increased to the level ζ1 having a restricted normal distribution in the interval
[0,∞). Thus, the first period is completed. Then, the insurance company keeps working
in a similar way. The amount of total capital of the insurance company at time t, denote
by X(t). The process X(t) is known as ”A semi-Markovian random walk with a Normal
distributed interference of chance”. Now, we proceed to mathematical construction of the
process X(t).

2. Mathematical Construction of The Process X(t)

Let {ξn} and {ηn}, n ≥ 1 be two independent sequences of random variables defined on
any probability space (Ω,ℑ, P ), such that variables in each sequence are independent and
identically distributed. Suppose that ξn’s take only positive values, ηn’s take both positive
and negative values. Introduce a sequence of normal distributed random variables {Yn},
n ≥ 1 with parameters (a, σ2), a > 0, σ > 0, as well. In other words, probability density
function of Yn can be written as follows:

fY (x) =
1

σ
φ(

x− a

σ
), x ∈ R.

Here φ(u) is the probability density function of standard normal distribution, i.e.,

φ(u) =
1√
2π

exp(−u2/2).

Moreover, we put ζn ≡ max{0, Yn}, n = 1, 2, 3, ... and denote the distribution function
of ζn by π(z). In this case, it is hold that π(z) ≡ P{ζn ≤ z} = Φ((z − a)/σ) when
z ≥ 0; and π(z) ≡ P{ζn ≤ z} = 0 when z < 0. Here, Φ(u) is the standard normal
distribution function. Define renewal sequence {Tn} and random walk {Sn} as follows:

Tn =

n∑
i=1

ξi, Sn =

n∑
i=1

ηi, T0 = S0 = 0, n = 1, 2, ...

and a sequence of integer - valued random variables {Nn} as:

N0 = 0, N1 ≡ N(z) = inf{n ≥ 1 : z − Sn < 0}, z ≥ 0;

Nn+1 = inf{k ≥ 1 : ζn − (SN1+N2+...+Nn+k − SN1+N2+...+Nn < 0)}, n = 1, 2, ...

and inf{∅} = +∞ is stipulated.

Let τ0 = 0, τ1 ≡ τ(z) = TN(z) =
∑N(z)

i=1 ξi, z ≥ 0; τn = TN1+...+Nn , n ≥ 2
and define ν(t) as:

ν(t) = max{n ≥ 0 : Tn ≤ t}.
Now, we can construct the desired stochastic process X(t) as follows:

X(t) = ζn − (Sν(t) − SN0+N1+...+Nn), (1)
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if τn ≤ t < τn+1, n = 0, 1, 2, ..., ζ0 = z ∈ [0,∞).
The main purpose of this study is to prove weak convergence theorem for the ergodic

distribution of the process X(t), as a → ∞. Therefore, we first prove the ergodicity of the
process X(t).

3. The Ergodicity of The Process X(t)

Firstly, we state the following theorem on the ergodicity of the process X(t).

Theorem 3.1 (The Ergodic Theorem). Let the initial sequences of the random variables
{ξn} and {ηn} satisfy the following supplementary conditions:

(i)E(ξ1) < ∞; (ii) E(η1) > 0; (iii) E(η21) < ∞;
(iv) η1 is non-arithmetic random variable.

Then, the process X(t) is ergodic and for any bounded measurable function
f(x)(f : [0,∞) → R) the following relation holds, with probability 1:

lim
t→∞

1

t

∫ t

0
f(X(u))du =

1

E(N(ζ1))

∫ ∞

0
f(x)dx(E(A(x, ζ1))), (2)

where E(N(ζ1)) =
∫∞
0 E(N(z))dπ(z); E(A(x, ζ1)) =

∫∞
0 A(x, z)dπ(z).

A(x, z) =

∞∑
n=0

an(x, z); an(x, z) = P{z − Si > 0; i = 1, n; z − Sn ≤ x}; x, z ≥ 0.

Proof. The process X(t) belongs to a wide class of processes which is known in the litera-
ture as the class of semi-Markov processes with a discrete interference of chance. General
ergodic theorem for this class exists in literature (see, Gihman and Skorohod [12], p.243).
According to this theorem, it is sufficient to verify the following assumptions for proving
the ergodicity of X(t):
Assumption 1. It is required to choose a sequence of ascending random times, such that
the values of the process X(t) at these times form an embedded Markov chain which is
ergodic. For this reason, it is sufficient to consider the sequence of the random times {τn},
n ≥ 1 which is defined in Section 2. On the other hand, the values of the process X(t) at
these times X(τn) = ζn ≡ max{0, Yn}, n = 1, 2, 3, ... form a sequence of the independent
and identically distributed random variables. Accordingly, the embedded Markov chain
{X(τn)}, n ≥ 1 is ergodic with stationary distribution function
π(z) ≡ P{ζn ≤ z} = Φ((z − a)/σ), z ≥ 0. Hence, the first assumption of the general
ergodic theorem is satisfied.
Assumption 2. The mathematical expectation of the time between successive Markov
moments {τn}, n = 1, 2, 3, ... must be finite, i.e., for all n = 1, 2, 3, ...

E(τn − τn−1) < ∞. (3)

Since the random variables τn − τn−1, n = 1, 2, 3, ... are independent and the random
variables τn − τn−1, n = 2, 3, ... are identically distributed random variables, then for
holding the condition (3), it is sufficient to show that E(τ1) = E(τ(z)) < ∞ and

E(τn − τn−1) ≡
∫ ∞

0
E(τ(z))dπ(z) < ∞, n = 2, 3, ... (4)

On the other hand, by using Wald’s identity (see, Feller [11], p.601), we have:

E(τ(z)) = E(

N(z)∑
i=1

ξi) = E(ξ1)E(N(z)). (5)
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Therefore, we have

E(τn − τn−1) = E(ξ1)

∫ ∞

0
E(N(z))dπ(z), n = 2, 3, ... (6)

Recall that, in this case, 0 < E(ξ1) < ∞ is hold. To provide the condition (3), the
following inequalities should be satisfied, i.e., E(N(z)) < ∞ and∫ ∞

0
E(N(z))d(π(z)) < ∞. (7)

For this purpose, we introduce the ladder epoch (ν+1 ) and ladder height (χ+
1 ) of the random

walk {Sn}, n ≥ 0:

ν+1 = min{n ≥ 1 : Sn > 0}; χ+
1 = Sν+1

=

ν+1∑
i=1

ηi.

Let the random variables (ν+i , χ
+
i ); i = 1, 2, .. be mutually independent and have the same

distribution as a pair (ν+1 , χ
+
1 ) (see, Feller [11]). According to E. Dynkin’s principle, N(z)

and SN(z) can be presented as follows:

N(z) ≡
H(z)∑
i=1

ν+i ; SN(z) =

H(z)∑
i=1

χ+
i , (8)

where

H(z) = min{n ≥ 1 :
n∑

i=1

χ+
i > z}. (9)

By using Wald’s identity, we have:

E(N(z)) = E(H(z))E(ν+1 ). (10)

H(z) is a renewal process generated by the ladder heights {χ+
n }, n ≥ 1. For each

0 < z < +∞, the condition E(H(z)) ≡ U+(z) < ∞ is satisfied (see, Feller [11]). On the
other hand, since E(η1) > 0 then E(ν+1 ) < +∞ (see, Feller [11], p.396-397). Therefore,
the inequality E(N(z)) < +∞ is true. Additionally, we should show that

EU+(ζ1) ≡
∫ ∞

0
U+(z)dπ(z) < +∞ (11)

is hold. By the sharper form of the renewal theorem (see, Feller [11], p. 366)

U+(z) =
z

µ1
+

µ2

2µ2
1

+ g(z) (12)

can be written, as z → ∞. Here, µk ≡ E((χ+
1 )

k), k = 1, 2, .. and the function g(z) tends
to zero, as z → ∞, i.e., limz→∞g(z) = 0. For this reason, for each ε > 0 it is possible to
find the number b ≡ b(ε) such that 0 < b(ε) < +∞, and for each z ≥ b(ε)

|g(z)| < ε

2
. (13)

The expression (11) can be rewritten as follows:

EU+(ζ1) ≡
∫ b(ε)

0
U+(z)dπ(z) +

∫ ∞

b(ε)
U+(z)dπ(z) ≡ J1(ε) + J2(ε). (14)
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Since the function U+(z) is a monotone non-decreasing function, then for all
0 ≤ z ≤ b(ε) is U+(z) ≤ U+(b(ε)) < +∞. Therefore,

J1(ε) ≡
∫ b(ε)

0
U+(z)dπ(z) ≤ U+(b(ε))

∫ b(ε)

0
dπ(z) ≤ U+(b(ε)). (15)

On the other hand, because of the definition of the number b(ε) according to (12), we
have:

U+(b(ε)) ≤
b(ε)

µ1
+

µ2

2µ2
1

+
ε

2
. (16)

Hence, from (15) and (16), we obtain the following inequality:

J1(ε) ≤
b(ε)

µ1
+

µ2

2µ2
1

+
ε

2
. (17)

We now estimate the second term in (14):

J2(ε) ≡
∫ ∞

b(ε)
U+(z)dπ(z) ≤

1

µ1

∫ ∞

b(ε)
zdπ(z) + (

µ2

2µ2
1

+
ε

2
)

∫ ∞

b(ε)
dπ(z)

≤ E(ζ1)

µ1
+

µ2

2µ2
1

+
ε

2
, (18)

where

E(ζ1) =

∫ ∞

0
zdπ(z) =

∫ ∞

0
z
1

σ
φ(

z − a

σ
)dz = aΦ(a/σ) + σφ(a/σ) ≤ a+

σ√
2π

.

Using (17) and (18), from (14) we have:

EU+(ζ1) ≡ J1(ε) + J2(ε) ≤
a+ σ/

√
2π

µ1
+

b(ε)

µ1
+

µ2

µ2
1

+ ε. (19)

Under the conditions of the Theorem 3.1, the conditions µ1 > 0 and µ2 ≡ E(χ+
1 )

2 < +∞
are hold. On the other hand, a < ∞; σ < ∞ and for any ε > 0 the condition b(ε) < ∞ is
true. Therefore, from (19) we have:

EU+(ζ1) < ∞. (20)

Hence, E(τ1) ≡ E(τ(z)) < ∞ and E(τn−τn−1) < ∞, n = 2, 3, ... are proved. This shows
that the Assumption 2 is also satisfied. It means that under the conditions of Theorem
3.1, the conditions of the general ergodic theorem are satisfied. Thereby, the process X(t)
is ergodic. In this case, for any bounded measurable function f(x) the relation (2) holds
with probability 1 (see, Gihman, Skorohod [12], p.243).

This completes the proof of Theorem 3.1.
�

Corollary 3.1. The ergodic distribution function (Q(x)) of the process X(t) can be pre-
sented as follows:

QX(x) = lim
t→∞

P{X(t) ≤ x} =
E(A(x, ζ1))

E(N(ζ1))
. (21)

Proof. Substituting the indicator function instead of the f(x) in (2), we can obtain the
equation (21).

�
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Now, we define the characteristic function of the ergodic distribution of the process
X(t) as follows: φX(θ) ≡ limt→∞E{exp(iθX(t))}, θ ∈ R.
Corollary 3.2. The characteristic function (φX(θ)) of the ergodic distribution of the
process X(t) can be expressed as follows:

φX(θ) = lim
t→∞

E{exp(iθX(t))} =
1

E(N(ζ1))

∫ ∞

0
eiθzdzE(A(z, ζ1)). (22)

Using the basic identity for the random walks (see, Feller [11], p.514), from (22), we
obtain the following lemma.

Lemma 3.1. Let the conditions of Theorem 3.1 be satisfied. Then, for each θ ∈ R/{0},
the characteristic function φX(θ) of the ergodic distribution of the process X(t) can be
expressed by means of the characteristics of the pair (N(z), SN(z)) and the random variable
η1 as follows:

φX(θ) =
1

EN(ζ1)

∫ ∞

0
eiθz

φSN(z)
(−θ)− 1

φη(−θ)− 1
dπ(z), (23)

where

EN(ζ1) ≡
∫ ∞

0
EN(z)dπ(z); φSN(z)

(−θ) = Eexp(−iθSN(z)); φη(−θ) = Eexp(−iθη1).

4. Weak Convergence Theorem for The Ergodic Distribution of the
Process Wa(t)

The main aim of this section is to prove the weak convergence theorem for the ergodic
distribution of the process Wa(t) ≡ X(t)/a, as a → ∞. Before that, we need to prove the
following lemma.

Lemma 4.1. Under the conditions E(η21) < +∞, E(η1) > 0 and σ/a → 0, as a → ∞,
the following asymptotic relation can be written:

E(SN(ζ1)) = a+ µ̃21 + o(1). (24)

Here, µ̃21 ≡ µ2/2µ1, µk ≡ E(χ+k
1 ), k = 1, 2, ...

Proof. In the study [21], Rogozin proved that if µ2 ≡ E(χ+2
1 ) < ∞, then the following

asymptotic relation is true when z → ∞:

E(SN(z)) = z + µ̃21 + o(1). (25)

On other hand,

E(SN(ζ1)) =

∫ ∞

0
E(SN(z))dπ(z)

= E(SN(0))Φ̄(T ) +

∫ ∞

0
E(SN(z))

1

σ
φ(

z − a

σ
)dz

= E(χ+
1 )Φ̄(T ) +

∫ ∞

0
E(SN(z))

1

σ
φ(

z − a

σ
)dz. (26)
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Here, T ≡ a/σ, Φ̄(T ) = 1 − Φ(T ). By the asymptotic expansion for the normal
distribution function (see, Abramowitz and Stegun [1], p.298), the following asymptotic
relation can be written, as T → ∞:

Φ̄(T ) =

∫ ∞

t
φ(u)du =

φ(T )

T
(1 + o(1)).

Therefore, as a → ∞

E(χ+
1 )Φ̄(T ) = µ1

φ(T )

T
(1 + o(1)) =

σµ1

a
φ(

a

σ
)(1 + o(1)). (27)

To shorten of the notations, we put: φσ(u) ≡ (1/σ)φ(u/σ); M1(z) ≡ E(SN(z)).
In this case, we can write:∫ ∞

0
E(SN(z))

1

σ
φ(

z − a

σ
)dz =

∫ ∞

0
M1(z)φσ(z − a)dz

=

∫ a

0
M1(z)φσ(z − a)dz +

∫ ∞

a
M1(z)φσ(z − a)dz. (28)

Denote the summands of the equation (28) as I1(a) and I2(a), respectively, i.e.,

I1(a) ≡
∫ a

0
M1(z)φσ(a− z)dz ≡ M1(a) ∗ φσ(a),

I2(a) ≡
∫ ∞

a
M1(z)φσ(z − a)dz.

Firstly, investigate the asymptotic behavior of I1(a), as a → ∞. For this purpose, apply
the Laplace transform to I1(a):

Ĩ1(λ) ≡
∫ ∞

0
I1(a)e

−λada = M̃1(λ)φ̃σ(λ). (29)

From the definition, φ̃σ(λ) can be presented as follows:

φ̃σ(λ) =

∫ ∞

0
e−λaφσ(a)da = exp(

λ2σ2

2
)(1− Φ(λσ)). (30)

Writing the Taylor expansion of Φ(λσ) as λ → 0, we have:

(1− Φ(λσ)) =
1

2
− σ√

2π
λ+ o(λ2). (31)

On other hand, when λ → 0, the following asymptotic relation can be written:

exp(
λ2σ2

2
) = 1 +

σ2

2
λ2 + o(λ2). (32)

Taking account the expansions (31) and (32) into (30), we have, as λ → 0:

φ̃σ(λ) =
1

2
− σ√

2π
λ− σ2

4
λ2 + o(λ2). (33)

It is known that, when λ → 0 (Rogozin [21])

M̃1(λ) =
1

λ2
+

µ̃21

λ
+ o(1). (34)

Taking account the expansions (33) and (34) into (29), we obtain

Ĩ1(λ) ≡ M̃1(λ)φ̃σ(λ) =
1

2λ2
+

µ̃21

2λ
− σ√

2π

1

λ
+ o(1). (35)
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According to Tauber - Abel theorem, from (35), we have:

I1(a) ≡ M1(a)φσ(a) =
a

2
+ [

µ̃21

2
− σ√

2π
] + o(1). (36)

Now, investigate the asymptotic behavior of I2(a), as a → ∞. It is known that, when
z → ∞ (see, Rogozin [21]).

M1(z) = z + µ̃21 + g(z). (37)

where the function g(z) is bounded function and it goes to zero when z → ∞. Because of
that I2(a) can be presented as follows:

I2(a) =

∫ ∞

a
M1(z)φσ(z − a)dz =

∫ ∞

a
[z + µ̃21 + g(z)]φσ(z − a)dz

=

∫ ∞

a
zφσ(z − a)dz + µ̃21

∫ ∞

a
φσ(z − a)dz +

∫ ∞

a
g(z)φσ(z − a)dz. (38)

Moreover, ∫ ∞

a
φσ(z − a)dz =

∫ ∞

0
φσ(v)dv =

∫ ∞

0

1

σ
φ(

v

σ
)dv

=

∫ ∞

0
φ(u)du =

1

2
;

∫ ∞

a
zφσ(z − a)dz =

a

2
+

σ√
2π

.

When z → ∞, g(z) → 0 is satisfied. Then, the following asymptotic relation is hold:∫∞
a g(z)φσ(z − a)dz → 0. Therefore,

I2(a) =
a

2
+

σ√
2π

+
µ̃21

σ
+ o(1). (39)

Taking account the expansions (36) and (39) into (28), we have, as a → ∞:∫ ∞

0
E(SN(z))

1

σ
φ(

z − a

σ
)dz =

∫ ∞

0
M1(z)φσ(z − a)dz = I1(a) + I2(a)

=
a

2
+

µ̃21

σ
− σ√

2π
+ o(1) +

a

2
+

σ√
2π

+
µ̃21

σ
+ o(1) = a+ µ̃21 + o(1). (40)

Substituting the expansions (40) and (27) in (26), we finally obtain, as a → ∞:

E(SN(ζ1)) =
σµ1

a
φ(

a

σ
)(1 + o(1)) + a+ µ̃21 + o(1) = a+ µ̃21 + o(1). (41)

This completes the proof of Lemma 4.1.
�

Now, let us investigate the asymptotic behavior of the characteristic function of the
ergodic distribution of the process Wa(t) ≡ X(t)/a, as a → ∞. For this purpose, we put:

φW (θ) ≡ lim
t→∞

E{exp(iθWa(t))}.

Theorem 4.1. Under the conditions of the Lemma 4.1, for the characteristic function
(φW (θ)) of the ergodic distribution of the process Wa(t), the following asymptotic expansion
can be written, as a → ∞:

φW (θ) =
eiθ − 1

iθ
+

1

a
C(θ) + o(

1

a
),

where C(θ) ≡ [eiθ − 1]m̃21 − [(eiθ − 1− iθ)/(iθ)]µ̃21, µ̃21 = µ2/2µ1,

m̃21 = m2/2m1, µk = E(χ+k
1 ), mk = E(ηk), k = 1, 2, ..
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Proof. Wa(t) ≡ X(t)/a is a linear transform of the process X(t). Hence, under the con-
ditions of Theorem 3.1, the process Wa(t) is ergodic. In this case, the characteristic
function (φW (θ)) of the ergodic distribution of the process Wa(t) is expressed in terms
of the characteristic function (φX(θ)) of the ergodic distribution of the process X(t) as
follows:

φW (θ) = φX(
θ

a
). (42)

On the other hand, according to Lemma 3.2, the characteristic function φX(θ) is presented
as follows:

φX(θ) =
1

E(N(ζ1))

∫ ∞

0
eiθz

E{exp(−iθSN(z))} − 1

E{exp(−iθη1)} − 1
dπ(z). (43)

Using (42) and (43), the function φW (θ) can be rewritten in the following form:

φW (θ) =
1

E(N(ζ1))

∫ ∞

0
ei

θ
a
zE{exp(−i θaSN(z))} − 1

E{exp(−i θaη1)} − 1
dπ(z). (44)

According to Wald identity,

M1(z) ≡ E(SN(z)) = E(η1)E(N(z)) = m1E(N(z)).

Therefore, we have

E(N(z)) =
E(SN(z))

m1

and

E(N(ζ1)) ≡
∫ ∞

0
E(N(z))dπ(z) =

1

m1

∫ ∞

0
M1(z)dπ(z) =

E(M1(ζ1))

m1
.

On the other hand, E(M1(ζ1)) = a+ µ̃21 + o(1) (see, Lemma 4.1).
Therefore,

E(N(ζ1)) =
1

m1
[a+ µ̃21 + o(1)] =

a

m1
[1 +

µ̃21

a
+ o(

1

a
)]. (45)

Since m2 < ∞, the following expansion can be written, as a → ∞ (see, Feller [11], p.514):

E(exp(−i
θ

a
η1)) = 1− i

θ

a
m1 +

(iθ)2

2a2
m2 + o(

1

a2
). (46)

Then,

E(exp(−i
θ

a
η1))− 1 = −i

θ

a
m1 +

(iθ)2

2a2
m2 + o(

1

a2
)

= −i
θ

a
m1{1−

iθ

a
m̃21 + o(

1

a
)}. (47)

Taking (45) and (47) into consideration, we obtain:

I(a) ≡ E(N(ζ1))[E(exp(−i
θ

a
η1))− 1] = −iθ[1 +

1

a
µ̃21 + o(

1

a
)]

= [1− iθ

a
m̃21 + o(

1

a
)] = −iθ{1 + 1

a
[µ̃21 − iθm̃21] + o(

1

a
)}. (48)

Now, we denote the numerator of fraction (44) by J(a) and rewrite it as follows:

J(a) =

∫ ∞

0
ei

θ
a
z[E(exp(−i

θ

a
SN(z)))− 1]dπ(z)

=

∫ ∞

0
{E(exp(−i

θ

a
[SN(z) − z]))− exp(iθ)exp(−i

θ

a
(z − a))}dπ(z)

= E(exp(−i
θ

a
S̄N(ζ1)))− eiθE(exp(i

θ

a
(ζ1 − a))), (49)
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where S̄N(ζ1) ≡ SN(ζ1) − ζ1. Besides,

E(ζ1) =

∫ ∞

0
zdπ(z) =

∫ ∞

0
z
1

σ
φ(

z − a

σ
)dπ(z)

=

∫ ∞

0
(a+ σv)

1

σ
φ(v)σdv =

∫ +∞

−∞
(a+ σv)φ(v)dv −

∫ −T

−∞
(a+ σv)φ(v)dv

= a− aσ
φ(T )

a
(1 + o(1)) + σφ(T )

= a+ o(φ(
a

σ
)), (50)

where T ≡ a/σ.
Therefore, the following expansion can be written, as a → ∞ (see, Feller [12], p.514):

E(exp(i
θ

a
(ζ1 − a))) = 1− iθ

a
E(ζ1 − a) + o(

1

a
E(ζ1 − a))

= 1 + o(
1

a
exp(− a2

2σ2
)). (51)

On the other hand, taking Lemma 4.1 into consideration, we have, as a → ∞ (see, Feller
[11], p.514):

E(exp(−i
θ

a
S̄N(ζ1))) = 1− iθ

a
[E(SN(ζ1))− E(ζ1)] + o(

1

a
)

= 1− iθ

a
[a+ µ̃21 + o(1)− (a+ o(φ(

a

σ
)))] + o(

1

a
)

= 1− iθ

a
µ̃21 + o(

1

a
). (52)

Taking expansions (51) and (52) into consideration, we obtain the following expansion for
the J(a):

J(a) = 1− iθ

a
µ̃21 ++o(

1

a
)− eiθ(1 + o(

1

a
exp(

−a2

2σ2
)))

= 1− eiθ − iθ

a
µ̃21 + o(

1

a
). (53)

From (48) and (53), we get the following asymptotic expansion for the characteristic
function φW (θ), as a → ∞:

φW (θ) =
J(a)

I(a)
=

1− eiθ − iθ
a µ̃21 + o( 1a)

−iθ{1 + 1
a [µ̃21 − iθm̃21] + o( 1a)}

=
eiθ − 1

−iθ
{1 + iθµ̃21

(eiθ − 1)a
+ o(

1

a
)}.{1− 1

a
[µ̃21 + iθm̃21] + o(

1

a
)}

=
eiθ − 1

iθ
+

µ̃21

a
− eiθ − 1

iθa
(µ̃21 − iθm̃21) + o(

1

a
)

=
eiθ − 1

iθ
+

1

a
{(eiθ − 1)m̃21 − [

eiθ − 1− iθ

iθ
]µ̃21}+ o(

1

a
)

=
eiθ − 1

iθ
+

C(θ)

a
+ o(

1

a
), (54)

where C(θ) = (eiθ − 1)m̃21 − [(eiθ − 1− iθ)/(iθ)]µ̃21.
Thus, we obtained the asymptotic expansion (54) for the characteristic function φW (θ).

This completes the proof of Theorem 4.1.
�
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Theorem 4.2 (Weak Convergence Theorem). Under the conditions of Theorem 4.1, the
ergodic distribution (QW (x)) of the process Wa(t) weakly converges to Uniform distribution
over the interval [0, 1], i.e., for each x ∈ [0, 1], as a → ∞,

QW (x) → G(x) ≡ x,

where QW (x) ≡ limt→∞ P{Wa(t) ≤ x}.

Proof. In Theorem 4.1, the expansion (54) is obtained for the characteristic function
(φW (θ)) of the ergodic distribution of the process Wa(t). First term of this expansion
is φ0(θ) ≡ (eiθ − 1)/(iθ). This is the explicit expression of the characteristic function of
the uniform distribution over the interval [0, 1]. Second term of the expansion (54) is equal
to C(θ)/a where

C(θ) = (eiθ − 1)m̃21 − [
eiθ − 1− iθ

iθ
]µ̃21.

For each θ ∈ R, the following inequalities are well known in literature:

|eiθ − 1| ≤ |θ|, |eiθ − 1− iθ| ≤ |θ2|
2

.

Using these inequalities, we can evaluate C(θ):

|C(θ)| ≤ m̃21|eiθ − 1|+ µ̃21|
eiθ − 1− iθ

iθ
|

≤ m̃21|θ|+ µ̃21
|θ|2

2|θ|
= m̃21|θ|+ µ̃21

|θ|
2

= (m̃21 +
µ̃21

2
)|θ|.

According to conditions of the Theorem 4.2, E(η1) > 0 and E(η21) < ∞. Because of that
m̃21 and µ̃21 are finite. Therefore, for each finite θ, C(θ) is finite. Hence, C(θ)/a → 0, as
a → ∞. Finally, we have:

lim
a→∞

φW (θ) = φ0(θ) =
eiθ − 1

iθ
.

According to the Continuity Theorem for characteristic functions (see, Feller [11], p.508),
the ergodic distribution function of the process Wa(t) weakly converges to the limit dis-
tribution function G(x) ≡ x, as a → ∞, uniformly for x ∈ [0, 1]; i.e., for each x ∈ [0, 1], as
a → ∞,

lim
t→∞

P{Wa(t) ≤ x} ≡ QW (x) → G0(x) ≡ x.

This completes the proof of Theorem 4.2. �
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