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SOLVABILITY OF SECOND ORDER DELTA-NABLA p-LAPLACIAN

m-POINT EIGENVALUE PROBLEM ON TIME SCALES

SABBAVARAPU NAGESWARA RAO1, §

Abstract. In this paper, we are concerned with the following eigenvalue problem of
m-point boundary value problem for p-Laplacian dynamic equation on time scales,(

ϕp(u
∆(t))

)∇
+ λh(t)f

(
u(t)

)
= 0, t ∈ [a, b]T,

u(a)− u∆(a) =

m−2∑
i=1

u∆(ξi), u∆(b) = 0, m ≥ 3,

where ϕp(u) = |u|p−2u, p > 1 and λ > 0 is a real parameter. Under certain assumptions,
some new results on existence of one or two positive solutions and nonexistence are
obtained for λ evaluated in different intervals by using Guo-Krasnosel’skii fixed point
theorem.
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1. Introduction

The theory of dynamic equations on time scales was introduced firstly by Stefan Hilger
in 1988. Since then, more and more scholars are interested in this area. The main reason
is that the time scale theory can not only unite continuous and discrete dynamic equa-
tions but also have important applications, for example, in the study of insect population
models, neural networks, heat transfer, economic, stock market, and epidemic models.
Throughout this work we assume a working knowledge of time scales and time scales
natation, where any nonempty closed subset of R can serve as a time scale T, see Hilger
[18], Bohner and Peterson [8]

Very recently, there is an increasing attention paid to question of positive solution for
second order boundary value problem on time scales [4, 5, 9, 10, 11, 22]. But very little
work has been done to the existence of positive solutions for p-Laplacian boundary value
problem on time scales [6, 24, 17]. In particular, we would like to mention some results of
Agarwal, Lü and O’Regan [3], Anderson, Avery and Henderson [6], Fan and Li [12], Guo
and Sun [14], Goodrich [15, 16], Nageswararao [21], Prasad, Nageswararao and Murali
[22], Sun and Li [23, 24], Sun, Tang and Wang [25], which are motivate us to consider our
problem.
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In this paper we consider the eigenvalue problem of m-point boundary value problem
for the one-dimensional p-Laplacian dynamic equation on time scales(

ϕp(u
∆(t))

)∇
+ λh(t)f(u(t)) = 0, t ∈ [a, b]T (1)

u(a)− u∆(a) =
m−2∑
i=1

u∆(ξi), u∆(b) = 0, m ≥ 3. (2)

Under certain assumptions, results on existence of one or two positive solutions and nonex-
istence are obtained for λ evaluated in different intervals.
For convenience, throughout this paper, we denote ϕp(u) as the p-Laplacian operator, i.e.,
ϕp(u) = |u|p−2u for p > 1 with (ϕp)

−1 = ϕq, where
1
p + 1

q = 1.

We make the following assumptions throughout:

(A1) f ∈ C([0,∞), [0,∞)) does not vanish identically on any closed subinterval of
[a, b]T.

(A2) λ > 0 is a parameter, the function h : (a, b) → [0,∞) is left-dense continuous such

that h(t0) > 0 for at least one t0 ∈ [a, b) and 0 <
∫ b
a h(τ)∇τ < ∞.

We define the positive extended real numbers f0, f0, f
∞ and f∞ by

f0 = lim sup
u→0+

f(u)

ϕp(u)
, f0 = lim inf

u→0+

f(u)

ϕp(u)
,

f∞ = lim sup
u→∞

f(u)

ϕp(u)
and f∞ = lim inf

u→∞

f(u)

ϕp(u)

assume that they will exist.

The rest of this paper is organized as follows. In Section 2, we shall provide some
preliminaries. For convenience, we also state the Krasnosel’skii’s fixed point theorem in
a cone. In Section 3, we establish a criteria to determine eigenvalue intervals for which
there exist at least one or two positive solutions. In the last Section, we will consider
the conditions of the nonexistence of the positive solution. An example is also given to
illustrate the main results.

2. Preliminaries

Let the Banach space B = Cld[a, b] be endowed with the norm

∥u∥ = sup
t∈[a,b]T

|u(t)|,

and choose the cone P ⊂ B defined by

P =
{
u ∈ B : u(t) ≥ 0, on [a, b]T and u∆∇(t) ≤ 0, u∆(t) ≥ 0,

for t ∈ [a, b]T, u(a)− u∆(a) =

m−2∑
i=1

u∆(ξi), m ≥ 3
}

clearly, we can obtain ∥ u ∥= u(b) for u ∈ P.
A function u : T → R is said to be a solution of the BVP (1)-(2) provided that u is

delta differential, u∆ and
(
ϕp(u

∆(t))
)∇

are continuous on [a, b]T, and u satisfies the BVP

(1)-(2).
To obtain our main results, we make use of the following lemmas.
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Lemma 2.1. Assume that (A1) and (A2) are satisfied. Then u(t) is the solution of the
BVP (1)-(2) if and only if

u(t) = ϕq

(∫ b

a
λh(τ)f(u(τ))∇τ

)
+

m−2∑
i=1

ϕq

(∫ b

ξi

λh(τ)f(u(τ))∇τ
)

+

∫ t

a
ϕq

(∫ b

s
λh(τ)f(u(τ))∇τ

)
∆s.

Proof. Firstly, we prove the necessity. Let u(t) be the solution of the BVP (1)-(2). ∇-

integrating on (1) from t to b, we have ϕp(u
∆(b))−ϕp(u

∆(t)) = −
∫ b
t λh(τ)f(u(τ))∇τ. By

using second boundary condition, we get u∆(t) = ϕq

( ∫ b
t λh(τ)f(u(τ))∇τ

)
∆-integrating

from a to t, we get u(t)− u(a) =
∫ t
a ϕq

( ∫ b
s λh(τ)f(u(τ))

)
∆τ.

Therefore,

u(t) = u(a) +

∫ t

a
ϕq

(∫ b

s
λh(τ)f(u(τ))

)
∆τ.

We have u∆(a) = ϕq

( ∫ b
a λh(τ)f(u(τ))∇τ

)
, u∆(ξi) = ϕq

( ∫ b
ξi
λh(τ)f(u(τ))∇τ

)
. Now we

submitting u∆(a), u∆(ξi) into the first boundary condition of the (2), we obtain

u(a) = ϕq

(∫ b

a
λh(τ)f(u(τ))∇τ

)
+

m−2∑
i=1

ϕq

(∫ b

ξi

λh(τ)f(u(τ))∇τ
)
.

Thus, we have

u(t) = ϕq

(∫ b

a
λh(τ)f(u(τ))∇τ

)
+

m−2∑
i=1

ϕq

(∫ b

ξi

λh(τ)f(u(τ))∇τ
)

+

∫ t

a
ϕq

(∫ b

s
λh(τ)f(u(τ))∇τ

)
∆s.

Secondly, we can prove the sufficiency easily. �
Define the operator T : P → B, for u ∈ P, by

(Tu)(t) = ϕq

(∫ b

a
λh(τ)f(u(τ))∇τ

)
+

m−2∑
i=1

ϕq

(∫ b

ξi

λh(τ)f(u(τ))∇τ
)

+

∫ t

a
ϕq

(∫ b

s
λh(τ)f(u(τ))∇τ

)
∆s.

(3)

By using Lemma 2.1, u(t) is the solution of the BVP (1)-(2) if and only if u(t) = (Tu)(t).

Lemma 2.2. Assume that (A1) and (A2) hold. T : P → P is a completely continuous
operator.

Proof. Firstly we prove T : P → P. For u ∈ P, by Lemma 2.1, (A1), and (A2), we obtain
Tu(t) ≥ 0, t ∈ [a, b]T,

(Tu)∆(t) = ϕq

(∫ b

t
λh(τ)f(u(τ))∇τ

)
, (Tu)∆∇(t) ≤ 0,

(Tu)(a)− (Tu)∆(a) =
m−2∑
i=1

ϕq

(∫ b

ξi

λh(τ)f(u(τ))∇τ
)
=

m−2∑
i=1

(Tu)∆(ξi),
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which implies Tu ∈ P.
Secondly, T maps a bounded set into a bounded set. Assume c > 0 is a constant and
u ∈ Pc = {x ∈ P :∥ x ∥≤ c}. Note that the continuity of f(u) is continuous, there exists a
C > 0 such that f(u) ≤ ϕp(C). Hence, for t ∈ [a, b]T, u ∈ Pc, we have

|(Tu)∆(t)| =
∣∣∣ϕq

(∫ b

t
λh(τ)f(u(τ))∇τ

)∣∣∣ < Cϕq(λ)ϕq

(∫ b

a
h(τ)∇τ

)
< ∞,

|(Tu)(t)| =
∣∣∣ϕq

(∫ b

a
λh(τ)f(u(τ))∇τ

)
+

m−2∑
i=1

ϕq

(∫ b

ξi

λh(τ)f(u(τ))∇τ
)

+

∫ t

a
ϕq

(∫ b

s
λh(τ)f(u(τ))∇τ

)
∆s

∣∣∣
≤ C(m− 1 + b)ϕq(λ)ϕq

(∫ b

a
h(τ)∇τ

)
< ∞.

Consequently, TPc is bounded.
For t1, t2 ∈ [a, b]T, u ∈ Pc, we get

|(Tu)(t1)− (Tu)(t2)| ≤
∣∣∣ ∫ t2

t1

ϕq

(∫ b

s
λh(τ)f(u(τ))∇τ

)
∆s

∣∣∣
≤

∣∣∣ ∫ t2

t1

ϕq

(∫ b

s
λh(τ)∇τ

)
∆s

∣∣∣
≤ |t1 − t2|Cϕq(λ)ϕq

(∫ b

a
h(τ)∇τ

)
→ 0, t1 → t2.

So, by applying Arzela-Ascoli theorem on time scales [2], we obtain that TPc is relatively
compact. In view of Lebesgue’s dominated convergence theorem on time scales [7], it is
easy to prove that T is continuous. Hence, T is completely continuous. �

Theorem 2.1. [Krasnosel’skii] [13, 20] Let B be a Banach space, and let P ⊂ B be a
cone in B. Assume that Ω1 and Ω2 are open subsets of B with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let

T : P ∩ (Ω2\Ω1) → P

be a completely continuous operator such that either

(i) ∥ Tu ∥≤∥ u ∥, u ∈ P ∩ ∂Ω1, and ∥ Tu ∥≥∥ u ∥, u ∈ P ∩ ∂Ω2, or
(ii) ∥ Tu ∥ geq ∥ u ∥, u ∈ P ∩ ∂Ω1, and ∥ Tu ∥≤∥ u ∥, u ∈ P ∩ ∂Ω2.

Then, T has a fixed point in P ∩ (Ω2\Ω1).

3. Eigenvalue intervals

In this section, we shall apply Theorem 2.1 to derive explicit eigenvalue intervals, and
also give sufficient conditions that the BVP (1)-(2) has at least one or two positive solu-
tions.
To begin, we shall define some important constants

L1 = (m+ b− a− 1)ϕq

(∫ b

a
h(τ)∇τ

)
L2 =

(ξm−2 − a

b− a

)
(m+ ξm−2 − a− 1)ϕq

(∫ b

ξm−2

h(τ)∇τ
)
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Theorem 3.1. Suppose (A1)− (A2) hold. Then for each

(f∞)−1ϕq

((ξm−2 − a)L2

b− a

)
< λ < (f0)−1ϕq(L1), (4)

the BVP (1)-(2) has at least one positive solution. Here we impose

(f∞)−1ϕq

(
(ξm−2−a)L2

b−a

)
= 0 if f∞ = ∞ and (f0)−1ϕq(L1) = ∞ if f0 = 0.

Proof. Let λ satisfy (4) and ϵ > 0 be such that

(f∞ − ϵ)−1ϕq

((ξm−2 − a)L2

b− a

)
≤ λ ≤ (f0 + ϵ)−1ϕq(L1). (5)

By the definition of f0, we see that there exists r1 > 0 such that

f(u) ≤ (f0 + ϵ)ϕp(u), 0 < u < r1. (6)

So, if u ∈ ∂Pr1 , then by (5) and (6) we have

∥ Tu ∥ = (Tu)(b) ≤ ϕq

(∫ b

a
λh(τ)f(u(τ))∇τ

)
+ (m− 2)ϕq

(∫ b

a
λh(τ)f(u(τ))∇τ

)
+ (b− a)ϕq

(∫ b

a
λh(τ)f(u(τ))∇τ

)
≤ (m+ b− a− 1) u ϕq(λ(f

0 + ϵ))ϕq

(∫ b

a
h(τ)∇τ

)
≤ ϕq(λ(f

0 + ϵ))L1 ∥ u ∥≤∥ u ∥ .

Hence if we let Ω1 = {u ∈ B :∥ u ∥< r1}, then

∥ Tu ∥≤∥ y ∥, for u ∈ P ∩ ∂Ω1. (7)

Let r3 > 0 be such that

f(u) ≥ (f∞ − ϵ)ϕp(u), u ≥ r3. (8)

If u ∈ B with ∥ u ∥= r2 = max
{
2r1,

(b−a)r3
ξm−2−a

}
. Then in view of (8)we have

∥ Tu ∥ ≥ (Tu)(ξm−2) ≥
(ξm−2 − a

b− a

)
(Tu)(b)

≥
(ξm−2 − a

b− a

)[
ϕq

(∫ b

a
λh(τ)f(u(τ))∇τ

)
+

m−2∑
i=1

ϕq

(∫ b

ξi

λh(τ)f(u(τ))∇τ
)

+

∫ b

a
ϕq

(∫ b

s
λh(τ)f(u(τ))∇τ

)
∆s

]

≥
(ξm−2 − a

b− a

)[
ϕq

(∫ b

ξm−2

λh(τ)f(u(τ))∇τ
)
+ (m− 2)ϕq

(∫ b

ξm−2

λh(τ)f(u(τ))∇τ
)

+

∫ ξm−2

a
ϕq

(∫ b

ξm−2

λh(τ)f(u(τ))∇τ
)
∆s

]

≥
(ξm−2 − a

b− a

)
(m+ ξm−2 − a− 1)ϕq

(∫ b

ξm−2

λh(τ)(f∞ − ϵ)ϕp(u(τ))∇τ
)

≥ L2ϕq

(
λ(f∞ − ϵ)

)(ξm−2 − a

b− a

)
∥ u ∥≥∥ u ∥ .
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Thus if we set Ω2 = {u ∈ B :∥ u ∥< r2}, then

∥ Tu ∥≤∥ u ∥, for u ∈ P ∩ ∂Ω2. (9)

Now, (7),(9) and Theorem 2.1 guarantee that T has a fixed point P ∩ (Ω2\Ω1) with
r1 ≤∥ u ∥≤ r2, and clearly u is a positive solution of (1)-(2). �

Theorem 3.2. Suppose (A1)− (A2) hold. Then for each

(f0)
−1ϕq

((ξm−2 − a)L2

b− a

)
< λ < (f∞)−1ϕq(L1), (10)

the BVP (1)-(2) has at least one positive solution.

Proof. Let λ satisfy (10) and ϵ > 0 be such that

(f0 − ϵ)−1ϕq

((ξm−2 − a)L2

b− a

)
≤ λ ≤ (f∞ + ϵ)−1ϕq(L1). (11)

By the definition of f0, we see that there exists r1 > 0 such that

f(u) ≤ (f0 − ϵ)ϕp(u), 0 < u ≤ r1.

Further, if u ∈ P with ∥ u ∥= r1, then u(t) ≥
(
ξm−2−a

b−a

)
∥ u ∥, t ∈ [ξm−2, b]T, and similar

to the second part of Theorem 3.1, we can obtain that ∥ Tu ∥≥∥ u ∥ . Thus, if we let
Ω1 = {u ∈ B :∥ u ∥< r1}, then

∥ Tu ∥≥∥ u ∥, for u ∈ P ∩ ∂Ω1. (12)

Next, we may choose R2 > 0 such that

f(u) ≤ (f∞ + ϵ)ϕp(u), u ≥ R2. (13)

Here there are two cases to consider, namely, where f is bounded and f is unbounded.
Case (i). Suppose f is bounded, then there exists some M > 0, such that f(u) ≤ M, u ∈
(0,∞). We define r3 = max

{
2r1, ϕq(λM)L1,

}
and u ∈ P be such that ∥ u ∥= r3, then

∥ Tu ∥= (Tu)(b)

≤ ϕq

(∫ b

a
λh(τ)f(u(τ))∇τ

)
+ (m− 2)ϕq

(∫ b

a
λh(τ)f(u(τ))∇τ

)
+ (b− a)ϕq

(∫ b

a
λh(τ)f(u(τ))∇τ

)
≤ ϕq(λM)L1 ≤ r3 =∥ u ∥ .

Hence,

∥ Tu ∥≤∥ u ∥, for u ∈ ∂Pr3 . (14)

Case (ii). Suppose f is unbounded, then there exists r4 > max{2r1, R2} such that

f(u) ≤ f(r4), 0 < u < r4. (15)
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Let u ∈ P be such that ∥ u ∥= r4, then by (11), we have

∥ Tu ∥= (Tu)(b)

≤ ϕq

(∫ b

a
λh(τ)f(u(τ))∇τ

)
+ (m− 2)ϕq

(∫ b

a
λh(τ)f(u(τ))∇τ

)
+ (b− a)ϕq

(∫ b

a
λh(τ)f(u(τ))∇τ

)
≤ ϕq(λ(f

∞ + ϵ))L1 ∥ u ∥≤∥ u ∥ .

Thus, (14) is also true. In both Case (i) and Case (ii), if we set

Ω2 =
{
u ∈ B : ∥ u ∥< r2 = max{r3, r4}

}
,

then (13) hold for u ∈ P ∩ ∂Ω2. Now that we have obtained (12) and (14), it follows from
Theorem 2.1 that T has a fixed point u ∈ P ∩ (Ω2\Ω1), and r1 ≤∥ u ∥≤ r2. It is clear that
u is a positive solution of (1)-(2). �

In the rest of this section, we consider the existence of two positive solutions of (1)-(2).
First, we give lemma.

Lemma 3.1. Assume that (A1) and (A2) hold. In addition, assume there exist r2 > r1 >
0, such that

max
0≤u≤r1

f(u) ≤
ϕp(

r1
L1

)

λ
(16)

min
(ξm−2−a)r2

b−a

≥ f(u) ≤ r2
ϕp(

r2
L2

)

λ
. (17)

Then, (1)-(2) has a solution u ∈ P with r1 ≤∥ u ∥≤ r2.

Proof. The proof of Lemma 3.1 is similar to that of Theorem 3.2, we omit it here. �

For the remainder of the paper, we will need the following condition:
(A3)

sup
r>0

min
u∈
(

(ξm−2−a)r

b−a
, r
) f(u) > 0.

λ1 = sup
r>0

ϕp(
r
L1

)

max0≤u≤r f(u)
, (18)

λ2 = inf
r>0

ϕp(
r
L2

)

min( (ξm−2−a)r

b−a

)
≤u≤r

f(u)
, (19)

In view of (A1) and (A3), we can easily obtain that 0 < λ1 ≤ ∞ and 0 ≤ λ2 < ∞.

Theorem 3.3. Suppose (A1)− (A3) hold, if f0 = ∞ and f∞ = ∞, then the BVP (1)-(2)
has at least two positive solutions for each λ ∈ (0, λ1).

Proof. Define

a(r) =
ϕp(

r
L1

)

max0≤u≤r f(u)
, r > 0,

then by (A1), f0 = ∞ and f∞ = ∞, we have that a(r) : (0,∞) → (0,∞) is continuous
and limr→0 a(r) = limr→∞ a(r) = 0. By (17) there exists r0 ∈ (0,∞), such that
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a(r0) = supr>0 a(r) = λ1, then for λ ∈ (0, λ1), there exist constants
c1, c2 (0 < c1 < r0 < c2 < ∞) with a(c1) = a(c2) = λ. Thus

f(u) ≤
ϕp(

c1
L1

)

λ
for u ∈ [0, c1], (20)

f(u) ≤
ϕp(

c2
L1

)

λ
for u ∈ [0, c2]. (21)

On the other hand, applying the condition f0 = ∞ and f∞ = ∞, there exist constants
d1, d2 (0 < d1 < c1 < r0 < c2 < d2 < ∞), with

f(u)

ϕp(u)
≥ λ−1ϕq

(ξm−2 − a)L2

b− a

)
for u ∈ (0, d1) ∪

((ξm−2 − a)d2
b− a

,∞
)

(22)

then

min
(ξm−2−a)d1

b−a
≤u≤d1

f(u) ≥ λ−1ϕp

( d1
L2

)
(23)

min
(ξm−2−a)d2

b−a
≤u≤d2

f(u) ≥ λ−1ϕp

( d2
L2

)
. (24)

By (20) and (23), (21) and (24), Lemma 3.1, we can complete the proof. �
Theorem 3.4. Suppose (A1)−(A3) hold, if f0 = 0 and f∞ = 0, then for each λ ∈ (λ2,∞)
the BVP (1)-(2) has at least two positive solutions.

Proof. Define

b(r) =
ϕp(

r
L2

)

min (ξm−2−a)r

b−a
≤u≤r

f(u)
, r ∈ (0,∞).

By f0 = 0 and f∞ = 0 we easily see that b(r) : (0,∞) → (0,∞) is continuous and

lim
r→0

b(r) = lim
r→∞

b(r) = ∞.

Thus there exists r0 ∈ (0,∞), such that b(r0) = infr>0 b(r) = λ2. For λ ∈ (λ2,∞), there
exist constants d1, d2(0 < d1 < r0 < d2 < ∞) with b(d1) = b(d2) = λ. Therefore

f(u) ≥
ϕp(

d1
L1

)

λ
for u ∈

[(ξm−2 − a)d1
b− a

, d1

]
,

f(u) ≥
ϕp(

d2
L2

)

λ
for u ∈

[(ξm−2 − a)d2
b− a

, d2

]
,

On the other hand, using f0 = 0, we know that there is a constant c1(0 < c1 < d1) with

f(u)

ϕp(u)
≤ λ−1ϕq(L1) for u ∈ (0, c1)

max
0≤u≤c1

f(u) ≤
ϕp

(
c1
L1

)
λ

. (25)

In view of f∞ = 0, there exits a constant c2 ∈ (d2,∞) such that

f(u)

ϕp(u)
≤ ϕq(L1λ) for u ∈ (c2,∞).

Let M = supu∈[0,c2] f(u) and c2 ≥ L1ϕq(λM). It is easily seen that

max
0≤u≤c2

f(u) ≤
ϕp(

c2
L1

)

λ
. (26)
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By (25), (26) and Lemma 3.1, we can complete the proof. �

4. Nonexistence

In this section, we give some sufficient conditions for the nonexistence of positive solution
to the BVP (1)-(2).

Theorem 4.1. Suppose (A1)− (A3) hold. If f0 < ∞, f∞ < ∞, then there exists a λ0 > 0
such that for all 0 < λ < λ0, (1)-(2) has no positive solution.

Proof. Since f0 < ∞ and f∞ < ∞, there exist positive numbers l1, l2, r1 and r2 such that
r1 < r2 and

f(u) ≤ l1ϕp(u) for u ∈ [0, r1],

f(u) ≤ l2ϕp(u) for u ∈ [r1,∞],

Let L = max
{
l1, l2,maxr1≤u≤r2{f(u)ϕq(u)}

}
, then we have

f(u) ≤ Lϕp(u) for u ∈ [0,∞)

Assume that v(t) is a positive solution of BVP (1)-(2). We will show that this leads to a
contradiction for 0 < λ < λ0 = L−1ϕq(L1). Since Tv(t) = v(t) for t ∈ [a, b]T, then

∥ Tv ∥ = (Tv)(b) ≤ ϕq

(∫ b

a
λh(τ)f(v(τ))∇τ

)
+ (m− 2)ϕq

(∫ b

a
λh(τ)f(v(τ))∇τ

)
+ (b− a)ϕq

(∫ b

a
λh(τ)f(v(τ))∇τ

)
≤ ϕq(λL) ∥ v ∥ L1 <∥ v ∥ .

which is a contradiction. Therefore, (1)-(2) has no positive solutions. �

Theorem 4.2. Suppose (A1) − (A3) hold, if f0 > 0, f∞ > 0, then there exist a λ0 > 0
such that for all λ > λ0, (1)-(2) has no positive solution.

Proof. By f0 > 0, f∞ > 0, we know that there exist m1,m2, r1 and r2 such that r1 < r2
and

f(u) ≥ m1ϕp(u) for u ∈ [0, r1], f(u) ≥ m2ϕp(u) for u ∈ [r2,∞).

Let m3 = min
{
m1,m2,minr1≤u≤r2{f(u)ϕq(u)}

}
> 0, then we get

f(u) ≥ m3ϕp(u) for u ∈ [0,∞).
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Assume v(t) is a positive solution of (1)-(2). We will show that this leads to a contradiction

for λ > λ0 = (m3)
−1ϕp

(
(ξm−2−a)L2

b−a

)
. Since Tv(t) = v(t) for t ∈ [a, b]T, then

∥ v ∥ ≥ v(ξm−2) = (Tv)(ξm−2) ≥
(ξm−2 − a

b− a

)
(Tv)(b)

≥
(ξm−2 − a

b− a

)[
ϕq

(∫ b

a
λh(τ)f(v(τ))∇τ

)
+

m−2∑
i=1

ϕq

(∫ b

ξi

λh(τ)f(v(τ))∇τ
)

+

∫ b

a
ϕq

(∫ b

s
λh(τ)f(v(τ))∇τ

)
∆s

]

≥
(ξm−2 − a

b− a

)[
ϕq

(∫ b

ξm−2

λh(τ)f(v(τ))∇τ
)
+ (m− 2)ϕq

(∫ b

ξm−2

λh(τ)f(v(τ))∇τ
)

+

∫ ξm−2

a
ϕq

(∫ b

ξm−2

λh(τ)f(v(τ))∇τ
)
∆s

]

=
(ξm−2 − a

b− a

)
(m+ ξm−2 − a− 1)ϕq

(∫ b

ξm−2

λh(τ)f(v(τ))∇τ
)

≥ ϕq

(
λm3

)(ξm−2 − a

b− a

)
∥ v ∥ L2 =∥ v ∥

which is a contradiction. Thus, (1)-(2) has no positive solution. �

Example 4.1. Let T = {1 − (12)
N0} ∪ {1}, where N0 denotes the set of all nonnegative

integers. Taking a = 0, b = 1, p = 2, m = 3, ξ1 =
1
2 , if we let

h(s) = 1, then L1 = 2, L2 =
3
2 . Suppose f(u) = 1+49u

1+u

(
3
2 + sinu

)
, u ≥ 0, and

f0 = f0 =
3
2 , f

∞ = 235, f∞ = 45.
By direct calculation, it is easy to get that

(f∞)−1ϕq

((ξ1 − a)L2

b− a

)
= 0.029, (f0)−1ϕq(L1) = 0.334,

L−1ϕq(L1) = 0.0122 and (m3)
−1ϕp

((ξ1 − a)L2

b− a

)
= 4.

Thus the boundary value problem

u∆∇(t) + λf(u(t)) = 0, t ∈ [0, 1]T,

u(0)− u∆(0) = u∆
(1
2

)
, u∆(1) = 0

has at least one positive solutions for 0.029 < λ < 0.334, has no solution on
P for 0 < λ < 0.0122 or λ > 4 by Theorem 3.1, Theorem 4.1 and Theorem 4.2 respectively.

Acknowledgement: The author thanks the referees for their valuable suggestions.
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