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CODES CORRECTING KEY ERRORS

PANKAJ KUMAR DAS1, §

Abstract. The objective of coding theory is to protect a message going through a noisy
channel. The nature of errors that cause noisy channel depends on different factors.
Accordingly codes are needed to develop to deal with different types of errors. Sharma
and Gaur [6] introduced a new kind of error which is termed as ‘key error’. This paper
presents lower and upper bounds on the number of parity-check digits required for linear
codes capable of correcting such errors. An example of such a code is also provided.
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1. Introduction

With the advancement of information technology, different types of new problems have
been coming out. Different types of error patterns are also coming out. Error control
coding now is not limited to distant communication only. There are communication chan-
nels like the automata or electronics devices which are encountered with specific type of
errors for which the coding is required. The error patterns which they produce are all
dependent on the characteristics of the device. It is important to carefully study the error
patterns that actually occur. This allows correction of all errors that actually occur rather
than partial correction or correcting non-errors that results in wasting the capacity of the
channel.

Let us consider the keyboard of a computer; it has keys for various numbers and other
symbols. Imagine punching a number or an alphabet key on it. While word processing,
one may erroneously press a key on one or two positions on either side of the right key,
rather than any key on the keyboard. These likely positions will constitute the set of
errors for the number or the symbol key pressed. Such errors are already discussed by
Sharma and Gaur [6] with respect to S-K metric. We give here a study on such errors
with respect to Hamming metric. We call such errors as key errors and they are defined
as follows:

Definition 1.1. A i-key error of length b is a vector such that the ith component is non-
zero and the other non-zero components are confined to some b consecutive components in
either side of the ith component.

1 Department of Mathematics, Shivaji College(University of Delhi), Raja Garden, Delhi-110 027, India.
e-mail: pankaj4thapril@yahoo.co.in;

§ Manuscript received: July 05, 2014.
TWMS Journal of Applied and Engineering Mathematics, Vol.5, No.1; c⃝ Işık University, Department
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It may be noted that in such error, the entry error i.e., the ith component may be the
first position and go to upto the nth position. If the entry error is the first position, then
the non-zero components are confined to b consecutive components on the right side of
the first position. If the entry error is the second position, then non-zero components are
confined to one position of left side of the second position and to the b consecutive com-
ponents on the right side of the second position. Continue the process such that nonzero
components are confined to b consecutive positions of either side of the entry error. Fi-
nally if the entry error is the nth position, then non-zero components are confined to the
b consecutive components on the left side of the nth component.

For example in a vector of length 6 over a field of 3 elements GF (3), the key er-
rors of length 2 are (0 12︸︷︷︸
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The basic purpose of error-correcting codes is to correct errors that are occurred during
communication. This is done by adding parity check digits (redundancy) to the infor-
mation digits. The efficiency of a error correcting code depends on the number of parity
check digits. The lesser is the number of parity check symbols in a code, the more is
the rate of information of the code. It is not generally possible to give the exact number
of redundant/parity check digits for a given error correcting code. But, we can obtain
bounds on the number of redundant/parity check digits. This was initiated by Hamming
[2] who was concerned with both code constructions and bounds. After that, many other
researchers have worked on bounds and this paper is also in that direction.

Das [1] has presented lower and upper bounds on parity check for the codes detecting
key errors. Reiger type of bound [4] on codes detecting and simultaneously correcting
such errors was also studied. The present paper obtains lower and upper bounds on parity
check digits for a linear code capable of correcting such errors.

The paper is organized as follows: Section 1 i.e., the Introduction gives brief view of the
importance of the study of the paper and basic definition. In Section 2, we obtain lower
and upper bounds on the number of parity check digits of a linear code that corrects any
key error of length b or less. This is followed by an example of such a code. Section 3 is
the conclusion.

In what follows a linear code will be considered as a subspace of the space of all n-tuples
over GF (q). The distance between two vectors shall be considered in the Hamming sense.

2. Correction of key errors

We consider the linear codes that are capable of correcting any key errors of length b
or less. Firstly, a lower bound on the number of parity-check digits required for such a
code is obtained. The proof is based on the technique used in Theorem 4.16, Peterson and
Weldon [3].

Theorem 2.1. Any (n, k) linear code over GF (q) that corrects any key error of length b
or less must satisfy

qn−k ≥ 1 +
q2b+1 − q

q + 1
+ (n− 2b)(q − 1)

(
q2b+1 − q

q + 1
+ 1

)
+

q2b+1 − q3

(q + 1)2
+

(q − 1)(b+ q)

q + 1
.

Proof. The result will be proved by counting the number of correctable errors and setting
it less than or equal to qn−k.
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The number of key errors of length b or less when the entry error of the key errors is from
1st position to bth position is given by

(q − 1)qb

+(q − 1)2qb + (q − 1)qb−1

+(q − 1)2qb+1 + (q − 1)2qb−1 + (q − 1)qb−2

+(q − 1)2qb+2 + (q − 1)2qb + (q − 1)2qb−2 + (q − 1)qb−3

+........................................

+.........................................

+(q − 1)2q2b−2 + (q − 1)2q2b−4 + (q − 1)2q2b−6 + · · ·+ (q − 1)2q2 + (q − 1)q,

which is equal to

(q − 1)2
{
qb
(
q2 − 1

q2 − 1

)
+ qb−1

(
(q2)2 − 1

q2 − 1

)
+ qb−2

(
(q2)3 − 1

q2 − 1

)
+ · · ·+ q3

(
(q2)b−2 − 1

q2 − 1

)
+ q2

(
(q2)b−1 − 1

q2 − 1

)}
+ (q − 1)q

(
qb − 1

q − 1

)
,

which on simplification gives

q2b+1 − q

q + 1
. (1)

The number of key errors of length b or less when the entry error of the key errors is from
(b+ 1)th position to (n− b)th position is given by

(n− 2b)

{
(q − 1)2q2b−1 + (q − 1)2q2b−3 + (q − 1)2q2b−5 + · · ·+ (q − 1)2q + (q − 1)

}

= (n− 2b)(q − 1)

(
q2b+1 − q

q + 1
+ 1

)
. (2)

If the entry error of the key errors is in the last b positions, the number of key errors of
length b or less is

(q − 1)2q2b−3 + (q − 1)2q2b−5 + (q − 1)2q2b−7 + · · ·+ (q − 1)2q3 + (q − 1)2q + (q − 1)

+(q − 1)2q2b−5 + (q − 1)2q2b−7 + (q − 1)2q2b−9 + · · ·+ (q − 1)2q3 + (q − 1)2q + (q − 1)

+.........................................

+.........................................

+(q − 1)2q5 + (q − 1)2q3 + (q − 1)2q + (q − 1)

+(q − 1)2q3 + (q − 1)2q + (q − 1)

+(q − 1)2q + (q − 1)

+(q − 1),

which is equivalent to

(q − 1)2
{
q

(
(q2)b−1 − 1

q2 − 1

)
+ q

(
(q2)b−2 − 1

q2 − 1

)
+ q

(
(q2)b−3 − 1

q2 − 1

)
+ · · ·+ q

(
(q2)2 − 1

q2 − 1

)
+ q

(
q2 − 1

q2 − 1

)}
+ (q − 1)b,
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which again on simplification gives

q2b+1 − q3

(q + 1)2
−

(
q − 1

q + 1

)
q(b− 1) + (q − 1)b

=
q2b+1 − q3

(q + 1)2
+

(q − 1)(b+ q)

q + 1
. (3)

Therefore, the total number of key errors of length b or less is given by

expr.(1) + expr.(2) + expr.(3)

=
q2b+1 − q

q + 1
+ (n− 2b)(q − 1)

(
q2b+1 − q

q + 1
+ 1

)
+

q2b+1 − q3

(q + 1)2
+

(q − 1)(b+ q)

q + 1
.

For correction, all these vectors must belong to different cosets. The total number of cosets
available is qn−k . Therefore, we must have

qn−k ≥ 1 +
q2b+1 − q

q + 1
+ (n− 2b)(q − 1)

(
q2b+1 − q

q + 1
+ 1

)
+

q2b+1 − q3

(q + 1)2
+

(q − 1)(b+ q)

q + 1
.

�
Now the following theorem gives an upper bound on the number of check digits required

for the construction of a linear code considered in Theorem 2.1. This bound assures
the existence of a linear code that can correct all key errors of length b or less. The
proof is based on the well known technique used in Varshomov-Gilbert Sacks bound by
constructing a parity check matrix for such a code (refer Sacks [5], also Theorem 4.7
Peterson and Weldon [3]). The procedure involves suitable modifications of the technique
used in deriving Varshamov-Gilbert-Sacks bound.

Theorem 2.2. There shall always exist an (n, k) linear code over GF (q) that corrects any
key error of length b or less (n > 4b+ 2) provided that

qn−k >

(
q2b+1 + 1

q + 1

){
1 +

q2b+1 − q

q + 1
+ (n− 1− 4b)(q − 1)

(
q2b+1 − q

q + 1
+ 1

)
+

q2b+1 − q3

(q + 1)2
+

(q − 1)(b+ q)

q + 1

}
.

Proof. The existence of such a code will be proved by constructing an (n− k)× n parity
check matrix H for the desired code as follows:
Select any non zero (n − k)-tuple as the first column h1 of the matrix H. After having
selected the first j − 1 columns h1, h2, . . . , hj−1 appropriately, we lay down the condition

to add jth column such that

hj ̸= (uj−1hj−1 + uj−2hj−2 + · · ·+ uj−2bhj−2b) (4)

+(vihi + vi+1hi+1 + · · ·+ vi+2bhi+2b),

where ui, vi ∈ GF (q); i+2b < j−2b; if the coefficient ui (or vi) is non zero, then the other
non zero coefficients of ui (or vi) are confined to b consecutive positions of either side of
ui (or vi), also if ui = 0 for (j − 1 ≤ i ≤ j − b), then ui = 0 ∀ i = j − 1 to j − 2b.

This condition ensures that there shall not be a code vector which can be expressed as
sum (difference) of key errors of length b or less each. Thus, the codes so constructed will
be able to correct such errors.
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We now enumerate all possible linear combinations on the R.H.S. of (4):

The coefficient ui on R.H.S. of (4) are such that if ui = 0 for j − 1 ≤ i ≤ j − b, then
ui = 0 for j − b− 1 ≤ i ≤ j − 2b and if ui is non zero coefficient, then the other non zero
coefficients of ui are confined to b consecutive positions of either side of ui. The number
of such coefficient ui, including the zero vector, is given by

(q − 1)qb

+(q − 1)2qb + (q − 1)qb−1

+(q − 1)2qb+1 + (q − 1)2qb−1 + (q − 1)qb−2

+(q − 1)2qb+2 + (q − 1)2qb + (q − 1)2qb−2 + (q − 1)qb−3

+........................................

+.........................................

+(q − 1)2q2b−2 + (q − 1)2q2b−4 + (q − 1)2q2b−6 + · · ·+ (q − 1)2q2 + (q − 1)q

+1,

which on simplification gives

q2b+1 − q

q + 1
+ 1 =

q2b+1 + 1

q + 1
. (5)

To enumerate the coefficients vi is equivalent to the number of key errors of length b or less
in a (j− 1− 2b)-tuple. The number of key errors of length b or less in a (j− 1− 2b)-tuple,
including the zero vector, is given by (refer Theorem 2.1)

1 +
q2b+1 − q

q + 1
+ (j − 1− 4b)(q − 1)

(
q2b+1 − q

q + 1
+ 1

)
+

q2b+1 − q3

(q + 1)2
+

(q − 1)(b+ q)

q + 1
. (6)

Thus, the total number of linear combinations on the R.H.S. of (4) equals

expr.(5)× expr.(6)

=

(
q2b+1 + 1

q + 1

){
1 +

q2b+1 − q

q + 1
+ (j − 1− 4b)(q − 1)

(
q2b+1 − q

q + 1
+ 1

)
+

q2b+1 − q3

(q + 1)2
+

(q − 1)(b+ q)

q + 1

}
. (7)

Since these many linear combinations can not be equal to hj and at worst all the linear
combinations computed in (7) might yield a distinct sum, therefore in view of the fact
that the total possible number of (n− k)-tuples is qn−k , the jth column hj can be added
to H provided that

qn−k > expr.(7). (8)

To obtain a code of length n, we replace j by n in the above inequality and the inequality
(8) becomes

qn−k >

(
q2b+1 + 1

q + 1

){
1 +

q2b+1 − q

q + 1
+ (n− 1− 4b)(q − 1)

(
q2b+1 − q

q + 1
+ 1

)
+

q2b+1 − q3

(q + 1)2
+

(q − 1)(b+ q)

q + 1

}
. (9)

�
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Alternate Form 2.1 If N is the largest value of n satisfying the inequality (9), then
by replacing n by N + 1, the inequality in (9) gets reversed and we get

qn−k ≤
(
q2b+1 + 1

q + 1

){
1 +

q2b+1 − q

q + 1
+ (N − 4b)(q − 1)

(
q2b+1 − q

q + 1
+ 1

)
+

q2b+1 − q3

(q + 1)2
+

(q − 1)(b+ q)

q + 1

}
. (10)

It should be noted that we don’t need to replace n in terms of N on the L.H.S. of above
inequality since L.H.S. represents the number of cosets/vectors of length n − k which
remains the same.

Alternate Form 2.2 If B is the largest value of b satisfying the inequality (9), then
for b = B + 1, the inequality in (9) gets reversed and we get

qn−k ≤
(
q2B+3 + 1

q + 1

){
q2B+3 − q

q + 1
+ (n− 5− 4B)(q − 1)

(
q2B+3 − q

q + 1
+ 1

)
+

q2B+3 − q3

(q + 1)2
+

(q − 1)B

q + 1
+ q

}
. (11)

Example 2.1. For a (11, 2) linear code over GF (2), we construct the following 9 × 11
parity check matrix H, according to the synthesis procedure given in the proof of Theorem
2.2 by taking q = 2,b = 2 and n = 11.

H =



1 0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 1 1 0
0 1 1 0 0 0 0 0 1 1 1
0 0 1 1 0 0 0 0 1 1 1
0 0 0 1 1 0 0 0 1 1 0
0 0 0 0 1 1 0 0 1 1 1
0 0 0 0 0 1 1 0 1 1 1
0 0 0 0 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1 0 0 1


It can be seen from Table 2.1 that the syndromes of any key error of length 2 or less are
all nonzero and distinct. This shows that the code that is the null space of this matrix
can correct any key error of length 2 or less.

Table 2.1
Error pattern - syndromes table

Error-patterns Syndromes Error-patterns Syndromes

10000000000 110000000 00000111000 000001001

11000000000 101000000 00010110000 000111010

10100000000 111100000 00010101000 000111111

11100000000 100100000 00010111000 000111001

01000000000 011000000 00001101000 000010111

01100000000 010100000 00001111000 000010001

01010000000 011110000 00011101000 000100111

01110000000 010010000 00011111000 000100001
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Cont...

Error-patterns Syndromes Error-patterns Syndromes

11010000000 101110000 00000010000 000000110

11110000000 100010000 00000011000 000000101

00100000000 001100000 00000010100 111111010

00110000000 001010000 00000011100 111111001

00101000000 001111000 00001011000 000011101

00111000000 001001000 00001010100 111100010

10110000000 111010000 00001011100 111100001

10101000000 111111000 00000110100 111110110

10111000000 111001000 00000111100 111110101

01101000000 010111000 00001110100 111101110

01111000000 010001000 00001111100 111101101

11101000000 100111000 00000001000 000000011

11111000000 100001000 00000001100 111111111

00010000000 000110000 00000001010 011111101

00011000000 000101000 00000001110 100000001

00010100000 000111100 00000101100 111110011

00011100000 000100100 00000101010 011110001

01011000000 011101000 00000101110 100001101

01010100000 011111100 00000011010 011111011

01011100000 011100100 00000011110 100000111

00110100000 001011100 00000111010 011110111

00111100000 001000100 00000111110 100001011

01110100000 010011100 00000000100 111111100

01111100000 010000100 00000000110 100000010

00001000000 000011000 00000000101 110010011

00001100000 000010100 00000000111 101101101

00001010000 000011110 00000010110 100000100

00001110000 000010010 00000010101 110010101

00101100000 001110100 00000010111 101101011

00101010000 001111110 00000001101 110010000

00101110000 001110010 00000001111 101101110

00011010000 000101110 00000011101 110010110

00011110000 000100010 00000011111 101101000

00111010000 001001110 00000000010 011111110

00111110000 001000010 00000000011 010010001

00000100000 000001100 00000001011 010010010

00000110000 000001010 00000000001 001101111

00000101000 000001111
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3. Conclusion

The paper presents lower and upper bound for a code correcting key errors of length b or
less. The equality of the inequality in the statement of Theorem 2.1 (Lower bound) gives us
the optimal case and the corresponding codes. These codes are termed as optimal/perfect
codes as they correct key errors of length b or less and no others. These codes are useful
in communication due to their high rate of information. To study such optimal codes
remains a further study.
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