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STUDY OF THE FIRST BOUNDARY VALUE PROBLEM FOR A

FOURTH ORDER PARABOLIC EQUATION IN A NONREGULAR

DOMAIN OF RN+1

AREZKI KHELOUFI1, §

Abstract. This paper is concerned with the extension of solvability results obtained
for a fourth order parabolic equation, set in a nonregular domain of R3 obtained in [1], to
the case where the domain is cylindrical, not with respect to the time variable, but with
respect to N space variables, N > 1. More precisely, we determine optimal conditions
on the shape of the boundary of a (N +1)-dimensional domain, N > 1, under which the
solution is regular.
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1. Introduction

Let Ω be an open set of R2 defined by

Ω =
{
(t, x1) ∈ R2 : 0 < t < T ;φ1 (t) < x1 < φ2 (t)

}
where T is a finite positive number, while φ1 and φ2 are continuous real-valued functions
defined on [0, T ], Lipschitz continuous on [0, T ], and such that

φ2 (t)− φ1 (t) > 0, for t ∈ ]0, T ]

and

φ2 (0) = φ1 (0) = 0.

The lateral boundary of Ω is defined by

Γi =
{
(t, φi (t)) ∈ R2 : 0 < t < T

}
, i = 1, 2.

For fixed positive numbers bi, i = 1, ..., N−1, with N > 1, let Q be the (N+1)-dimensional
domain defined by

Q = Ω×
N−1∏
i=1

]0, bi[ .
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In this work, we study the existence and the regularity of the solution of the fourth order
parabolic equation with Cauchy-Dirichlet boundary conditions

∂tu+
∑N

k=1 ∂
4
xk
u = f in Q,

u|t=0 = 0,
u|Σi

= ∂x1u|Σi
= 0, i = 1, 2,

u|Σ0∪Σb
= ∂x2u|Σ0∪Σb

= ... = ∂xNu|Σ0∪Σb
= 0,

(1)

where Σi = Γi ×
∏N−1

k=1 ]0, bk[, i = 1, 2, Σ0 is the part of the boundary of Q where
xk = 0, k = 2, ..., N and Σb is the part of the boundary of Q where
xk = bk−1, k = 2, ..., N . The right-hand side term f of the equation lies in L2

ω (Q) the
space of square-integrable functions on Q with the measure ωdtdx1...dxN . Here the weight
ω is a real-valued differentiable function on [0, T ].

We are especially interested in the question of what sufficient conditions, as weak as
possible, the functions φ1, φ2 and ω must verify in order that Problem (1) has a solution
with optimal regularity, that is a solution u belonging to the anisotropic weighted Sobolev
space

H1,4
0,ω (Q) =

{
u ∈ H1,4

ω (Q) : u|∂pQ = 0
}

with

H1,4
ω (Q) =

{
u ∈ L2

ω (Q) : ∂tu, ∂
i1
x1
∂i2x2

...∂iNxN
u ∈ L2

ω (Q) , 1 ≤ i1 + ...+ iN ≤ 4
}

and u|∂pQ = 0 means that

u|t=0 = u|Σi
= ∂x1u|Σi

= u|Σ0∪Σb
= ∂x2u|Σ0∪Σb

= ... = ∂xNu|Σ0∪Σb
= 0, i = 1, 2.

Observe that the domain Q considered here is nonstandard since it shrinks at
t = 0, φ2 (0) = φ1 (0). This prevents the nonregular domain Q to be transformed into a
usual cylindrical domain by means of a smooth transformation. On the other hand, the
semi group generating the solution cannot be defined since the initial condition is defined
on a set measure zero.

In Sadallah [2] a similar result has been obtained for a 2m-parabolic operator in the
case of one space variable. The solvability of boundary value problems for a 2m-th order
parabolic equation in Hölder spaces for noncylindrical domains (of the same kind but which
cannot include our domain) with a nonsmooth (in t) lateral boundary was established in
[3], [4] and [5]. Further references on the analysis of parabolic problems in noncylindrical
domains are: Galaktionov [6], Baderko [7], Mikhailov [8], Savaré [9], Hoffmann and Lewis
[10], Labbas, Medeghri and Sadallah [11], [12] and Kheloufi et al. [13], [14], [15], [16] and
[17].

The organization of this paper is as follows. In Section 2, we prove that Problem (1)
admits a (unique) solution in the case of a truncated domain. In Section 3 we approximate
Q by a sequence (Qn) of such domains and we establish (for T small enough) a uniform
estimate of the type

∥un∥H1,4
ω (Qn)

≤ K ∥f∥L2
ω(Qn)

,

where un is the solution of Problem (1) in Qn and K is a constant independent of n.
Finally, in Section 4 we prove the two main results of this paper.

The main assumptions on the functions φ1, φ2 and ω are

φ′
i (t) (φ2 − φ1)

2 (t) → 0 as t→ 0, i = 1, 2, (2)

∀t ∈ [0, T ] : ω (t) > 0, (3)

and
ω is a decreasing function on ]0, T ] . (4)
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Note that this work may be extended at least in the following directions:
1. The function f on the right-hand side of the equation of Problem (1), may be taken

in Lp
ω (Q), p ∈ ]1,∞[. The domain decomposition method used here does not seem to be

appropriate for the space Lp
ω (Q) when p ̸= 2.

2. The nonregular domain Q may be replaced by a noncylindrical conical type domain,
such as, for example, the following domain

Q =

{
(t, x1, x2, ..., xN ) ∈ RN+1 : 0 ≤

√
x21 + x22 + ...+ x2N < φ (t) , 0 < t < T

}
where φ is similar to φi, i = 1, 2. These questions will be developed in forthcoming works.

2. Resolution of Problem (1) in a truncated domain Qn

In this section, we replace Q by Qn, n ∈ N∗ and 1
n < T :

Qn =

{
(t, x1, ..., xN ) ∈ Q :

1

n
< t < T

}
.

Theorem 2.1. For each n ∈ N∗ such that 1
n < T , the problem

∂tun +
∑N

k=1 ∂
4
xk
un = fn ∈ L2

ω (Qn) ,
un|t= 1

n
= un|Σi,n

= ∂x1un|Σi,n
= 0, i = 1, 2,

un|Σ0,n∪Σb,n
= ∂x2un|Σ0,n∪Σb,n

= ... = ∂xNun|Σ0,n∪Σb,n
= 0,

(5)

admits a (unique) solution un ∈ H1,4
ω (Qn). Here,

Σi,n =
{
(t, φi (t)) ∈ R2 : 1

n < t < T
}
×
∏N−1

k=1 ]0, bk[ , i = 1, 2, Σ0,n is the part of the bound-
ary of Qn where xk = 0, k = 2, ..., N and Σb,n is the part of the boundary of Qn where
xk = bk−1, k = 2, ..., N .

Proof of Theorem 2.1: The change of variables

(t, x1, x2, ..., xN ) 7−→ (t, y1, y2, ..., yN ) =

(
t,

x1 − φ1 (t)

φ2(t)− φ1(t)
, x2, ..., xN

)
,

transforms Qn into the cylindrical domain Pn =
]
1
n , T

[
× ]0, 1[×

∏N−1
i=1 ]0, bi[. Putting

vn (t, y1, y2, ..., yN ) = un (t, x1, x2, ..., xN )

and

gn (t, y1, y2, ..., yN ) = fn (t, x1, x2, ..., xN ) ,

then Problem (5) becomes
∂tvn + a (t, y1) ∂y1vn + c (t) ∂4y1vn +

∑N
k=2 ∂

4
yk
vn = gn ∈ L2

ω (Pn)
vn|t= 1

n
= vn|Σi,Pn

= ∂y1vn|Σi,Pn
= 0, i = 1, 2,

vn|Σ0,Pn∪Σb,Pn
= ∂y2vn|Σ0,Pn∪Σb,Pn

= ... = ∂yN vn|Σ0,Pn∪Σb,Pn
= 0,

where Σ1,Pn =
]
1
n , T

[
×{0}×

∏N−1
i=1 ]0, bi[, Σ2,Pn =

]
1
n , T

[
×{1}×

∏N−1
i=1 ]0, bi[, Σ0,Pn is the

part of the boundary of Pn where xk = 0, k = 2, ..., N, Σb,Pn is the part of the boundary of

Pn where xk = bk−1, k = 2, ..., N, c (t) = 1
[φ2(t)−φ1(t)]4

and a (t, y1) = −y1(φ′
2(t)−φ′

1(t))+φ′
1(t)

φ2(t)−φ1(t)
.

Since the functions a, c and (φ2 − φ1) are bounded when t ∈
]
1
n , T

[
, then the above

change of variable which is (N + 1)-Lipschitz preserves the spaces L2
ω and H1,4

ω . In other
words

fn ∈ L2
ω (Qn) ⇐⇒ gn ∈ L2

ω (Pn) , un ∈ H1,4
ω (Qn) ⇐⇒ vn ∈ H1,4

ω (Pn) .
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Proposition 2.1. For each n ∈ N∗ such that 1
n < T , the following operator is compact

a (t, y1) ∂y1 : H1,4
0,ω (Pn) −→ L2

ω (Pn) .

Proof. Pn has the ”horn property” of Besov [19], so

∂y1 : H1,4
0,ω (Pn) −→ H

3
4
,3

ω (Pn) , vn 7−→ ∂y1vn,

is continuous. Since Pn is bounded, the canonical injection is compact from H
3
4
,3

ω (Pn) into
L2
ω (Pn), where

H
3
4
,3 (Pn) = L2

(
1

n
, T ;H3

(
]0, 1[×

N−1∏
i=1

]0, bi[

))
∩H

3
4

(
1

n
, T ;L2

(
]0, 1[×

N−1∏
i=1

]0, bi[

))
.

For the complete definitions of the Hr,s Hilbertian Sobolev spaces see for instance [20].
Consider the composition

∂y1 : H1,4
0,ω (Pn) → H

3
4
,3

ω (Pn) → L2
ω (Pn) , vn 7→ ∂y1vn 7→ ∂y1vn,

then ∂y1 is a compact operator from H1,4
0,ω (Pn) into L2

ω (Pn) . Since a (., .) is a bounded

function for 1
n < t < T , the operator a∂y1 is also compact from H1,4

0,ω (Pn) into L
2
ω (Pn) . �

So, thanks to Proposition 2.1, to complete the proof of Theorem 2.1, it is sufficient to
show that the operator

∂t + c (t) ∂4y1 +

N∑
k=2

∂4yk

is an isomorphism from H1,4
0,ω (Pn) into L

2
ω (Pn).

Lemma 2.1. For each n ∈ N∗ such that 1
n < T , the operator

∂t + c (t) ∂4y1 +

N∑
k=2

∂4yk

is an isomorphism from H1,4
0,ω (Pn) into L

2
ω (Pn).

Proof. Since the coefficient 1
[φ2(t)−φ1(t)]4

is continuous in Pn, the optimal regularity is given

by Ladyzhenskaya-Solonnikov-Ural’tseva [18]. �

We shall need the following result in order to justify some calculations in the next
section, see [1].

Lemma 2.2. For each n ∈ N∗ such that 1
n < T , the space{

un ∈ H4 (Pn) ; un|∂Pn−ΓT
= 0
}

is dense in the space {
un ∈ H1,4 (Pn) ; un|∂Pn−ΓT

= 0
}
.

Here ΓT be the part of the boundary of Pn where t = T.

Remark 2.1. In Lemma 2.2, we can replace Pn by Qn with the help of the change of
variable defined above.
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3. An ”energy” type estimate

For each n ∈ N∗ such that 1
n < T , we denote by un ∈ H1,4

ω (Qn) the solution of Problem

(5) corresponding to the right-hand side fn = f |Qn
∈ L2

ω (Qn). Such a solution exists by
Theorem 2.1.

Proposition 3.1. Assume that φ1 and φ2 fulfil condition (2) and the weight function ω
verifies assumptions (3) and (4). Then, for T small enough, there exists a constant M
independent of n such that

∥un∥H1,4
ω (Qn)

≤M ∥fn∥L2
ω(Qn)

≤M ∥f∥L2
ω(Q) ,

where

∥un∥H1,4
ω (Qn)

=

∥un∥2L2
ω(Qn)

+ ∥∂tun∥2L2
ω(Qn)

+
4∑

i1,i2,...,iN=0
1≤i1+i2+...+iN≤4

∥∥∂i1x1
∂i2x2

...∂iNxN
un
∥∥2
L2
ω(Qn)


1/2

.

Remark 3.1. Let ϵ > 0 be a real which we will choose small enough. The hypothesis (2)
implies the existence of a real number T > 0 small enough such that

∀t ∈ (0, T ) ,
∣∣φ′

i (t) (φ2 − φ1)
2 (t)

∣∣ ≤ ϵ, i = 1, 2. (6)

To derive the basic inequality of Proposition (3.1), we need the following lemmas.

Lemma 3.1. Let ]γ, δ[ ⊂ R. There exists a positive constant K2 (independent of γ and
δ) such that for each v ∈ H4 (]γ, δ[) ∩H2

0 (]γ, δ[)∥∥∥v(l)∥∥∥2
L2(]γ,δ[)

≤ (δ − γ)2(4−l)K2

∥∥∥v(4)∥∥∥2
L2(]γ,δ[)

, l = 0, 1, 2, 3.

The proof of the previous Lemma can be found in [1].

Lemma 3.2. For every ϵ > 0, chosen such that (φ2(t)−φ1(t)) ≤ ϵ, there exists a constant
C1 independent of n such that∥∥∥∂lx1

un

∥∥∥2
L2
ω(Qn)

≤ C1ϵ
2(4−l)

∥∥∂4x1
un
∥∥2
L2
ω(Qn)

, l = 0, 1, 2, 3.

Proof. Replacing in Lemma 3.1 v by un and ]γ, δ[ by ]φ1 (t) , φ2 (t)[, for a fixed t, we obtain∫ φ2(t)
φ1(t)

(
∂lx1

un
)2
dx1 ≤ K2 (φ2(t)− φ1(t))

2(4−l) ∫ φ2(t)
φ1(t)

(
∂4x1

un
)2
dx1

≤ K2ϵ
2(4−l)

∫ φ2(t)
φ1(t)

(
∂4x1

un
)2
dx1.

Multiplying the previous inequality by ω (t) (which is positive) and integrating with respect
to t, then with respect to x2, x3,..., xN , we get the desired result with C1 = K2. �

Lemma 3.3. Let us denote the inner product in L2
ω (Qn) by ⟨., .⟩. Under the assumptions

of Proposition (3.1), we have
i) 2⟨∂tun, ∂4x1

un⟩ ≥ −Kϵ
∥∥∂4x1

un
∥∥
L2
ω(Qn)

(for T small enough).

ii) 2⟨∂tun, ∂4xk
un⟩ ≥ 0, k = 2, ..., N .

iii) 2⟨∂4xj
un, ∂

4
xk
un⟩ = 2

∥∥∥∂2xj
∂2xk

un

∥∥∥2
L2
ω(Qn)

, j = 1, ..., N − 1, k = j + 1, ..., N .

Proof. 1) Estimation of 2⟨∂tun, ∂4x1
un⟩ : We have

∂tun.∂
4
x1
un = ∂x1

(
∂tun.∂

3
x1
un
)
− ∂x1

(
∂x1∂tun.∂

2
x1
un
)
+ 1

2∂t
(
∂2x1

un
)2

.
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Then

2⟨∂tun, ∂4x1
un⟩ = 2

∫
Qn
∂tun.∂

4
x1
un.ω (t) dtdx1...dxN

=
∫
∂Qn

[(
∂2x1

un
)2
νt + 2

(
∂tun.∂

3
x1
un − ∂x1∂tun.∂

2
x1
un
)
νx1

]
.ω (t) dσ

−
∫
Qn

(
∂2x1

un
)2
.ω′ (t) dtdx1...dxN .

We shall rewrite the boundary integral making use of the boundary conditions. On the
parts of the boundary of Qn where t = 1

n , xk = 0, k = 2, ..., N and xk = bk−1, k = 2, ..., N

we have ∂x1un = 0 and consequently ∂2x1
un = ∂3x1

un = 0. The corresponding boundary
integral vanishes. On the part of the boundary where t = T , we have νx1 = 0 and νt = 1.
Accordingly the corresponding boundary integral∫ bN−1

0
...

∫ b1

0

∫ φ2(T )

φ1(T )

[
∂2x1

un (T, x1, ..., xN )
]2
ω (T ) dx1...dxN

is nonnegative. On the part of the boundary where x1 = φi (t) , i = 1, 2, we have

νx1 = (−1)i√
1+(φ′

i)
2
(t)
, νt =

(−1)i+1φ′
i(t)√

1+(φ′
i)

2
(t)

and u = ∂x1un = 0. Differentiating with respect to t

we obtain

∂tun (t, φi (t) , ..., xN ) = −φ′
i (t) ∂x1un (t, φi (t) , ..., xN ) ,

∂t∂x1un (t, φi (t) , ..., xN ) = −φ′
i (t) ∂

2
x1
un (t, φi (t) , ..., xN ) .

Consequently, the corresponding boundary integrals I1 and I2 are the following:

I1 = −
∫ bN−1

0 ...
∫ b1
0

∫ T
1
n
φ′
1 (t)

[
∂2x1

un (t, φ1 (t) , ..., xN )
]2

ω (t) dtdx2...dxN

I2 =
∫ bN−1

0 ...
∫ b1
0

∫ T
1
n
φ′
2 (t)

[
∂2x1

un (t, φ2 (t) , ..., xN )
]2

ω (t) dtdx2...dxN .

In virtue of (3) and (4), we have

2⟨∂tun, ∂4x1
un⟩ ≥ − |I1| − |I2| . (7)

�

Lemma 3.4. There exists a constant K3 independent of n such that

|Ii| ≤ K3ϵ
∥∥∂4x1

un
∥∥2
L2
ω(Qn)

, i = 1, 2.

Proof. We convert the boundary integral I1 into a surface integral by setting[
∂2x1

un (t, φ1 (t) , x2, ..., xN )
]2

= − φ2(t)−x1

φ2(t)−φ1(t)

[
∂2x1

un (t, x1, x2, ..., xN )
]2∣∣∣x1=φ2(t)

x1=φ1(t)

= −
∫ φ2(t)
φ1(t)

∂x1

{
φ2(t)−x1

φ2(t)−φ1(t)

[
∂2x1

un
]2}

dx1

= −2
∫ φ2(t)
φ1(t)

φ2(t)−x1

φ2(t)−φ1(t)
∂2x1

un.∂
3
x1
undx1

+
∫ φ2(t)
φ1(t)

1
φ2(t)−φ1(t)

[
∂2x1

un
]2
dx1.

Then, we have

I1 = −
∫ bN−1

0 ...
∫ b1
0

∫ T
1
n
φ′
1 (t)

[
∂2x1

un (t, φ1 (t) , x2, ..., xN )
]2

ω (t) dtdx2...dxN

= −
∫
Qn

φ′
1(t)

φ2(t)−φ1(t)

[
∂2x1

un (t, x1, ..., xN )
]2
ω (t) dtdx1...dxN

+2
∫
Qn

φ2(t)−x1

φ2(t)−φ1(t)
φ′
1 (t)

(
∂2x1

un
) (
∂3x1

un
)
ω (t) dtdx1...dxN .

Thanks to Lemma 3.1, we can write∫ φ2(t)
φ1(t)

[
∂2x1

un
]2
dx1 ≤ K2 [φ2(t)− φ1(t)]

4 ∫ φ2(t)
φ1(t)

[
∂4x1

un
]2
dx1.
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Therefore∫ φ2(t)
φ1(t)

[
∂2x1

un
]2 |φ′

1|
φ2(t)−φ1(t)

ω (t) dx1 ≤ K2 |φ′
1| [φ2(t)− φ1(t)]

3 ∫ φ2(t)
φ1(t)

[
∂4x1

un
]2
ω (t) dx1,

consequently

|I1| ≤ K2

∫
Qn

|φ′
1| [φ2(t)− φ1(t)]

3 (∂4x1
un
)2
ω (t) dtdx1...dxN

+2
∫
Qn

|φ′
1|
∣∣∂2x1

un
∣∣ ∣∣∂3x1

un
∣∣ ω (t) dtdx1...dxN ,

since
∣∣∣ φ2(t)−x1

φ2(t)−φ1(t)

∣∣∣ ≤ 1. Using the inequality

2
∣∣φ′

1∂
2
x1
un
∣∣ ∣∣∂3x1

un
∣∣ ≤ ϵ

(
∂3x1

un
)2

+ 1
ϵ (φ

′
1)

2 (∂2x1
un
)2

for all ϵ > 0, we obtain

|I1| ≤ K2

∫
Qn

|φ′
1| [φ2(t)− φ1(t)]

3 (∂4x1
un
)2
ω (t) dtdx1...dxN

+
∫
Qn
ϵ
(
∂3x1

un
)2
ω (t) dtdx1...dxN + 1

ϵ

∫
Qn

(φ′
1)

2 (∂2x1
un
)2
ω (t) dtdx1...dxN .

Lemma 3.2 yields

1
ϵ

∫
Qn

(φ′
1)

2 (∂2x1
un
)2
ω (t) dtdx1...dxN

≤ K2
1
ϵ

∫
Qn

(φ′
1)

2 [φ2(t)− φ1(t)]
4 (∂4x1

un
)2
ω (t) dtdx1...dxN .

Thus,

|I1| ≤ K2

∫
Qn

[
|φ′

1| [φ2(t)− φ1(t)]
3 + 1

ϵ (φ
′
1)

2 [φ2(t)− φ1(t)]
4
] (
∂4x1

un
)2
ω (t) dt...dxN

+
∫
Qn
ϵ
(
∂3x1

un
)2
ω (t) dtdx1...dxN

≤ (K2 + 1) ϵ
∫
Qn

(
∂4x1

un
)2
ω (t) dtdx1...dxN ,

since
∣∣φ′

1(φ2(t)− φ1(t))
2
[
(φ2(t)− φ1(t))− φ′

1(φ2(t)− φ1(t))
2
]∣∣ ≤ ϵ thanks to the condi-

tion (6). Finally, taking K3 = (K2 + 1), we obtain

|I1| ≤ K3ϵ
∥∥∂4x1

un
∥∥
L2
ω(Qn)

.

The inequality

|I2| ≤ K3ϵ
∥∥∂4x1

un
∥∥
L2
ω(Qn)

,

can be proved by a similar argument.
2) Estimation of 2⟨∂tun, ∂4xk

un⟩, k = 2, ..., N : We have

∂tun.∂
4
xk
un = ∂xk

(
∂tun.∂

3
xk
un
)
− ∂xk

(
∂xk

∂tun.∂
2
xk
un
)
+ 1

2∂t
(
∂2xk

un
)2

.

Then

2⟨∂tun, ∂4xk
un⟩ = 2

∫
Qn
∂tun.∂

4
xk
un.ω (t) dtdx1...dxN

=
∫
∂Qn

[(
∂2xk

un
)2
νt + 2

(
∂tun.∂

3
xk
un − ∂xk

∂tun.∂
2
xk
un
)
νxk

]
.ω (t) dσ

−
∫
Qn

(
∂2xk

un
)2
.ω′ (t) dtdx1...dxN .

Using the Cauchy-Dirichlet boundary conditions, we see that the above boundary integral
is nonnegative. Consequently in virtue of (4), we have

2⟨∂tun, ∂4xk
un⟩ ≥ 0. (8)

3) Estimation of 2⟨∂4xj
un, ∂

4
xk
un⟩, j = 1, ..., N − 1, k = j + 1, ..., N : We have

∂4xj
un.∂

4
xk
un = ∂xj

(
∂3xj

un.∂
4
xk
un

)
− ∂xk

(
∂3xj

un.∂xj∂
3
xk
un

)
+ ∂xj∂

3
xk
un.∂xk

∂3xj
un.
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Then

2⟨∂4xj
un, ∂

4
xk
un⟩ = 2

∫
Qn
∂4xj

un.∂
4
xk
un.ω (t) dt dx1...dxN

= 2
∫
Qn
∂xj

(
∂3xj

un.∂
4
xk
un

)
.ω (t) dt dx1...dxN

−2
∫
Qn
∂xk

(
∂3xj

un.∂xj∂
3
xk
un

)
.ω (t) dt dx1...dxN

+2
∫
Qn
∂xj∂

3
xk
un.∂xk

∂3xj
un.ω (t) dt dx1...dxN

= 2
∫
Qn
∂xj∂

3
xk
un.∂xk

∂3xj
un.ω (t) dt dx1...dxN

+2
∫
∂Qn

[
∂3xj

un.∂
4
xk
unνxj − ∂3xj

un.∂xj∂
3
xk
unνxk

]
ω (t) dσ.

We shall rewrite the boundary integral making use of the boundary conditions. On the
parts of the boundary of Qn where t = 1

n , xk = 0, k = 2, ..., N and xk = bk−1, k = 2, ..., N ,

we have ∂xjun = 0 and consequently ∂3xj
un = 0. The corresponding boundary integral

vanishes. On the part of the boundary where t = T , we have νxk
= 0. Accordingly

the corresponding boundary integral vanishes. By using again Green formula and the
Cauchy-Dirichlet boundary conditions, we obtain

2

∫
Qn

∂xj∂
3
xk
un.∂xk

∂3xj
un.ω (t) dt dx1...dxN = 2

∥∥∥∂2xj
∂2xk

un

∥∥∥2
L2
ω(Qn)

.

Finally,

2⟨∂4xj
un, ∂

4
xk
un⟩ = 2

∥∥∥∂2xj
∂2xk

un

∥∥∥2
L2
ω(Qn)

, j = 1, ..., N − 1, k = j + 1, ..., N. (9)

�
Proof of Proposition (3.1): We have

∥fn∥2L2
ω(Qn)

= ⟨∂tun +
∑N

k=1 ∂
4
xk
un, ∂tun +

∑N
k=1 ∂

4
xk
un⟩

= ∥∂tun∥2L2
ω(Qn)

+
∑N

k=1

∥∥∂4xk
un
∥∥2
L2
ω(Qn)

+2
∑N

k=1⟨∂tun, ∂4xk
un⟩+ 2

∑N−1
j=1

∑N
k=j+1⟨∂4xj

un, ∂
4
xk
un⟩.

Summing up the estimates (7), (8) and (9) of the inner products and making use of Lemma
3.4, we then obtain

∥fn∥2L2
ω(Qn)

≥ ∥∂tun∥2L2
ω(Qn)

+
∑N

k=1

∥∥∂4xk
un
∥∥2
L2
ω(Qn)

− |I1| − |I2|
+2
∑N−1

j=1

∑N
k=j+1

∥∥∥∂2xj
∂2xk

un

∥∥∥2
L2
ω(Qn)

≥ ∥∂tun∥2L2
ω(Ωn)

+ (1− 2K3ϵ)
∥∥∂4x1

un
∥∥2
L2
ω(Qn)

+
∑N

k=2

∥∥∂4xk
un
∥∥2
L2
ω(Qn)

+ 2
∑N−1

j=1

∑N
k=j+1

∥∥∥∂2xj
∂2xk

un

∥∥∥2
L2
ω(Qn)

.

Then, it is sufficient to choose ϵ such that (1− 2K3ϵ) > 0 to get a constant K0 > 0
independent of n such that

∥fn∥L2
ω(Qn)

≥ K0 ∥un∥H1,4
ω (Qn)

,

and since
∥fn∥L2

ω(Qn)
≤ ∥f∥L2

ω(Q) ,

there exists a constant M > 0, independent of n satisfying

∥un∥H1,4
ω (Qn)

≤M ∥fn∥L2
ω(Qn)

≤M ∥f∥L2
ω(Q) .

This completes the proof of Proposition (3.1).
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4. Main results

We are now able to prove the main results of the paper.

4.1. Local in time result.

Theorem 4.1. Assume that φ1 and φ2 fulfil condition (2) and the weight function ω
verifies assumptions (3) and (4). Then for T small enough, the fourth order parabolic
operator

L = ∂t +

N∑
k=1

∂4xk

is an isomorphism from H1,4
0,ω (Q) into L2

ω (Q).

Proof. 1) Injectivity of the operator L: Let us consider u ∈ H1,4
0,ω (Q) a solution of

the problem (1) with a null right-hand side term. So,

∂tu+

N∑
k=1

∂4xk
u = 0 in Q.

In addition u fulfils the boundary condtions

u|t=0 = u|Σi
= ∂x1u|Σi

= u|Σ0∪Σb
= ∂x2u|Σ0∪Σb

= ... = ∂xNu|Σ0∪Σb
= 0, i = 1,2.

Using Green formula, we have∫
Q

(
∂tu+

∑N
k=1 ∂

4
xk
u
)
u.ω (t) dt dx1...dxN

=
∫
∂Q

[
1
2 |u|

2 νt +
∑N

k=1

(
∂3xk

u.u− ∂2xk
u.∂xk

u
)
νxk

]
ω (t) dσ

+
∫
Q

(∑N
k=1

∣∣∂2xk
u
∣∣2)ω (t) dt dx1...dxN −

∫
Q

1
2 |u|

2 ω′ (t) dt dx1...dxN

where νt, νx1 ,...,νxN are the components of the unit outward normal vector at ∂Q. Taking
into account the boundary conditions, all the boundary integrals vanish except∫
∂Q |u|2 ω (t) νt dσ. We have∫

∂Q
|u|2 ω (t) νtdσ =

∫ bN−1

0
...

∫ b1

0

∫ φ2(T )

φ1(T )
|u|2 ω (T ) dx1dx2...dxN .

Then ∫
Q

(
∂tu+

∑N
k=1 ∂

4
xk
u
)
.u ω (t) dt dx1...dxN

=
∫ bN−1

0 ...
∫ b1
0

∫ φ2(T )
φ1(T )

1
2 |u|

2 ω (T ) dx1dx2...dxN −
∫
Q

1
2 |u|

2 ω′ (t) dt dx1...dxN

+
∫
Q

(∑N
k=1

∣∣∂2xk
u
∣∣2)ω (t) dt dx1...dxN .

Consequently ∫
Q

(
∂tu+

N∑
k=1

∂4xk
u

)
.u ω (t) dt dx1...dxN = 0

yields ∫
Q

(
N∑
k=1

∣∣∂2xk
u
∣∣2)ω (t) dt dx1...dxN = 0,

because∫ bN−1

0
...

∫ b1

0

∫ φ2(T )

φ1(T )

1

2
|u|2 ω (T ) dx1dx2...dxN −

∫
Q

1

2
|u|2 ω′ (t) dt dx1...dxN ≥ 0
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thanks to the conditions (3) and (4). This implies that
∑N

k=1

∣∣∂2xk
u
∣∣2 = 0 and consequently

∂4x1
u = ... = ∂4xN

u = 0. Then, the hypothesis ∂tu+
∑N

k=1 ∂
4
xk
u = 0 gives ∂tu = 0. Thus, u

is constant. The boundary conditions imply that u = 0 in Q. This proves the uniqueness
of the solution of Problem (1).

2) Surjectivity of the operator L: Choose a sequence (Qn)n∈N∗ of the domains
defined above (see Section 2), such that Qn ⊆ Q. Then, we have Qn → Q, as n → ∞.

Consider the solution un ∈ H1,4
ω (Qn) of the Cauchy-Dirichlet problem

∂tun +
∑N

k=1 ∂
4
xk
un = fn in Qn

un|t= 1
n
= un|Σi,n

= ∂x1un|Σi,n
= 0, i = 1, 2,

un|Σ0,n∪Σb,n
= ∂x2un|Σ0,n∪Σb,n

= ... = ∂xNun|Σ0,n∪Σb,n
= 0,

where Σi,n =
{
(t, φi (t)) ∈ R2 : 1

n < t < T
}
×
∏N−1

k=1 ]0, bk[, i = 1, 2, Σ0,n is the part of
the boundary of Qn where xk = 0, k = 2, ..., N, and Σb,n is the part of the boundary of
Qn where xk = bk−1, k = 2, ..., N. Such a solution un exists by Theorem 2.1. Let ũn the
0-extension of un to Q. In virtue of Proposition 3.1, we know that there exists a constant
C such that

∥ũn∥L2
ω(Q) +

∥∥∥∂̃tun∥∥∥
L2
ω(Q)

+
∑4

i1,i2,...,iN=0
1≤i1+i2+...+iN≤4

∥∥∥∥ ˜∂i1x1∂
i2
x2 ...∂

iN
xNun

∥∥∥∥
L2
ω(Q)

≤ C ∥f∥L2
ω(Q) .

This means that ũn, ∂̃tun,
˜∂i1x1∂
i2
x2 ...∂

iN
xNun for 1 ≤ i1 + i2 + ... + iN ≤ 4 are bounded

functions in L2
ω (Q). The following compactness result is well known: A bounded sequence

in a reflexive Banach space (and in particular in a Hilbert space) is weakly convergent.
So for a suitable increasing sequence of integers nk, k = 1, 2, ..., there exist functions
u, v and vi1,i2,...,iN 1 ≤ i1 + i2 + ...+ iN ≤ 4 in L2

ω (Q) such that

ũnk
⇀ u, ∂̃tunk

⇀ v, ˜∂i1x1∂
i2
x2 ...∂

iN
xNunk

⇀ vi1,i2,...,iN , 1 ≤ i1 + i2 + ...+ iN ≤ 4

weakly in L2
ω (Q) as k → ∞. Clearly,

v = ∂tu, vi1,i2,...,iN = ∂i1x1
∂i2x2

...∂iNxN
u, 1 ≤ i1 + i2 + ...+ iN ≤ 4

in the sense of distributions in Q and so in L2
ω (Q). So, u ∈ H1,4

ω (Q) and

∂tu+

N∑
k=1

∂4xk
u = f in Q.

On the other hand, the solution u satisfies the boundary conditions

u|t=0 = u|Σi
= ∂x1u|Σi

= 0, i = 1, 2

and

u|Σ0∪Σb
= ∂x2u|Σ0∪Σb

= ... = ∂xNu|Σ0∪Σb
= 0,

since

∀n ∈ N∗, u|Qn
= un.

This proves the existence of solution to Problem (1). This ends the proof of Theorem
4.1. �
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4.2. Global in time result. In the case where T is not in the neighborhood of zero, we
set Q = D1 ∪D2 ∪ ΣT1 where

D1 = {(t, x1, ..., xN ) ∈ Q : 0 < t < T1} ,
D2 = {(t, x1, ..., xN ) ∈ Q : T1 < t < T} ,

ΣT1 =
{
(T1, x1) ∈ R2 : φ1 (T1) < x1 < φ2 (T1)

}
×

N−1∏
i=1

]0, bi[

with T1 small enough. In the sequel, f stands for an arbitrary fixed element of L2
ω (Q)

and fi = f |Di
, i = 1, 2.

Theorem 4.1 applied to the non-regular domain D1, shows that there exists a unique
solution v1 ∈ H1,4

ω (D1) of the problem
∂tv1 +

∑N
k=1 ∂

4
xk
v1 = f1 ∈ L2

ω (D1) ,
v1|t=0 = 0,
v1|Σi,1

= ∂x1v1|Σi,1
= 0, i = 1, 2,

v1|Σ0,1∪Σb,1
= ∂x2v1|Σ0,1∪Σb,1

= ... = ∂xN v1|Σ0,1∪Σb,1
= 0,

(10)

Σi,1 are the parts of the boundary of D1 where x1 = φi (t), i = 1, 2, Σ0,1 is the part of
the boundary of D1 where xk = 0, k = 2, ..., N and Σb,1 is the part of the boundary of D1

where xk = bk−1, k = 2, ..., N .
Hereafter, we denote the trace v1|ΣT1

by ψ which is in the Sobolev space H2
ω (ΣT1)

because v1 ∈ H1,4
ω (D1) (see [20]). Now, consider the following problem in D2
∂tv2 +

∑N
k=1 ∂

4
xk
v2 = f2 ∈ L2

ω (D2) ,
v2|ΣT1

= ψ,

v2|Σi,2
= ∂x1v2|Σi,2

= 0, i = 1, 2,

v2|Σ0,2∪Σb,2
= ∂x2v2|Σ0,2∪Σb,2

= ... = ∂xN v2|Σ0,2∪Σb,2
= 0,

(11)

Σi,2 are the parts of the boundary of D2 where x1 = φi (t), i = 1, 2, Σ0,2 is the part of
the boundary of D2 where xk = 0, k = 2, ..., N and Σb,2 is the part of the boundary of D2

where xk = bk−1, k = 2, ..., N .
We use the following result, which is a consequence of [20, Theorem 4.3, Vol.2] to solve

Problem (11).

Proposition 4.1. Let R be the cylinder ]0, T [ × ]0, 1[ ×
∏N−1

i=1 ]0, bi[, f ∈ L2
ω (R) and

u0 ∈ H2
ω (γ0). Then, the problem

∂tu+
∑N

k=1 ∂
4
xk
u = f in R,

u|γ0 = u0,

u|γi = ∂x1u|γi = 0, i = 1, 2,

u|∂R−(γ0∪γi) = ∂x2u|∂R−(γ0∪γi) = ... = ∂xNu|∂R−(γ0∪γi) = 0, i = 1, 2,

where γ0 = {0} × ]0, 1[×
∏N−1

i=1 ]0, bi[, γ1 = ]0, T [× {0} ×
∏N−1

i=1 ]0, bi[ and

γ2 = ]0, T [× {1} ×
∏N−1

i=1 ]0, bi[, admits a(unique) solution u ∈ H1,4
ω (R) if and only if the

following compatibility conditions are fulfilled

∂kxj
u0

∣∣∣
∂γ0

= 0, k = 0, 1; j = 1, ..., N.

The transformation

(t, x1, x2, ..., xN ) 7−→ (t, y1, y2, ..., yN ) = (t, (φ2 (t)− φ1 (t))x1 + φ1 (t) , x2, ..., xN )

leads to the following result:
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Proposition 4.2. Problem (11) admits a (unique) solution v2 ∈ H1,4
ω (D2) if and only if

the following compatibility conditions are fulfilled

∂kxj
ψ
∣∣∣
∂ΣT1

= 0, k = 0, 1; j = 1, ..., N.

Remark 4.1. We can observe that the boundary conditions of Problems (10) and (11)
yield

v1|ΣT1
= v2|ΣT1

and ∂kxj
vi

∣∣∣
ΣT1

∈ H
3
4
ω (ΣT1); k = 0, 1; j = 1, ..., N.. Then the compatibility conditions

∂kxj
ψ
∣∣∣
∂ΣT1

= 0, k = 0, 1; j = 1, ..., N

are satisfied since v1|ΣT1
= ψ.

Now, consider the function u in Q defined by

u :=

{
v1 in D1

v2 in D2

where v1 and v2 are the solutions of Problem (10) and Problem (11) respectively. Observe
that v1|ΣT1

= v2|ΣT1
, see Remark 4.1, so

∂kxj
v1

∣∣∣
ΣT1

= ∂kxj
v2

∣∣∣
ΣT1

, k = 0, 1; j = 1, ..., N.

This implies that u ∈ H1,4
ω (Q) and u is the (unique) solution of Problem (1) for an

arbitrary T .
Our second main result is as follows.

Theorem 4.2. Under the assumptions (2), (3) and (4) on the functions φ1, φ2 and ω,

Problem (1) admits a (unique) solution u ∈ H1,4
ω (Q).
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