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ON THE HADAMARD PRODUCT OF BALANCING QnB MATRIX

AND BALANCING Q−nB MATRIX

PRASANTA KUMAR RAY1, SUJATA SWAIN2, §

Abstract. In this paper, the matrix Qn
B ◦Q−n

B which is the Hadamard product of both

balancing Qn
B matrix and balancing Q−n

B matrix is introduced. Some properties of the
Hadamard product of these matrices are investigated. A different coding and decoding
method based on the application of the Hadamard product of balancing Qn

B matrix and
balancing Q−n

B matrix is also considered
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1. Introduction

The balancing numbers are the terms of the sequence {0, 1, 6, 35, 204, . . .} and their
recurrence relation is given by

Bn+1 = 6Bn −Bn−1, n ≥ 1, (1)

with initials B0 = 0 and B1 = 1 [1]. Many important and useful results of these numbers
and their related sequences are available in the literature. Interested reader can go through
[2, 4–24]. There is another way to generate balancing numbers using powers of a matrix
called as balancing Q-matrix introduced by Ray in [13]. The balancing matrix is a second
order matrix whose entries are the first three balancing numbers 0, 1 and 6, and is in the
form

QB =

(
6 −1
1 0

)
.

In [13], he has also shown that the nth power of the balancing Q-matrix is in the form

QnB =

(
Bn+1 −Bn
Bn −Bn−1

)
, (2)

with the determinant value 1, i.e. by Cassini formula for balancing numbers,

det(QnB) = B2
n −Bn−1Bn+1 = 1. (3)

The recurrence relation (1) can be used to extend the balancing numbers backward to get

B−n = −Bn. (4)
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We now present some basic results relating to the nth power of the balancing Q-matrix,
QnB.

Lemma 1.1. The balancing matrix QnB is also satisfy the recurrence relation (1) of the

balancing numbers, that is QnB = 6Qn−1B −Qn−2B .

Proof. The proof is easy. By (1), we obtain

QnB =

(
Bn+1 −Bn
Bn −Bn−1

)
=

(
6Bn −Bn−1 −6Bn−1 +Bn−2

6Bn−1 −Bn−2 −6Bn−2 +Bn−3

)
= 6

(
Bn −Bn−1
Bn−1 −Bn−2

)
−
(
Bn−1 −Bn−2
Bn−2 −Bn−3

)
= 6Qn−1B −Qn−2B ,

which completes the proof. �

Lemma 1.2. The following property for QnB is valid: QnB ·QmB = QmB ·QnB = Qn+mB .

Proof. Since Bn+1Bm −BnBm−1 = Bm+1Bn −BmBn−1 = Bm+n [11], we have

QnB ·QmB =

(
Bn+1 −Bn
Bn −Bn−1

)(
Bm+1 −Bm
Bm −Bm−1

)
=

(
Bn+1Bm+1 −BnBm −Bn+1Bm +BnBm−1
Bm+1Bn −BmBn−1 −BnBm +Bn−1Bm−1

)
=

(
Bn+m+1 −Bn+m
Bn+m −Bn+m−1

)
= Qn+mB .

Other part can be shown similarly. �

In this study, we will consider the Hadamard product of balancing QnB matrix and
balancing Q−nB matrix denoted by QnB ◦Q

−n
B , where Q−nB is the inverse of the matrix

QnB. We will also investigate some important properties of this product.

2. Some identities of QnB ◦Q
−n
B matrix

By virtue of (2), the Hadamard product QnB ◦Q
−n
B can be written as

QnB ◦Q−nB = QnB ◦ adjQnB =

(
−Bn+1Bn−1 −B2

n

−B2
n −Bn+1Bn−1

)
,

where adjQnB is the adjoint of the matrix QnB.

The following definition is given in [3, 12].

Definition 2.1. Let A = (aij) be n×n matrix over any commutative ring. The permanent
of A denoted by per(A) is defined by

per(A) =
∑
σ

a1σ1a2σ2 . . . anσn ,

where the summation extends over all one-to-one functions from {1, 2, ..., n} to {1, 2, ..., n}.

The following are some important results on the Hadamard product QnB ◦Q
−n
B .
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Theorem 2.1. For all integers n, det
(
QnB ◦Q

−n
B

)
= 1− 2B2

n.

Proof. Using Definition 2.1 and the identity (3), we get

det
(
QnB ◦Q−nB

)
= B2

n+1B
2
n−1 −B4

n

= (Bn+1Bn−1 −B2
n)(Bn+1Bn−1 +B2

n)

= −per(QnB)

= 1− 2B2
n,

which ends the proof. �

The following corollary is an immediate consequence of Theorem 2.1.

Corollary 2.1. The trace of the matrix QnB ◦Q
−n
B is, trace

(
QnB ◦Q

−n
B

)
= 2(1−B2

n).

Theorem 2.2. If λ1 and λ2 are the eigenvalues of the matrix QnB ◦Q
−n
B , then

λ1 = 1, λ2 = −per(QnB).

Proof. Let I is the identity matrix of order 2. By (3), the characteristic equation of the
matrix QnB ◦Q

−n
B is given by

0 = det
(
QnB ◦Q−nB − λI

)
= (Bn+1Bn−1 + λ)2 −B4

n

= (Bn+1Bn−1 +B2
n + λ)(Bn+1Bn−1 −B2

n + λ)

= (λ+ per(QnB))(λ− 1).

It follows that λ1 = 1 and λ2 = −per(QnB). �

Theorem 2.3. The linearly independent eigenvectors corresponding to the eigenvalues

λ1 = 1 and λ2 = −per(QnB) of the matrix QnB ◦Q
−n
B are Xλ1 =

(
−1
1

)
and Xλ2 =

(
1
1

)
.

Proof. If λ is an eigenvalue of the matrix QnB ◦Q
−n
B , then the corresponding eigenvectors

Xλ =

(
x1
x2

)
are the solution of the equation(

QnB ◦Q−nB − λI
)
Xλ = 0. (5)

For λ1 = 1, (5) reduces to(
−Bn+1Bn−1 − 1 −B2

n

−B2
n −Bn+1Bn−1 − 1

)(
x1
x2

)
=

(
0
0

)
.

Using (3) again, we obtain (
−B2

n −B2
n

−B2
n −B2

n

)(
x1
x2

)
=

(
0
0

)
,

which is a system of homogenous equations. Therefore by elementary row operation, we
get (

−1 −1
0 0

)(
x1
x2

)
=

(
0
0

)
.

Since the rank of the coefficient matrix of this system is 1, there exists infinitely many
solutions depending on one parameter. Therefore, the solutions of the system are x1 =
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−k, x2 = k, where k is arbitrary. Hence, the linearly independent eigenvector correspond-
ing to the eigenvalue λ1 = 1 is equal to [−1, 1]T . Similarly, For λ2 = −per(QnB) and by
(3) again, (5) reduces to (

B2
n −B2

n

−B2
n B2

n

)(
x1
x2

)
=

(
0
0

)
.

One can proceed similarly to get x1 = x2 = k, where k is arbitrary. Thus, the linearly
independent eigenvector corresponding to the eigenvalue λ2 = −per(QnB) is equal to [1, 1]T .
Which completes the proof. �

Remark 2.1. Since the matrix QnB ◦Q
−n
B is symmetric, it can be diagonalize. Therefore

by virtue of Theorem 2.2 and Theorem 2.3, we can write the matrix P in the form

P =

(
−1 1
1 1

)
and notice that, P−1(QnB ◦Q

−n
B )P = diag(1,−per(QnB)).

It is well known that, if Mn denote the class of complex n × n matrices, then the
maximum column sum matrix norm on Mn is defined by

|||A|||1 = max
1≤j≤n

n∑
i=1

|aij |

and the maximum row sum matrix norm on Mn is defined by

|||A|||∞ = max
1≤i≤n

n∑
j=1

|aij |.

Also, the l1 norm and the Euclidean norm or l2 norm on Mn are respectively given by

||A||1 =
n∑

1,j=1

|aij |

and

||A||2 =

√√√√ n∑
1,j=1

|aij |2.

The following identities are easily deduced from the definition of norms.

Theorem 2.4. For all integers n, we have

a) |||QnB ◦Q−nB |||1 = |||QnB ◦Q−nB |||∞ = 2B2
n − 1,

b) ||QnB ◦Q−nB ||1 = 4B2
n − 2,

c) ||QnB ◦Q−nB ||2 =
√

4B4
n − 4B2

n + 2.

Theorem 2.5. The matrix QnB◦Q
−n
B is invertible, and

(
QnB ◦Q

−n
B

)−1
=

(
1−B2

n
1−2B2

n

B2
n

1−2B2
n

B2
n

1−2B2
n

1−B2
n

1−2B2
n

)
.

Proof. By virtue of Theorem 2.2, det
(
QnB ◦Q

−n
B

)
= −per(QnB) = 1−2B2

n 6= 0. Therefore it

is invertible, and its inverse can be easily deduced as
(
QnB ◦Q

−n
B

)−1
=

(
1−B2

n
1−2B2

n

B2
n

1−2B2
n

B2
n

1−2B2
n

1−B2
n

1−2B2
n

)
.

This ends the proof. �
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3. Balancing coding/decoding method

In this section, we consider a simple coding/decoding method based on application of
the Hadamard product QnB ◦ Q

−n
B . Let the initial massage M is represented by a 2 × 2

matrix of the form

M =

(
m1 m2

m3 m4

)
.

Based on matrix multiplication, we now consider the following encryption/decryption al-
gorithms.

Encryption: Decryption:

M × (QnB ◦Q
−n
B ) = E E(x)×

(
QnB ◦Q

−n
B

)−1
= M

We assume that the entries of M are all positive integers, i.e.
m1 > 0,m2 > 0,m3 > 0,m4 > 0. To describe the method, for example we select the
matrix Q3

B ◦Q
−3
B as the coding matrix. Then

Q3
B ◦Q−3B =

(
−B4B2 −B2

3

−B2
3 −B4B2

)
=

(
−1224 −1225
−1225 −1224

)
(6)

and (
Q3
B ◦Q−3B

)−1
=

 1−B2
3

1−2B2
3

B2
3

1−2B2
3

B2
3

1−2B2
3

1−B2
3

1−2B2
3

 =

(
1224
2449 −1225

2449
−1225

2449
1224
2449

)
. (7)

Thus the balancing coding of the massage M consists in its multiplication by the direct
coding matrix (6), that is

M × (Q3
B ◦Q−3B ) =

(
m1 m2

m3 m4

)(
−1224 −1225
−1225 −1224

)
=

(
−1224m1 − 1225m2 −1225m1 − 1224m2

−1224m3 − 1225m4 −1225m3 − 1224m4

)
=

(
e1 e2
e3 e4

)
= E,

where

e1 = −1224m1 − 1225m2,

e2 = −1225m1 − 1224m2,

e3 = −1224m3 − 1225m4,

e4 = −1225m3 − 1224m4.

Thus, the sent code massage E = {e1, e2, e3, e4} is now decoded by multiplying it with the
inverse matrix (7) in the following way:(

e1 e2
e3 e4

)(
1224
2449 −1225

2449
−1225

2449
1224
2449

)
=

(
1224
2449e1 −

1225
2449e2

1224
2449e3 −

1225
2449e4

−1225
2449e1 + 1224

2449e2 −1225
2449e3 + 1224

2449e4

)
=

(
e
′
1 e

′
2

e
′
3 e

′
4

)
.

By simple algebraic manipulation with the help of the identities e1, e2, e3 and e4, one can
easily obtain (

e
′
1 e

′
2

e
′
3 e

′
4

)
=

(
m1 m2

m3 m4

)
= M.
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We notice that, the determinant of the code matrix E which is obtained from the
multiplication of initial matrix M with the coding matrix QnB ◦Q

−n
B is given by

detE = det
(
M × (QnB ◦Q−nB )

)
= 1− 2B2

n,

for all integers n.
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[2] Bèrczes, A., Liptai, K. and Pink, I., (2010), On generalized balancing numbers, Fibonacci Quart.,
48(2), pp. 121-128.

[3] Horn, R.A. and Johnson, C.A., (1985), Matrix Analysis, Cambridge University Press, New York.
[4] Keskin R. and Karaatly O., (2012), Some new properties of balancing numbers and square triangular

numbers, J.Integer Seq., 15(1), pp. 12.1.4.
[5] Liptai, K., Fibonacci balancing numbers, (2004), Fibonacci Quart., 42(4), pp. 330-340.
[6] Liptai, K., Lucas balancing numbers, (2006), Acta Math. Univ. Ostrav., 14(1), pp. 43-47.
[7] Liptai, K., Luca, F., Pinter A. and Szalay L. , (2009), Generalized balancing numbers, Indag. Math.(N.

S.), 20, pp. 87-100.
[8] Olajos, P., (2010), Properties of balancing, cobalancing and generalized balancing numbers, Ann.

Math. Inform. , 37, pp. 125-138.
[9] Panda, G.K. and Ray P.K., (2011), Some links of balancing and cobalancing numbers with Pell and

associated Pell numbers, Bull. Inst. Math. Acad. Sin. (N. S.), 6(1), pp. 41-72.
[10] Panda, G.K. and Ray P.K., (2005), Cobalancing numbers and cobalancers, Int. J. of Math. Math.

Sci., 8, pp. 1189-1200.
[11] Panda, G.K. (2009), Some fascinating properties of balancing numbers, Proceeding of the Eleventh

International Conference on Fibonacci Numbers and Their Applications, Congr. Numer. , 194, pp.
185-189.

[12] Patel, B.K. and Ray, P.K. (2015), The Period, rank and order of the sequence of balancing numbers
modulo m, accepted in Mathematical Reports.

[13] Ray P.K., (2012), Application of Chybeshev polynomials in factorization of balancing and Lucas-
balancing numbers, Bol, Soc. Parana. Mat. , 30 (2), pp. 49-56.

[14] Ray P.K., (2012), Certain matrices associated with balancing and Lucas-balancing numbers, Matem-
atika, 28 (1), pp. 15-22.

[15] Ray P.K., (2013), Factorization of negatively subscripted balancing and Lucas-balancing numbers,
Bol, Soc. Parana. Mat. , 31 (2), pp. 161-173.

[16] Ray P.K., (2012), Curious congruences for balancing numbers, Int. J. of Contemp. Math. Sci., 7 (18),
pp. 881-889.

[17] Ray P.K., (2013), New identities for the common factors for balancing and Lucas-balancing numbers,
Int. J. Pure Appl. Math., 85, pp. 487-494.

[18] Ray P.K., (2014), Some congruences for balancing and Lucas-balancing numbers and their applica-
tions, Integers, 14, #A8.

[19] Ray P.K., (2014), On the properties of Lucas-balancing numbers by matrix method, Sigmae, Alfenas,
3(1), pp. 1-6.

[20] Ray P.K., Parida K., (2014), Generalization of Cassini formula for balancing and Lucas-balancing
numbers, Matematychni Studii., 42(1), pp. 9-14.

[21] Ray P.K., Dila G.K., Patel B.K., (2014), Application of some recurrence relations to cryptography
using finite state machine International Journal of Computer Science and Electronics Engineering
(IJCSEE), 2 (4), pp. 220-223.

[22] Ray P.K., (2014), Identities involving the terms of a balancing-like sequence via matrices, Caspian
Journal of Applied Mathematics, Ecology and Economics, 2(1), pp. 94-100.

[23] Ray P.K., (2015), Balancing and Lucas balancing sums by matrix methods, Mathematical Reports,
17(67), 2, pp. 225-233.

[24] Ray, P.K. and Patel, B.K. (2015), Uniform distribution of the sequence of balancing numbers modulo
m, accepted in Uniform Distribution Theory.



PRASANTA KUMAR RAY AND SUJATA SWAIN: ON THE HADAMARD PRODUCT OF... 207

Sujata Swain received her MCA degree from Biju Pattnaik University and Technology ,
Roukela, India and M Tech. From Berhampur University, India. She is currently working
as a computer teacher in the Department of Computer Science at D.A.V. Public School,
Unit-8, Bhubaneswar, India. Her research interests are in the areas of Number Theory
and Cryptography, Parallel Algorithm, Artificial Intelligence and Neural Networking. She
has more than two papers in her credit.

Prasanta Kumar Ray received his Ph.D. from NIT Rourkela, India and is currently
working as an Associate Professor in the Department of Mathematics at Veer Surendra Sai
University of Technology, Odisha, Burla, India. His research interests includes Number
Theory and Cryptography. He has published more than 25 conference/journal articles.


