TWMS J. App. Eng. Math. V.5, N.2, 2015, pp. 269-275.

## SOME NEW CLASSES OF GRACEFUL DIAMETER SIX TREES

AMARESH CHANDRA PANDA<sup>1</sup>, DEBDAS MISHRA<sup>2</sup>, §

ABSTRACT. Here we denote a diameter six tree by  $(a_0; a_1, a_2, \ldots, a_m; b_1, b_2, \ldots, b_n; c_1, c_2, \ldots, c_r)$ , where  $a_0$  is the center of the tree;  $a_i$ ,  $i = 1, 2, \ldots, m$ ,  $b_j$ ,  $j = 1, 2, \ldots, n$ , and  $c_k$ ,  $k = 1, 2, \ldots, r$  are the vertices of the tree adjacent to  $a_0$ ; each  $a_i$  is the center of a diameter four tree, each  $b_j$  is the center of a star, and each  $c_k$  is a pendant vertex. Here we give graceful labelings to some new classes of diameter six trees  $(a_0; a_1, a_2, \ldots, a_m; b_1, b_2, \ldots, b_n; c_1, c_2, \ldots, c_r)$  in which the branches of a diameter four tree incident on  $a_0$  are of same type, i.e. either they are all odd branches or even branches. Here by a branch we mean a star, i.e. we call a star an odd branch if its center has an odd degree and an even branch if its center has an even degree.

Keywords: graceful labeling, diameter six tree, component moving transformation, trans-

fers of the first and second types, BD8TF

AMS Subject Classification: 05C78

## 1. INTRODUCTION

**Definition 1.1.** A diameter six tree is a tree which has a representation of the form  $(a_0; a_1, a_2, \ldots, a_m; b_1, b_2, \ldots, b_n; c_1, c_2, \ldots, c_r)$ , where  $a_0$  is the center of the tree;  $a_i$ ,  $i = 1, 2, \ldots, m, b_j$ ,  $j = 1, 2, \ldots, n$ , and  $c_k$ ,  $k = 1, 2, \ldots, r$  are the vertices of the tree adjacent to  $a_0$ ; each  $a_i$  is the center of a diameter four tree, each  $b_j$  is the center of a star, and each  $c_k$  is a pendant vertex. We observe that in a diameter six tree with above representation  $m \ge 2$ , i.e. there should be at least two (vertices)  $a_i$  s adjacent to c which are the centers of diameter four trees. Here we use the notation  $D_6$  to denote a diameter six tree.

Graceful Tree Conjecture [5] of Ringel and Kotzig was published in 1964. Numerous efforts of last five decades have failed to resolve this conjecture. One may refer to the latest survey paper of Gallian [1] to have an idea regarding the progress made so far in resolving graceful tree conjecture. All trees up to diameter five [2] are known to be graceful. Among the diameter six trees only banana trees [6] are known to be graceful. By a banana tree we mean a tree which is obtained by joining a vertex to one leaf of each of any number of stars by a path of length of at least two. Here we give graceful labelings to some new classes of diameter six trees  $(a_0; a_1, a_2, \ldots, a_m; b_1, b_2, \ldots, b_n; c_1, c_2, \ldots, c_r)$  in which all the branches of a diameter four tree incident on  $a_0$  are of same type, i.e. either they are all odd branches or even branches. Here by a branch we mean a star, i.e. we call a star

<sup>&</sup>lt;sup>1</sup> C.V. Raman College Of Engineering, Bidyanagar Mahura Janala Bhubaneswar-752054 India. e-mail: amaresh471980@gmail.com;

<sup>&</sup>lt;sup>2</sup> C.V. Raman College Of Engineering, Bidyanagar Mahura Janala Bhubaneswar-752054 India. e-mail: debmaths@gamil.com;

<sup>§</sup> Manuscript received: November 03, 2014.

TWMS Journal of Applied and Engineering Mathematics, Vol.5, No.2; © Işık University, Department of Mathematics, 2015; all rights reserved.

an odd branch if its center has an odd degree and an even branch if its center has an even degree. We use the concept of component moving and inverse transformation concepts of graceful labelings discussed in [2], [3], and [4] to give graceful labelings to diameter six trees in this paper. Next we give some fundamental prerequisite tools to deduce our results.

**Definition 1.2.** [3], [4] Let T be a tree and a and b be two vertices of T. By  $a \to b$  transfer we mean that some components from a have been moved to b. The successive transfers  $a_1 \to a_2, a_2 \to a_3, a_3 \to a_4, \ldots$  is simply written as the transfer  $a_1 \to a_2 \to a_3 \to a_4 \ldots$ . In the transfer  $a_1 \to a_2 \to \ldots \to a_{n-1} \to a_n$ , each vertex  $a_i, i = 1, 2, \ldots, n-1$  is called a vertex of transfer. Let T be a labelled tree with a labeling f. We consider the vertices of T whose labels form the sequence (a, b, a - 1, b + 1, a - 2, b + 2) (respectively, (a, b, a+1, b-1, a+2, b-2)). Let a be adjacent to some vertices having labels different from the above labels. The  $a \longrightarrow b$  transfer is called a transfer of the first type if the labels of the transferred components constitute a set of consecutive integers. The  $a \longrightarrow b$  transfer is called a transfer of the second type if the labels of the transferred components can be divided into two segments, where each segment is a set of consecutive integers. A sequence of eight transfers of the first type  $a \to b \to a - 1 \to b + 1 \to a \to b \to a - 1 \to b + 1 \to a - 2$ (respectively,  $a \to b \to a + 1 \to b - 1 \to a \to b \to a + 1 \to b - 1 \to a + 2$ ), is called a backward double 8 transfer of the first type or BD8TF a to a - 2 (respectively, a to a + 2).

**Theorem 1.1.** [3], [4] In a graceful labeling f of a graceful tree T, let a and b be the labels of two vertices. Let a be attached to a set A of vertices (or components) having labels  $n, n+1, n+2, \ldots, n+p$  (different from the above vertex labels), which satisfy  $(n + 1 + i) + (n + p - i) = a + b, i \ge 0$  (respectively,  $(n + i) + (n + p - 1 - i) = a + b, i \ge 0$ ). Then the following hold.

(a) By making a transfer  $a \to b$  of first type we can keep an odd number of components at a from the set A and move the rest to b, and the resultant tree thus formed will be graceful.

(b) If A contains an even number of elements, then by making a sequence of transfers of the second type  $a \rightarrow b \rightarrow a - 1 \rightarrow b + 1 \rightarrow a - 2 \rightarrow b + 2 \rightarrow \dots$  (respectively,  $a \rightarrow b \rightarrow a + 1 \rightarrow b - 1 \rightarrow a + 2 \rightarrow b - 2 \rightarrow \dots$ ), an even number of elements from A can be kept at each vertex of the transfer, and the resultant tree thus formed is graceful.

(c) By a BD8TF a to b + 1 (respectively, b - 1), we can keep an even number of elements from A at a, b, a - 1, and b + 1 (respectively, a, b, a + 1, and b - 1), and move the rest to a - 2 (respectively, a + 2). The resultant tree formed in each of the above cases is graceful.

(d) Consider the transfer  $R': a \to b \to a - 1 \to b + 1 \to \ldots \to \ldots$  (respectively,  $a \to b \to a + 1 \to b - 1 \to \ldots \to \ldots$ ), such that R' is partitioned as  $R': T'_1 \to T'_2$ , where  $T'_1$  is sequence of transfers consisting of the transfers of the first type and BD8TF and  $T'_2$  is a sequence of transfer of the second type. The tree  $T^{**}$  obtained from T by making the transfer R' is graceful.

**Lemma 1.1.** [2] If g is a graceful labeling of a tree T with n edges then the labeling  $g_n$  defined as  $g_n(x) = n - g(x)$ , for all  $x \in V(T)$ , called the *inverse transformation* of g is also a graceful labeling of T.

## 2. RESULTS

**Notations:** Let  $D_6 = \{a_0; a_1, a_2, \ldots, a_m; b_1, b_2, \ldots, b_n; c_1, c_2, \ldots, c_r\}$  be diameter six tree. We may have one of or both n = 0 and r = 0. For next couple of results we will consistently use the following notations.

 $m_e$  = Number of diameter four trees adjacent to  $a_0$  with centers having odd degree.

 $m_o$  = Number of diameter four trees adjacent to  $a_0$  with centers having even degree, i.e.  $m = m_e + m_o$ .

 $n_e$  = Number of stars adjacent to  $a_0$  with center having odd degree.

 $n_o =$  Number of stars adjacent to  $a_0$  with center having even degree, i.e.  $n = n_e + n_o$ .

**Theorem 2.1.** If m+n is odd,  $m_e \cong 0 \mod 4$ ,  $n_e \cong 0 \mod 4$ , and the branches incident on the center  $a_i$  of the diameter four tree are all odd branches or all even branches then (a)  $D_6 = \{a_0; a_1, a_2, \ldots, a_m; b_1, b_2, \ldots, b_n; c_1, c_2, \ldots, c_r\}$  has a graceful labeling.

(b)  $D_6 = \{a_0; a_1, a_2, \dots, a_m; b_1, b_2, \dots, b_n\}$  has a graceful labeling.

(c) If m is odd then  $D_6 = \{a_0; a_1, a_2, \dots, a_m\}$  has a graceful labeling.

(d) If m is odd then  $D_6 = \{a_0; a_1, a_2, \ldots, a_m; c_1, c_2, \ldots, c_r\}$  has a graceful labeling.

**Proof:** We prove part (a) first. Let  $|E(D_6)| = q$  and  $deg(a_0) = m + n = 2k + 1$ . Let us remove the pendant vertices adjacent to  $a_0$  and represent the new graceful tree by  $D_6^{(1)}$ . Consider the graceful tree G as represented in Figure 1.

Let  $A = \{k + 1, k + 2, \dots, q - k - r - 1\}$ . Observe that (k + i) + (q - r - k - i) = q - r. Consider the sequence of transfer  $T_1 : q - r \to 1 \to q - r - 1 \to 2 \to q - r - 2 \to \dots \to k \to q - r - k \to k + 1$ of the vertex levels in the set A. Observe that the transfer  $T_1$  and the set A satisfy the properties of Theorem 1.1.

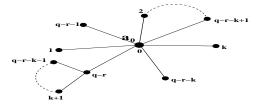


FIGURE 1. The graceful tree G.

Suppose that the centers  $a_1, a_2, \ldots, a_{m_o}$  are the centers of diameter four trees adjacent to  $a_0$  with even degree and  $a_{m_o+1}, a_{m_o+2}, \ldots, a_m$  are the centers of diameter four trees adjacent to  $a_0$  with odd degree. Suppose that the centers  $b_1, b_2, \ldots, b_{n_e}$  are the centers of stars adjacent to  $a_0$  with odd degree and  $b_{n_e+1}, b_{n_e+2}, \ldots, b_n$  are the centers of stars adjacent to  $a_0$  with even degree. Here  $T_1$  consists of  $m_o$  successive transfers of the first type, followed by  $\frac{m_e+n_e}{4}$  successive BD8TF, and finally  $n_o$  successive transfers of the first type. We carry out the transfer  $T_1$  by keeping desired number of elements of A at each vertex of the transfer. Observe that

$$a_{i} = \begin{cases} q - r - \frac{i-1}{2} \text{ if } i \text{ is odd} \\ \frac{i}{2} \text{ if } i \text{ is even} \end{cases} \text{ and } b_{j} = \begin{cases} \begin{cases} q - r - \frac{m+j-1}{2} \text{ if } j \text{ is odd} \\ \frac{m+j}{2} \text{ if } i \text{ is even} \end{cases} \text{ if } m \text{ is even} \\ \begin{cases} \frac{m+j}{2} \text{ if } j \text{ is odd} \\ q - r - \frac{m+j-1}{2} \text{ if } j \text{ is even} \end{cases} \text{ if } m \text{ is odd} \end{cases}$$

Let  $A_1$  be the set of vertex labels of A which have come to the vertex k+1 after the transfer  $T_1$ . Since each transfer in  $T_1$  is either a transfer of 1st type or a BD8TF, the elements of  $A_1$  are the consecutive integers. Next consider the transfer  $T_2: k+1 \rightarrow q-r-k-1 \rightarrow k+2 \rightarrow q-r-k-2 \rightarrow \ldots, \rightarrow t$ , where  $t = \begin{cases} k+k_1+1; \text{ if } m \text{ is odd} \\ q-r-k-k_1; \text{ if } m \text{ is even} \end{cases}$ ,  $k_1 = \sum_{i=1}^m deg(a_i) - m$ 

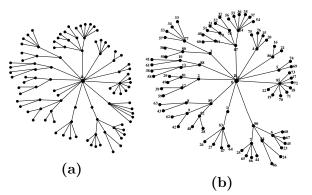
Observe that the vertices of transfer  $T_2$  and the elements of  $A_1$  satisfy the hypothesis of Theorem 1.1. Let the sum of all odd (or even) branches of the diameter four trees with centers  $a_1, a_2, \ldots, a_m$  be s. So  $T_2$  consists of s-1 successive transfers. Each transfer of  $T_2$  is a transfer of the first or second type according as the branches of the diameter four trees are all odd or even. By executing the transfer  $T_2$  we get back the tree  $D_6^{(1)}$  and by Theorem 1.1 it is graceful. Attach the vertices  $c_1, c_2, \ldots, c_r$  to  $a_0$  and assign them the labels  $q - r + 1, q - r + 2, q - r + 3, \ldots, q$  so as to get back  $D_6$  with a graceful labeling.

Proofs of the remaining cases follow from that of part (a). For part (b) we set r = 0, for part (c) we set n = 0 and r = 0, and for part (d) we set n = 0.

**Theorem 2.2.** If  $r \ge 0$ , m+n is even,  $m_e \cong 0 \mod 4$ , either  $n_e \cong 0 \mod 4$  and  $n_o \ge 1$  or  $n_e \cong 1 \mod 4$ , and the branches incident on the center  $a_i$  of the diameter four tree are all odd branches or all even branches then  $D_6 = \{a_0; a_1, a_2, \ldots, a_m; b_1, b_2, \ldots, b_n; c_1, c_2, \ldots, c_r\}$  has a graceful labeling.

**Proof:** Designate the vertex  $b_n$  as the center of a star with even degree if  $n_e \cong 0 \mod 4$ and  $n_o \ge 1$  and the center of a star with odd degree if  $n_e \cong 1 \mod 4$ . Construct a tree  $G_6$  from  $D_6$  by removing the vertices  $b_n$ ,  $c_1$ ,  $c_2$ , ...,  $c_r$ . Obviously  $G_6$  is a diameter six tree with center  $a_0$  having odd degree. Let  $|E(G_6)| = q_1$ . Repeat the procedure involving the proof of Theorem 2.1(a) by replacing n with n-1 and q-r with  $q_1$  and give a graceful labeling to  $G_6$ . Observe that the vertex  $a_0$  in the graceful tree  $G_6$  gets the label 0. Attach  $b_n$ ,  $c_1$ ,  $c_2$ , ...,  $c_r$  to  $a_0$  and assign the labels  $q_1 + 1$ ,  $q_1 + 2$ , ...,  $q_1 + r$ ,  $q_1 + r + 1$  to them. Obviously, the tree  $G_6 \cup \{b_n, c_1, c_2, \ldots, c_r\}$  is graceful with a graceful labeling, say g. Apply inverse transformation  $g_{q_1+r+1}$  to  $G_6 \cup \{b_n, c_1, c_2, \ldots, c_r\}$ so that the label of the vertex  $b_n$  becomes 0. By Lemma 1.1,  $g_{q_1+r+1}$  is a graceful labeling of  $G_6 \cup \{b_n, c_1, c_2, \ldots, c_r\}$ . Let there be p pendant vertices adjacent to  $b_n$  in  $D_6$ . Now attach these vertices to  $b_n$  and assign the labels  $q_1 + r + 2$ ,  $q_1 + r + 3$ , ...,  $q_1 + r + p + 1$ to them. Observe that we finally form the tree  $D_6$  and the labeling mentioned above is a graceful labeling of  $D_6$ .

**Example 2.1.** The diameter six tree in Figure 2 (a) is a diameter six of the type in Theorem 2.2. Here q = 98, m = 7, and n = 5. We first form the grace-ful diameter six tree  $G_6$  as in Figure (b) by removing all the pendant vertices and one star adjacent to  $a_0$ . Subsequently we get the graceful labelings of the given tree through graceful trees in figures (c), (d), and (e).



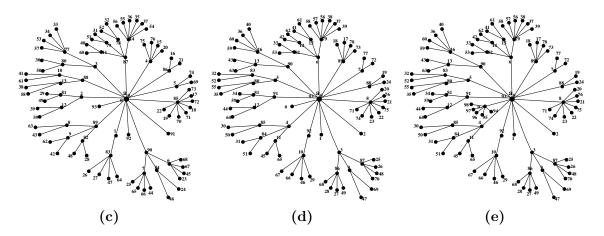


FIGURE 2. A diameter six tree of the type in Theorem 2.2(b) with a graceful labeling.

**Theorem 2.3.** Let  $r \ge 0$ ,  $m_e \cong 1 \mod 4$ , the degree of at least one  $a_i$ ,  $1 \le i \le m$  is  $\ge 4$ , and one of the following conditions hold.

(a)  $n_e \cong 0 \mod 4, m+n$  is even.

(b)  $m_e \cong 1 \mod 4 \mod n + n$  is odd, either  $n_e \cong 0$  and  $n_o \ge 1$  or  $n_e \cong 1$ .

If the branches incident on the center  $a_i$  of the diameter four tree are all odd branches or all even branches then  $D_6 = \{a_0; a_1, a_2, \ldots, a_m; b_1, b_2, \ldots, b_n; c_1, c_2, \ldots, c_r\}$  has a graceful labeling.

**Proof:(a)** Let us designate the vertices  $a_1, a_2, \ldots, a_m$  in such a way that  $deg(a_2)$  is maximum.

**Case - I:** If  $deg(a_2)$  is even then we designate  $a_i$ ,  $1 \le i \le m_o$  as the centers of diameter four trees with even degree and  $a_i$ ,  $m_o + 1 \le i \le m$  as the centers of diameter four trees with odd degree. Excluding  $a_0$  let there be  $2p_i + 1$  neighbours of  $a_i$ ,  $i = 1, 2, \ldots, m_o$ and there be  $2p_i$  neighbours of  $a_i$ ,  $i = m_o + 1, m_o + 2, \ldots, m$  in  $D_6$ . Construct a new diameter six tree, say  $G_6$  by removing the vertices  $c_1, c_2, \ldots, c_r$ , and  $a_m$  and making  $2p_m$ neighbours of  $a_m$  adjacent to the vertex  $a_2$ . Let  $|E(G_6)| = q_1$ . Repeat the procedure for giving labeling to  $D_6^{(1)}$  in the proof of Theorem 2.1 (a) by replacing  $m_e$  with  $m_e-1$  and q-rwith  $q_1$  and give a graceful labeling to  $G_6$ . Observe that the vertex  $a_2$  gets label 1, and the  $2(p_2+p_m)+1$  neighbours of  $a_2$  get the labels  $q_1-x, x+1+i, q_1-x-i, x = k+p_1+1, i = k+p_1+1$  $1, 2, \ldots, p_2 + p_m$ . While labeling  $G_6$  we allot labels  $x + i + 2, q_1 - x - i, i = 1, 2, \ldots, p_m$  to  $2p_m$  neighbours of  $a_m$  that were shifted to  $a_2$  while constructing  $G_6$ . Next attach the vertex  $a_m$  to  $a_0$ , assign it the label  $q_1+1$  and move the vertices  $x+i+2, q_1-x-i, i = 1, 2, \ldots, p_m$ , to  $a_m$ . Since  $(x+i+2) + (q_1 - x - i) = q_1 + 2 = 1 + (q_1 + 1)$ , for  $i = 1, 2, ..., p_m$ , by Theorem 1.1 the resultant tree, say  $G_1$  thus formed is graceful. Finally, attach the pendant vertices  $c_1, c_2, \ldots, c_r$  to  $a_0$  and assign the labels  $q_1 + 2, q_1 + 3, \ldots, q_1 + r + 1$  to them Observe that we finally get the tree  $D_6$  with a graceful labeling.

**Case** - **II:** If  $deg(a_2)$  is odd then we designate  $a_i$ ,  $1 \le i \le m_e - 1$  as the centers of diameter four trees with odd degree and  $a_i$ ,  $m_e \le i \le m - 1$  as the centers of diameter four trees with even degree, and  $a_m$  as the center of a diameter four tree with an odd degree. Excluding  $a_0$  let there be  $2p_i + 2$  neighbours of  $a_i$ ,  $i = 1, 2, \ldots, m_e - 1$ , there be  $2p_i + 1$  neighbours of  $a_i$ ,  $i = m_e, m_e + 1, \ldots, m - 1$ , and there be  $2p_m$  neighbours of  $a_m$  in  $D_6$ . Construct a new diameter six tree from  $D_6$ , say  $G_6$  by removing the vertices  $c_1, c_2, \ldots, c_r$ , and  $a_m$  and making  $2p_m$  neighbours of  $a_m$  adjacent to the vertex  $a_2$ . Repeat the procedure for giving graceful labeling to  $D_6^{(1)}$  in the proof of Theorem 2.1 (a) by carrying the transfer  $T_1: q - r \to 1 \to q - r - 1 \to 2 \to q - r - 2 \to \ldots \to k \to q - r - k \to k + 1$  consisting of  $\frac{m_e-1}{4}$  successive BD8TF, followed by  $m_o + n_o$  successive transfers of the first type, followed by  $\frac{n_e}{4}$  successive BD8TF keeping desired number of elements of A at each vertex of the transfer and give a graceful labeling to  $G_6$ . Observe that the vertex  $a_2$  gets label 1, and the  $2(p_2 + p_m)$  neighbours of  $a_2$  get the labels  $q_1 - x, x + 1 + i, q_1 - x - i, x = k + p_1 + 1, i = 1, 2, \ldots, p_2 + p_m - 1$  and one more vertex . While labeling  $G_6$  we allot labels  $x + i + 2, q_1 - x - i, i = 1, 2, \ldots, p_m$  to  $2p_m$  neighbours of  $a_m$  that were shifted to  $a_2$  while constructing  $G_6$ . The remaining proof is same as that in Case - I.

(b): Designate the vertex  $a_2$  as the center of diameter four tree whose degree  $\geq 4$ . Designate the vertex  $a_m$  as the center of a diameter four tree with odd degree, say  $deg(a_m) = 2p_m + 1$ . Construct a tree  $G_6$  from  $D_6$  by removing the vertices  $c_1, c_2, \ldots, c_r$ , one star with center  $b_n$ , where  $deg(b_n)$  is odd if  $n_e \cong 0 \mod 4$  and  $deg(b_n)$  is even if  $n_e \cong 1 \mod 4$ , and one diameter four tree with center  $a_m$ , and attaching  $2p_m$  neighbours of  $a_m$  to  $a_2$ . Let  $|E(G_6)| = q_1$ . Repeat the procedure in the proof of Theorem 2.1 (a) by replacing m with m-1, n with n-1 and q-r with  $q_1$  and give a graceful labeling to

273

 $G_6$ . Next attach the vertex  $a_m$  to  $a_0$  and assign the label  $q_1 + 1$  and shift the  $2p_m$  vertices from  $a_2$  to  $a_m$  as discussed in the proof of part (a). Let the new graceful tree thus formed be  $G_1$ . Next attach vertices  $c_1, c_2, \ldots, c_r$ , and  $b_n$  to  $a_0$  and assign the labels  $q_1 + 2, q_1 + 3, \ldots, q_1 + r + 1$ , and  $q_1 + r + 2$ , respectively. Obviously, the tree  $G_1 \cup \{c_1, c_2, \ldots, c_r, b_n\}$ is graceful with a graceful labeling, say g. Apply inverse transformation  $g_{q_1+r+2}$  to  $G_1$  so that the label of the vertex  $b_n$  becomes 0. By Lemma 1.1,  $g_{q_1+r+2}$  is a graceful labeling of  $G_1$ . Let there be p pendant vertices adjacent to  $b_n$  in  $D_6$ . Now attach these vertices to  $b_n$  and assign labels  $q_1 + r + 3, q_1 + r + 4, \ldots, q_1 + r + p + 2$  to them. Observe that we get the tree  $D_6$  and the labeling mentioned above is a graceful labeling of  $D_6$ .

**Theorem 2.4.** If  $m_e \cong 0 \mod 4$  and  $n = n_e \cong 0 \mod 4$ , m is even,  $m_o \ge 2$ , the degree of the center of at least one diameter four tree adjacent to  $a_0 \ge 4$ , and the branches incident on the center  $a_i$  of the diameter four tree are all odd branches or all even branches then  $D_6 = \{a_0; a_1, a_2, \ldots, a_m; b_1, b_2, \ldots, b_n\}$  has a graceful labeling.

**Proof:** Designate the vertex  $a_2$  as the center of diameter four tree whose degree  $\geq 4$ . Designate the vertex  $a_m$  as the center of a diameter four tree with even degree, say  $deg(a_m) = 2p_m + 2$ . Construct a tree  $G_6$  from  $D_6$  by removing the vertex  $a_m$  and attaching any  $2p_m$  (out of  $2p_m + 1$ ) neighbours of  $a_m$  to  $a_2$ . Let  $|E(G_6)| = q_1$ . Repeat the procedure in the proof of Theorem 2.1 (a) by replacing m with m-1, n with n-1and q - r with  $q_1$  and give a graceful labeling to  $G_6$ . Next attach the vertex  $a_m$  to  $a_0$ , assign the label  $q_1 + 1$ , and shift the  $2p_m$  vertices from  $a_2$  to  $a_m$  as discussed in the proof of part (a) of Theorem 2.3 to a get a graceful tree, say  $G_1$  with a graceful labeling, say g. Apply inverse transformation  $g_{q_1+1}$  to  $G_1$  so that the label of the vertex  $a_{m_o}$  becomes 0. By Lemma 1.1,  $g_{q_1+1}$  is a graceful labeling of  $G_1$ . Now attach one remaining vertex to  $a_{m_o}$ and assign the label  $q_1 + 2$  to it. Let this graceful labeling of the new tree, say  $G_2$  thus formed be  $g_1$ . Let there be p neighbours of  $q_1 + 2$  in  $D_6$ . Apply inverse transformation  $g_{1q_1+2}$  to  $G_2$  so that the label of the vertex  $q_1+2$  of  $G_2$  becomes 0. By Lemma 1.1,  $g_{q_1+2}$ is a graceful labeling of  $G_2$ . Now attach the p pendant vertices adjacent to the vertex labelled 0 and assign them the labels  $q_1 + 3, q_1 + 4, \ldots, q_1 + p + 2$ . Observe that we finally form the tree  $D_6$  and the labeling mentioned above is a graceful labeling of  $D_6$ .

## References

- Gallian, J.A., (2013), A dynamic survey of graph labeling, Electronic Journal of Combinatorics, DS6, Sixteenth edition, url: http://www.combinatorics.org/Surveys/.
- [2] Hrnciar, P. and Havier, A., (2001), All Trees of Diameter Five Are Graceful, Discrete Mathematics, 233, pp. 133-150.
- [3] Mishra,D. and Panda,A.C., (2013), Some New Transformations And Their Applications Involving Graceful Tree Labeling, International Journal of Mathematical Sciences and Engineering Aplications, Vol.7, No.1, pp. 239-254.
- [4] Mishra, D. and Panigrahi, P., (2008), Some Graceful Lobsters with All Three Types of Branches Incident on the Vertices of the Central Path, Computers and Mathematics with Applications 56, pp. 1382-1394.
- [5] Rosa,A., (1968), On certain valuations of the vertices of a graph, in Theórie des Graphes, (ed. P. Rosenstiehl), Dunod, Paris, pp. 349-355, MR 36-6319.
- [6] Sethuraman, G. and Jesintha, J., (2009), All banana trees are graceful, Advances Appl. Disc. Math., 4, pp. 53-64.



Amaresh Chandra Panda was born in 1981, in Bhadrak, India. He received his B.Sc.degree in Mathematics in 2002 from F.M. University, Balasore, India; M.Sc.and M.Phil. degree from Utkal University, Odisha, India. He is currently working as Assistant Professor in the Department of Mathematics, at C.V. Raman College Of Engineering, Bhubaneswar, Odisha, India. His research area is Graph Theory(Graceful and Harmonious labeling problems). He has published around 10 papers in various peer reviewed

journals of international repute. He has also published two books in Engineering mathematics.



**Dr. Debdas Mishra** was born in 1975, at Rourkela, India. He completed Msc. in Applied Mathematics in 1997 from National Institute Of Technology(NIT), Rourkela, India and Ph.D in 2007 from Indian Institute Of Technology (IIT), Kharagpur, India. He is currently working as Associate Professor and Head of the Department of Mathematics, C.V. Raman College Of Engineering, Bhubaneswar, India. He has more than fifteen years of experience in teaching. He has published more than 25 papers in various peer reviewed journals of international repute. He has also published three books on En-

gineering Mathematics. His research area is Graph Theory. Dr Mishra has made significant contribution towards resolving Bermond's conjecture which states that "All lobsters are Gracfeul." Dr. Mishra has reviewed many research papers as referee of many reputed international journals.