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ONE-PARAMETER HOMOTHETIC MOTION IN THE MINKOWSKI

3-SPACE

MEHDI JAFARI1, YUSUF YAYLI2, §

Abstract. A one-parameter homothetic motion in three-dimensional Minkowski space
is defined by means of the Hamilton operators. We study some properties of this motion
and show that it has only one pole point at every instant t. We also obtain the Darboux
vector of the homothetic motion in E3

1 and show that it can be written as multiplication
of two split quaternions.
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1. Introduction

Split quaternions, H ′, or coquaternions are elements of a 4-dimensional associative
algebra introduced by James Cockle in 1849. These quaternions are identified with the
semi-Euclidean space E4

2 . A split quaternion can be applied to rotation in Minkowski 3-
space. Some algebraic properties of Hamilton operators for split quaternions are considered
in[2] where these quaternions have been expressed in terms of 4 × 4 matrices by means
of these operators. By De Moivre’s formula, we obtained any powers of these matrices
[3]. Homothetic motions with aid of the Hamilton operators in four-dimensional semi-
Euclidean space E4

2 are studied in [1]. It is found that this motion also has only one pole
point at every instant t. Tosu and et. al [6] investigated the one-parameter homothetic
motion of a rigid body in 3-dimensional Lorentz space. Also, it is shown that this motion is
regular in space-like and time-like regions and has only one instantaneous rotation centre
at all time t.

In this paper, a Hamilton motion is defined in three-dimensional Minkowski space E3
1

by means of the Hamilton operators and it is shown that it is a homothetic motion. We
study some properties of this motion and show that it has only one pole point at every
instant t. Therefore, the darboux vector of the motion is obtained and in special case
(Nα = 1) this vector can be written in multiplication of two split quaternions. Finally, we
give some examples for more clarification.
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2. Preliminaries

We start with preliminaries on the geometry of 3-dimensional Minkowski space. The
Minkowski 3−space E3

1 is the Euclidean space E3 provided with the inner product

〈−→u ,−→v 〉L = −u1v1 + u2v2 + u3v3

where −→u = (u1, u2, u3),
−→v = (v1, v2, v3) ∈ E3. We say that a Lorentzian vector −→u in E3

1 is
spacelike, lightlike or timelike if 〈−→u ,−→u 〉L > 0, 〈−→u ,−→u 〉L = 0 or 〈−→u ,−→u 〉L < 0, respectively.

The norm of the vector −→u ∈ E3
1 is defined by ‖−→u ‖ =

√
|〈−→u ,−→u 〉L|. The Lorentzian vector

product −→u ∧L −→v of −→u and −→v is defined as follows:

−→u ∧L −→v =

∣∣∣∣∣∣
−e1 e2 e3
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ .
The hyperbolic and Lorentzian unit spheres are

H2
0 = {−→a ∈ E3

1 : 〈−→a ,−→a 〉L = −1} and S2
1 = {−→a ∈ E3

1 : 〈−→a ,−→a 〉L = 1},

respectively.
Each rotation of Minkowski 3-space is represented by a rotation matrix with respect to

standard basis. These matrices form the three-dimensional special orthogonal group

SO1(3) = {A ∈M3(R) : At

 −1 0 0
0 1 0
0 0 1

A =

 −1 0 0
0 1 0
0 0 1

 and detA = 1}.

We can call these matrices semi-orthogonal matrices [5].

3. Split Quaternions Algebra

The semi-Euclidean 4-space with 2-index is represented with E4
2 . The inner product of

this semi-Euclidean space is

〈−→u ,−→v 〉E4
2

= −u1v1 − u2v2 + u3v3 + u4v4,

and we say that −→u is timelike, spacelike or lightlike if 〈−→u ,−→v 〉E4
2
< 0, 〈−→u ,−→v 〉E4

2
>

0 and 〈−→u ,−→v 〉E4
2

= 0 for the vector −→u ∈ E4
2 , respectively. Split quaternions H ′ are

identified with the semi-Euclidean space E4
2 . Besides, the subspace of H ′ consisting of

pure split quaternions H ′0 is identified with the Minkowski 3-space. Thus, it is possible
to do with split quaternions many of the things one ordinarily does in vector analysis by
using Lorentzian inner and vector product.

Split quaternion algebra is an associative, non-commutative non-division ring with four
basic elements {1, i, j, k} satisfying the equalities i2 = −1, j2 = k2 = 1 and

i ∗ j = k = −j ∗ i, j ∗ k = −i = −k ∗ j, k ∗ i = j = −i ∗ k.

Also, similar to the division algebra of quaternions, the split quaternion algebra is the
even subalgebra of the Clifford algebra of the three-dimensional Lorentzian space. That
is, the non-division algebra of split quaternions H ′ is isomorphic with the even subalgebra
Cl+2,1 of the Clifford algebra Cl 2,1 where Cl+2,1 has the basis

{1, e2e3 → i, e3e1 → k, e1e2 → j}.
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Scalar and vector parts of split quaternion q are denoted by Sq = a0 and
−→
V q = a1i +

a2j+a3k, respectively. The split quaternion product of two quaternions q = (a0, a1, a2, a3)
and p = (b0, b1, b2, b3) is defined as

q ∗ p = SqSp − 〈
−→
V q,
−→
V p〉L + Sq

−→
V p + Sp

−→
V q +

−→
V q ∧L

−→
V p

where 〈, 〉L and ∧L are the Lorentzian inner product and vector products, respectively.

Let q = (a0, a1, a2, a3) = Sq +
−→
V q be a split quaternion. The conjugate of a split

quaternion, denoted q∗, is defined as q∗ = Sq −
−→
V q. We say that a split quaternion

q is spacelike, timelike or lightlike, if Iq < 0, Iq > 0 or Iq = 0, respectively, where
Iq = q ∗ q∗ = q∗ ∗ q. Obviously, −Iq = −a20− a21 + a22 + a23 is identified with 〈q, q〉E4

2
for the

split quaternion q = (a0, a1, a2, a3).

The norm of q = (a0, a1, a2, a3) is defined as Nq =
√∣∣a20 + a21 − a22 − a23

∣∣. If Nq = 1 then

q is called unit split quaternion [5].

Definition 3.1. Let q be a split quaternion, then
+
hq : H ′ → H ′ and

−
hq : H ′ → H ′ are

defined as follows:
+
hq(x) = qx,

−
hq(x) = xq, x ∈ H ′

The Hamilton’s operators
+
H and

−
H, could be represented as the matrices;

+
H(q) =


a0 −a1 a2 a3
a1 a0 a3 −a2
a2 a3 a0 −a1
a3 −a2 a1 a0

 (1)

and

−
H(q) =


a0 −a1 a2 a3
a1 a0 −a3 a2
a2 −a3 a0 a1
a3 a2 −a1 a0

 . (2)

Theorem 3.1. If q and p are split quaternions, then the following identities hold:

(i) qp =
+
H(q)p, qp =

−
H(p)q,

+
H(q)

−
H(q) =

−
H(q)

+
H(q)

(ii)
+
H(q∗) = ε(

+
H(q))tε,

−
H(q∗) = ε(

−
H(q))tε, ε =

[
−I2 0

0 I2

]
.

(iii) det
+
H(q) = det

−
H(q) = N2

q .

Proof. The proof can be found in [2]. �
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4. Homothtic Motion in E3
1

The one-parameter homothetic motions of a body in three-dimensional Minkowski space
E3

1 is generated by transformation[
Y
1

]
=

[
hA C
0 1

] [
X
1

]
where A is a semi-orthogonal matrix. The matrix B = hA is called a homothetic matrix
and Y,X and C are n×1 real matrices. The homothetic scalar h and the elements of A and
C are continuously differentiable functions of a real parameter t. Y and X correspond to
the position vectors of the same point with respect to the rectangular coordinate systems
of the moving space R and the fixed space R0, respectively. At the initial time t = t0,
we consider the coordinate systems of R and R0 as coincident. To avoid the case of affine
transformation we assume that

h = h(t) 6= cons. , h(t) 6= 0.

and to avoid the case of a pure translation or a pure rotation, we also assume that

d

dt
(hA) 6= 0,

d

dt
(C) 6= 0.

If we differentiate the equation AtεA = ε, we get

(
·
A
t

ε)A+ (Atε)
·
A = 0.

By choosing Atε
·
A = Ω and Ωt = (

·
A
t

ε)A, we can see that

Ω =

 0 Ωz Ωy

−Ωz 0 Ωx

−Ωy −Ωx 0


is a anti-symmetric matrix in the sense of Lorentzien, i.e., Ω = −Ωt. And also we have,

since At = εA−1ε then

Ω = Atε
·
A = (εA−1ε)ε

·
A = εA−1

·
A

⇒ A−1
·
A = εΩ [6].

5. Hamilton Motions in Minkowski 3-Space

Let us consider the curve α : I ⊂ R→ E4
2 defined by

α(t) = (a0(t), a1(t), a2(t), a3(t)), for every t ∈ I. (3)

We suppose that α(t) is a differential curve of order r and it does not pass through the
origin. Also, the map Fα : H ′0 → H ′0 is defined as

Fα(x) = α ∗ x ∗ α∗, x ∈ H ′0 (4)

Using the definition of
+
H,

−
H equation (4) is written as

Fα(x) = x′ =
+
H(α)

−
H(α∗) x.
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From (1) and (2), we have

+
H(α)

−
H(α∗) =


a20 + a21 − a22 − a23 0 0 0

0 a20 + a21 + a22 + a23 2(a0a3 − a1a2) −2(a0a2 + a1a3)
0 2(a0a3 + a1a2) a20 − a21 − a22 + a23 2(a0a1 + a2a3)
0 2(a1a3 − a0a2) 2(a0a1 − a2a3) a20 − a21 + a22 − a23

 .
This simplifies to

+
H(α)

−
H(α) =

[
h′ 0
0 B

]
,

where h′ = N2
α = a20 + a21 − a22 − a23 and

B = [bij ]3×3 =

 a20 + a21 + a22 + a23 2(a0a3 − a1a2) −2(a0a2 + a1a3)
2(a0a3 + a1a2) a20 − a21 − a22 + a23 2(a0a1 + a2a3)
2(a1a3 − a0a2) 2(a0a1 − a2a3) a20 − a21 + a22 − a23

 .
For matrix B, we have BtεBε = h′2I3 and detB = h′3.

Definition 5.1. The one parameter Hamilton motions of a body in Minkowski 3-space
are generated by transformation[

X
1

]
=

[
B C
0 1

] [
X0

0

]
, (5)

where B3×3 is above matrix. X, X0 and C are n×1 real matrics, A and C are continuously

differentiable functions of a real parameter t; X and X0 correspond to the position vectors
of the same point P.

Theorem 5.1. The Hamilton motion determined by equation (5) is a homothetic motion
in E3

1 .

Proof. The matrix B can be represented as

B = h

 b11
h

b21
h

b31
h

b21
h

b22
h

b32
h

b31
h

b32
h

b33
h

 = hA,

where h : I ⊂ R→ R,

t → h(t) = a20(t) + a21(t)− a22(t)− a23(t).

So, we finde AT εAε = AεAT ε = I3 and detA = 1, i.e. A ∈ SO1(3). Thus B is a
homothetic matrix, and equation (5) determines a homothetic motion. �
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6. pole point and pole curves of the motion

To find the pole point, we have to solve the equation
·
BX +

·
C = 0. (6)

Any solution of equation (6) is a pole point of the motion at that instant in R0. Since
·
B is regular, the equation (6) has only one solution, i.e. X0 = (−

·
B
−1

)
·
C at every instant

t. This pole point in the fix system as

X = B(−
·
B
−1 ·
C) + C.

Theorem 6.1. During the homothetic motion the pole curves slide and roll upon each
others and the number of the sliding-rolling of the motion is h.

Example 6.1. Let α:I ⊂ R→ E4
2 be a curve given by

t→ α(t) = (cosh t , t, sinh t,−1) , for every t ∈ I.

α(t) is a differentiable regular of order r. Because, α(t) does not pass though the origin,
the matrix B can be represented as

B =

 1 + t2 + sinh2 t. cosh2 t 2(cosh t− t sinh t) −2(cosh t. sinh t+ t)
2(cosh t+ t sinh t) 2− t2 2(t cosh t+ sinh t)
2(t− cosh t. sinh t) 2(t cosh t− sinh t) −1− t2 + sinh2 t. cosh2 t


= t2 A,

where h(t) = t2, A ∈ SO1(3). Thus α(t) satisfies all conditions of the above theorems.

7. Darboux Vector of the Motion

In Euclidean 3-space, Yaylı [7] has showed the the Darboux vector of the homothetic
motion which is defined by the Hamilton operators, can be written as multiplication of
two real quaternions. In this section, we obtain the Darboux vector of the homothetic
motion in the Minkowski 3-space and show that it can be written as multiplication of two
split quaternions.

Suppose that α(t) is a curve as defined in (3). The Darboux matrix in the homothetic
motion defined by homothetic matrix B, is

Ω = Bt ε
·
B

So we obtain

Ω =
2

h′


·
h′

2 a0
·
a3 −

·
a0a3 −

·
a1a2 + a1

·
a2

·
a1a3 − a1

·
a3 −

·
a0a2 + a0

·
a2

−(a0
·
a3 −

·
a0a3 −

·
a1a2 + a1

·
a2)

·
h′

2

·
a2a3 − a2

·
a3 −

·
a0a1 + a0

·
a1

−(
·
a1a3 − a1

·
a3 −

·
a0a2 + a0

·
a2) −(

·
a2a3 − a2

·
a3 −

·
a0a1 + a0

·
a1)

·
h′

2

 .
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We investigate the Darboux matrix in special case h′ = 1. In the case, we have

Ω = 2

 0 a0
·
a3 −

·
a0a3 −

·
a1a2 + a1

·
a2

·
a1a3 − a1

·
a3 −

·
a0a2 + a0

·
a2

−(
·
a0a3 − a0

·
a3 +

·
a1a2 − a1

·
a2) 0

·
a2a3 − a2

·
a3 −

·
a0a1 + a0

·
a1

−(
·
a1a3 − a1

·
a3 −

·
a0a2 + a0

·
a2) −(

·
a2a3 − a2

·
a3 −

·
a0a1 + a0

·
a1) 0

 .
Darboux vector corresponds to skew-symmetric matrix Ω is defined by

−→
Ω = (Ωx,Ωy,Ωz).

Therefore, Darboux vector of the motion is obtained

−→
Ω = 2(

·
a2a3 − a2

·
a3 −

·
a0a1 + a0

·
a1,

·
a1a3 − a1

·
a3 −

·
a0a2 + a0

·
a2, a0

·
a3 −

·
a0a3 −

·
a1a2 + a1

·
a2).

This vector can be written in Multiplication of split quaternions as

−→
Ω = 2(

·
α ∗ α∗).

Example 7.1. Suppose that the curve given as

α : I ⊂ R→ E4
2

t → α(t) =
1

2

(√
2 cosh t,

√
3,
√

2 sinh t,−1
)
, for every t ∈ I.

α(t) is a differentiable regular of order r. Because, α(t) does not pass though the origin,
the matrix B can be represented as

B =

 1 + 1
2(cosh2 t+ sinh2 t) − 1√

2
(cosh t−

√
3 sinh t) − cosh t. sinh t+

√
3
2

− 1√
2
(cosh t+

√
3 sinh t) 0 1√

2
(
√

3 cosh t− sinh t)

−1
2(cosh t. sinh t+

√
3) 1√

2
(
√

3 cosh t+ sinh t) 1
2(cosh2 t+ sinh2 t)− 1


B is a homothetic matrix and is defined a homothetic motion. Darboux vector of this

motion is

−→
Ω = (− 1√

2
(cosh t+

√
3 sinh t),

1

2
,

1√
2

(
√

3 cosh t+ sinh t)).

conclusion

A motion in 3-dimensional Minkowski space defined by using a spatial curve, it is shown
that, this motion is a homothetic motion. We investigated some properties of this motion
and showed that it has only one pole point at every instant t .
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